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ABSTRACT
Distributed systems found in application domains, such as
smart transportation and smart grids, inherently require
dissemination of large amount of data over wide area net-
works (WAN). A large portion of this data is analyzed and
used to manage the overall health and safety of these dis-
tributed systems. The data-centric, publish/subscribe (pub-
/sub) paradigm is an attractive choice to address these needs
because it provides scalable and loosely coupled data com-
munications. However, existing data-centric pub/sub mech-
anisms supporting quality of service (QoS) tend to operate
effectively only within local area networks. Likewise broker-
based solutions that operate at WAN-scale seldom provide
mechanisms to coordinate among themselves for discovery
and dissemination of information, and cannot handle both
the heterogeneity of pub/sub endpoints as well as the signif-
icant churn in endpoints that is common in WAN-scale sys-
tems. To address these limitations, this paper presents Pub-
SubCoord, which is a cloud-based coordination and discov-
ery service for WAN-scale pub/sub systems. PubSubCoord
realizes a WAN-scale, adaptive, and low-latency endpoint
discovery and data dissemination architecture by (a) bal-
ancing the load using elastic cloud resources, (b) clustering
brokers by topics for affinity, and (c) minimizing the number
of data delivery hops in the pub/sub overlay. PubSubCoord
builds on ZooKeeper’s coordination primitives to support
dynamic discovery of brokers and pub/sub endpoints located
in isolated networks. Empirical results evaluating the per-
formance of PubSubCoord are presented for (1) scalability
of data dissemination and coordination, and (2) deadline-
aware overlays employing configurable QoS to provide low-
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latency data delivery for topics demanding strict service re-
quirements.
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1. INTRODUCTION
Distributed systems found in application domains, such

as transportation, advanced and agile manufacturing, smart
energy grids, and other industrial use cases of Internet of
Things, are increasingly assuming wide area network (WAN)
scale, e.g., Industrial Internet Reference Architecture. 1

These systems are characterized by a large collection of het-
erogeneous entities, some of which are sensors that sense
various parameters across the span of the system and dis-
seminate these information for processing so that appro-
priate control operations are actuated over different spatio-
temporal scales to manage different properties of the system.
The key to the success of these systems relies on how effec-
tive is the system in collecting and delivering data across
large number of heterogeneous entities at internet scale in a
manner that satisfies different quality of service (QoS) prop-
erties (e.g., timeliness, reliability, and security).

The publish/subscribe (pub/sub) communication paradi-
gm is a promising solution since it provides a scalable and
decoupled data delivery mechanism between communicating
peers. Many industrial and academic pub/sub solutions ex-
ist [4, 7, 9, 12, 18, 22, 27]. Some of these even support
the desired QoS properties, such as availability [9, 22], con-
figurable reliability [18], durability [12], and timeliness [6,
15]. However, these solutions tend to support only one QoS
property at a time and in most cases, the support for config-
urability and dynamic adaptation is lacking. More impor-
tantly, dynamic discovery of heterogeneous endpoints, which
is a key requirement, is often missing in these solutions.

One approach to supporting WAN-based pub/sub relies
on broker-based solutions [1, 10, 14, 17] because this ap-
proach can solve practical issues when a system is deployed

1http://www.iiconsortium.org/IIRA.htm



in network environments that use network address transla-
tion (NAT) or firewall or do not support multicast. How-
ever, as industrial systems progressively integrate other sub-
systems located in multiple disparate networks, the number
of deployed brokers becomes very large. Consequently, the
amount of effort to manage these dispersed brokers becomes
unwieldy. Moreover, forming an efficient overlay network of
brokers that offers both scalability and low latency becomes
even harder.

To address these key requirements, we present PubSub-
Coord, which is a cloud-based coordination service for ge-
ographically distributed pub/sub brokers to transparently
connect heterogeneous endpoints and realize internet-scale
data-centric pub/sub systems. Specifically, this paper ad-
dresses the following challenges in the context of scalable,
reliable, and dynamic pub/sub systems:

• Scalability and Availability: To address the scala-
bility and availability needs of data dissemination across
WAN-scale systems despite NAT/firewall issues and
failures, PubSubCoord uses the separation of concerns
principle to decouple local area-based brokers called
edge brokers that handle local pub/sub issues from
cloud-based brokers called routing brokers that han-
dle routing between edge brokers (See Section 2.2).

• Dynamic Discovery and Dissemination: To sup-
port dynamic discovery and data routing between bro-
kers, PubsubCoord provides efficient coordination amo-
ng the brokers by building pub/sub-specific event noti-
fications using the basic primitives provided by ZooKee-
per coordination service [13]. This solution helps to
synchronize the dissemination paths over the dynamic
overlay network of brokers and heterogeneous endpoints
(See Section 2.3).

• Overload and Fault Management: To manage
topic and dissemination overload, PubSubCoord uses
cloud-based elasticity to balance the load. Load bal-
ancing and broker failures are handled by an elected
leader (See Section 2.4).

• Performance Optimizations: For those dissemina-
tion paths that need both low latency and reliability
assurances, PubSubCoord trades off resource usage in
favor of deadline-aware overlays that build multiple,
redundant paths between brokers (See Section 2.4.3).

Our PubSubCoord design can easily be adopted by in-
dustrial systems because its design is based on proven soft-
ware engineering design patterns. We have favored maxi-
mal reuse of proven industrial-strength solutions wherever
possible instead of reinventing the wheel. A key guiding
principle for us was to ensure a non-invasive and extensi-
ble design which preserves the endpoint discovery and data
dissemination model of the underlying pub/sub messaging
system by tunneling discovery and dissemination messages
across the hierarchy of brokers. Using this approach, it is
possible to support multiple concrete pub/sub technologies
without breaking their individual semantics. We present ex-
tensive empirical test data to validate our claims. The exper-
imental results are demonstrated concretely in the context
of endpoints that use the OMG Data Distribution Service
(DDS) [20] as the underlying pub/sub messaging system.

The source code and experimental apparatus of PubSubCo-
ord are made available in open source.2

The remainder of this paper is organized as follows: Sec-
tion 2 describes the design and implementation of PubSub-
Coord; Section 3 shows experimental results validating our
claims; Section 4 compares PubSubCoord with related work;
and Section 5 presents concluding remarks and alludes to fu-
ture work.

2. DESIGN OF PUBSUBCOORD
This section presents the PubSubCoord architecture and

the rationale for the design decisions. We present each solu-
tion explaining the context, the design patterns and frame-
works used, and how the consequences from applying the
patterns are resolved. We then provide details on the run-
time interactions between the elements of the architecture.
We then allude to some implementation details.

2.1 PubSubCoord Architecture: The Big Pic-
ture

Figure 1 shows the layered PubSubCoord architecture de-
picting three layers: a coordination layer, a pub/sub broker
overlay layer, and the physical network layer. The pub/sub
broker overlay comprises a broker hierarchy based on a sep-
aration of concerns representing the logical network of bro-
kers and endpoints in a system. An edge broker is directly
connected to individual endpoints in a local area network
(LAN) (i.e., which represents an isolated network) to serve
as a bridge to other endpoints placed in different networks.
A routing broker serves as a mediator to route data between
edge brokers according to assigned and matched topics that
are present in the global data space. The coordination layer
comprises an ensemble of ZooKeeper servers used for coor-
dination between the brokers.

The data dissemination in PubSubCoord is explained us-
ing an example from Figure 1. Pi{T} denotes a publisher
i that publishes topic T (similarly for a subscriber Sj{T}).
In the example, since publisher P1 and subscriber S1 are
the only endpoints interested in topic A, they communicate
within their local network A only using the techniques pro-
vided by the underlying pub/sub technology. On the other
hand, P2, P4, and S2 are interested in topic B but are de-
ployed in different isolated networks. So their communica-
tions are routed through a routing broker that is responsible
for topic B. The network transport protocol between bro-
kers is configurable, but TCP is used as a default transport
to ensure reliable communication over WANs. As seen from
this example, a maximum of 2 hops on the overlay network
are incurred by data flowing from one isolated network to
another (e.g., network A to B).

2.2 Addressing Scalability and Availability Re-
quirements

Context: Traditional WAN-based pub/sub systems tend
to form an overlay network of brokers to which endpoints can
be connected. The brokers exchange subscriptions they re-
ceive from subscribers which are used to build routing paths
from publishers. The main challenge in this approach stems
from having to build routing states among brokers to route
data efficiently according to matching subscribers. Secondly,

2URL for download: www.dre.vanderbilt.edu/~kyoungho/
pubsubcoord.
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Figure 1: Layering and Separation of Concerns in the Pub-
SubCoord Architecture

in traditional broker-based pub/sub systems, if some broker
were to fail, it halts not only the pub/sub service for end-
points connected to this broker but also service for endpoints
connected to other brokers that use this failed broker as an
intermediate routing broker.

Design: To resolve these duo of challenges, PubSubCo-
ord’s broker overlay layer is structured as a two-tier archi-
tecture of brokers with strict separation of responsibilities:
at the first tier are edge brokers that manage pub/sub issues
within an isolated network, and at the second tier are rout-
ing brokers, which route traffic among different edge brokers.
Our solution clusters edge brokers by matching topics and
routes data through routing brokers. Each routing broker is
responsible for handling only a certain number of topics so
as to balance the load, minimize the overall amount of data
exchanged and number of connections between edge brokers.

Consequences and resolution: The immediate conse-
quence of such a design decision is having to decide how
many routing brokers to maintain, how many topics to be
handled by each routing broker, and how to organize them
in the system. Having only one routing broker would be
problematic since it cannot scale to handle the substantial
routing load stemming from the dissemination of different
topic data among the large number of endpoints. Having
multiple routing brokers and organizing them in multiple
levels of hierarchy similar to DNS would not be acceptable
either since it would complicate the management of top-
ics and recovery from failures because the routing state and
topic management would get distributed across multiple lev-
els. Secondly, multiple levels as in DNS introduces multiple
routing hops, which will impact latency of distribution. For
that reason, we maintain a flat tier of routing brokers.

The number of routing brokers and topics managed by
each routing broker is determined by the end-to-end per-
formance requirements of the pub/sub flows. Thus, a solu-
tion that can elastically scale the number of routing brokers
and balance the number of topics handled by each broker is
needed. For that reason, the routing broker tier is placed
as a cluster in the cloud where resources can be elastically
scaled up/down depending on the demand. This capability
allows us to dynamically adapt to system load and scale to
existing demand.

2.3 Addressing Dynamic Endpoint Discovery
and Dissemination Requirements

Context: In the WAN-style systems of interest to us,
matching publishers and subscribers are most likely dis-
tributed in separate isolated networks, and may join or leave
dynamically. Thus, publishers and subscribers must be able
to dynamically discover each other and a dissemination route
needs to be established between the communicating entities.

So far we described the design rationale for a 2-tier bro-
ker architecture, which helps resolve issues stemming from
having to maintain substantial pub/sub routing states but
did not show how endpoints in isolated networks are discov-
ered and how the routes are established dynamically based
on endpoint discovery.

Design: To address this need, PubSubCoord provides a
coordination layer (top layer shown in Figure 1) comprising
an ensemble of ZooKeeper [13] servers, which help brokers
discover each other and build broker overlay networks us-
ing the PubSubCoord coordination logic. ZooKeeper is an
industrial-strength solution that provides generic primitives
for developing domain-specific coordination capabilities for
distributed applications.

The ZooKeeper service consists of an ensemble of servers
that use replication to accomplish high availability with high
performance and relaxed consistency. Many coordination
recipes using ZooKeeper exist (e.g., leader election, group
membership, and sharing configuration metadata) that are
needed by distributed applications. PubSubCoord builds
upon these recipes to develop coordination logic for broker
interaction. ZooKeeper also provides the watch mechanism
to notify a client of ZooKeeper of a change to a znode (i.e.,
a ZooKeeper data object containing its path and data con-
tent). This feature is exploited for dynamic changes in the
system.

/

/topics

/pub /sub

/dw1 /dr1

/leader /broker

/topic_A /topic_B

/pub /sub

/dw1 /dw2 /dr1

/rb1 /rb2 /rb3

Figure 2: Tunneling used in PubSubCoord for ZNode Tree

Consequences and resolution: The data model of Zoo-



Keeper is structured like a file system in the form of znodes.
The original intent of this hierarchical namespace is to man-
age group membership. We repurposed it to manage pub/-
sub endpoints by applying the Tunnel pattern to introduce
pub/sub semantics into the znodes. Figure 2 shows the zn-
ode data tree structure of PubSubCoord with pub/sub se-
mantics. The root znode contains three child znodes: topics,
leader, and broker. All unique topics defined in the pub/sub
system are rooted under the topics znode. The child znodes
for every unique topic represent the endpoints, i.e., publish-
ers and subscribers, associated with it. The leader znode is
used to elect a leader among the routing brokers. The bro-
ker znode has child znodes for each routing broker where its
location information (i.e., IP address and port number of a
routing broker) is stored. The leader uses this information
to associate a selected routing broker’s location to a topic
znode after the topic assignment.

Dynamic updates to different parts of this tree are achieved
through broker interactions that exploit the watch mech-
anism. Specifically, dynamic changes in the system (e.g.,
broker or pub/sub join/leave, topic creation/deletion) are
handled using the Observer pattern where brokers connect
to the ZooKeeper service as its clients and create, update,
and delete znodes stored in the servers. They use the watch
mechanism to set watches on interesting znodes to receive
notifications. PubSubCoord exploits the ephemeral mode
feature of ZooKeeper, where a specific znode in the tree is
automatically deleted from the tree when the client session
handling this znode is lost. Details on all the interactions
that take place in this context are provided in Section 2.5
where we show how brokers discover each other and routes
are established.

2.4 Addressing Overload and Fault Tolerance
Requirements

Context: Performance of the WAN-scale pub/sub system
in our architecture can be impacted by at least two factors:
load on a routing broker and network congestion on the two
hop route between edge brokers over the broker overlay.3

Load on a routing broker depends on the number of topics it
manages and correspondingly the number of edge brokers it
interconnects through itself. Addressing these two sources of
performance bottleneck are important for PubSubCoord. In
the case of faults, although many kinds of faults are possible,
failures of routing brokers and the coordination logic are
most critical. Hence, we focus only on tolerating failures in
routing brokers and the coordination logic.

2.4.1 Routing Broker Overload Management
Design: We address the routing broker overload problem

by supporting load balancing within the routing broker tier.
Load balancing is handled by a leader routing broker, which
is elected among the routing brokers. To elect a leader in a
consistent and safe manner, PubSubCoord uses ZooKeeper’s
leader znode for routing brokers to write themselves on the
znode so as to be elected as a leader (i.e., voting process).
The routing broker that gets to write first becomes a leader
since the znode is locked thereafter (i.e., no one can write
on the znode unless the leader fails). The rest of the routing
brokers become workers. Worker routing brokers relay pub-
/sub data between edge brokers. The leader routing broker

3We have not addressed security issues in this paper.

can also serve as a worker routing broker.
Consequences and resolution: A leader routing bro-

ker must manage the cluster of routing brokers and assign
topics to workers in a way that balances the load. It does
this by selecting the least loaded worker, which currently
is decided based on the number of adopted topics by that
worker. However, the use of the Strategy pattern enables us
to plug in other load balancing schemes (e.g., least loaded
based on CPU utilization or the number of connections).

2.4.2 Broker Fault Tolerance
Design: PubSubCoord offers tolerance to routing bro-

ker failures, which can be of two kinds: worker failure and
leader failure. When the worker fails, the leader reassigns
topics handled by that failed broker to another worker rout-
ing broker to avoid service cessation. If the load is too high,
the cloud will elastically scale the number of routing bro-
kers. If a leader fails, the routing brokers vote for another
leader again. On (re)assignment or failure of routing bro-
ker, PubSubCoord leverages ZooKeeper’s watch mechanism
to notify the appropriate edge brokers to update their paths
to the right routing broker.

Consequences and resolution: Since the ZooKeeper
server itself may fail, to provide a scalable and fault-tolerant
service at the coordination layer, multiple ZooKeeper servers
can exist as an ensemble, and a leader of the ensemble syn-
chronizes data between distributed servers to provide con-
sistent coordination events to clients (i.e., brokers in our
solution) and avoid single points of failure.

Note that we do not offer a solution to edge broker failure.
We treat this failure as making an isolated network unreach-
able and hence not part of the pub/sub system. If and when
it reappears, the edge broker will follow the protocol for in-
forming PubSubCoord of its existence as described next in
the runtime interactions.

2.4.3 Deadline-aware Overlay Optimizations
A second cause of performance bottlenecks stems from

the congested two-hop route connecting edge brokers via a
routing broker. To overcome this problem, PubSubCoord
also supports an optimization to both improve reliability
and latency by providing an additional one hop path over
the overlay that directly connects communicating edge bro-
kers. Note that doing this for every edge broker is infeasible
due to the very large connection state that every edge bro-
ker must manage. Figure 3 illustrates the concept. These
optimizations can be leveraged by pub/sub flows that re-
quire stringent assurances on reliable and deadline-driven
data delivery.

R

E1 E2

P S

L2 L3

L1

Figure 3: Multi-path Deadline-aware Overlay Concept



To achieve this feature, PubSubCoord requires hints from
the underlying pub/sub messaging system. As an example,
OMG DDS uses deadline QoS as a contract between pub/-
sub flows, which is used to express the maximum duration
of a sample to be updated. For those event streams requir-
ing strict deadlines, multi-path overlay networks build an
alternative, additional path directly between edge brokers
thereby reducing the number of hops to just one.

The patterns-based framework design of PubSubCoord
enables strategizing it with the underlying technology-specific
optimizations. This technology-specific logic should also
provide the threshold on when to activate these optimiza-
tions.

2.5 Broker Interactions and Operation
So far we presented the architectural elements of PubSub-

Coord. We now present details on the runtime interactions
among these elements that realizes the various capabilities
of PubSubCoord. We describe how the brokers interact and
the actual process of updating their internal states used in
routing the streamed pub/sub data.

2.5.1 Routing Broker Responsibilities
Figure 4 presents the sequence diagram showing the run-

time interactions of the routing brokers. The algorithm ex-
ecuted by the routing broker is captured in Algorithm 1.
This algorithm is predominantly event-driven, i.e., it is made
up of callback functions that are invoked when some condi-
tion is satisfied. These callback functions are invoked by
ZooKeeper due to the different watch conditions. The Rout-
ing Service shown in the figure and used in the algorithm are
the capabilities at the edge broker that bridge the isolated
network to the outside world.

Leader
Routing Broker

Routing Service
ZooKeeper

Server

Run 
Routing Service

Initiate connection

Elect a leader

Register a listener to receive 
topic creation/deletion events

Creation event of Topic 'A'
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the  edge broker
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Figure 4: Routing Broker Sequence Diagram

The algorithm and sequence of steps for the routing broker
operate as follows: Each routing broker initially connects to
the ZooKeeper leader as a client of the ZooKeeper service.
The cluster of routing brokers subsequently elect a leader
among themselves using the process described in Section 2.3
that uses the leader znode. Once a leader is elected, it reg-
isters a listener (i.e., event detector that is notified when

Algorithm 1 Routing Broker Callback Functions

function broker node listener(broker node cache)
topic set = broker node cache.get data()
for topic : topic set do

if ! topic list.contains(topic) then
ep cache = create children cache (topic)
set listener(ep cache)
topic list.add(topic)

function endpoint listener(ep cache)
ep = ep cache.get data()
switch ep cache.get event type() do

case child added
if ! eb peer list.contains(epeb locator) then

eb peer list.add(epeb locator)
routing service.add peer(epeb locator)

if ! topic list.contains(eptopic) then
routing service.create topic route(ep)

topic multi set.add(eptopic)

case child deleted
topic multi set.delete(eptopic)
if ! topic multi set.contains(eptopic) then

eb peer list.delete(epeb locator)
routing service.delete topic route(ep)

the registered znode changes) on the topics znode (shown in
Figure 2) to receive topic relevant events (e.g., creation or
deletion of topics).

The following callback functions are implemented by the
routing brokers:

• broker node listener – This function is invoked
when a znode for a worker routing broker is updated
with an assigned topic by a leader routing broker and
activated by a ZooKeeper client process.

• endpoint listener – This function is invoked when
children pub/sub endpoints of a znode for an assigned
topic are created, deleted, or updated. It is activated
by a ZooKeeper client process.

Every worker routing broker registers a listener on the
znode for itself to receive topic assignment events updated
by a leader routing broker. In the broker node listener
callback function, the znode for the routing broker stores a
set of topics. When the topic set is updated by the leader
(e.g., the leader assigns a new topic to the worker routing
broker), it applies the changes by creating a cache for the
assigned topic and its listener to receive events relevant to
endpoints interested in the assigned topic.

When an endpoint is created or deleted in an isolated
network, their edge brokers create or delete znodes for end-
points and these events will trigger the endpoint listener
function in the routing brokers that are responsible for the
topics involved with the endpoints. The metadata of the
znode cache for an endpoint (ep in the endpoint listener
callback function) contains the locator of an edge broker
where the endpoint is located as well as the topic name,
type, and QoS settings.

Consider a concrete example. Using Figure 4, when TopicA
is created, the leader routing broker assigns the topic to the
least loaded worker, which currently is decided based on the
number of adopted topics by that worker. However, other



strategies can also be used in the load balancing decisions
(e.g., least loaded based on CPU utilization or the number
of connections). Next, the leader updates a locator of the
assigned worker broker on the corresponding znode that is
created for TopicA, i.e., a child of topics znode – see the left-
most node in row three of Figure 2. This locator information
will then be used by edge brokers interested in TopicA.

A worker routing broker initially registers listeners on a
znode for itself (i.e., a child of broker znodes) to receive topic
assignment events, which occur when the assigned topics zn-
ode is updated by a leader routing broker. When the worker
routing broker is informed that it must handle a specific
topic, such as TopicA, it then registers a listener on pub/-
sub znodes for that particular assigned topic (e.g., children
of topic A znode) to receive endpoint discovery events, such
as creation of publisher or subscriber endpoints interested in
TopicA. When an endpoint for TopicA is created and the
worker routing broker is notified, it establishes data dissem-
ination paths to edge brokers. For this data dissemination,
PubSubCoord relies on the underlying pub/sub messaging
systems’ broker capabilities.

2.5.2 Edge Broker Responsibilities
Figure 5 shows the corresponding sequence diagram for

edge brokers, and Algorithm 2 describes the logic of the
callback functions implemented by the edge broker.
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Figure 5: Edge Broker Sequence Diagram

Recall that an edge broker interfaces the underlying con-
crete pub/sub technology with the generic capabilities pro-
vided by PubSubCoord by tunneling technology-specific meta-
data through the generic data structures and communication
mechanisms of PubSubCoord. To better explain the opera-
tion of the edge broker, we have used the OMG DDS as our
concrete pub/sub technology.4.

The OMG DDS specification defines a distributed pub-
/sub communications standard [20]. At the core of DDS
is a data-centric architecture (i.e., subscriptions are defined

4Our empirical evaluations also use OMG DDS as the con-
crete pub/sub technology as described in Section 3

Algorithm 2 Edge Broker Callback Functions

function endpoint created(ep)
create znode (ep)
if ! topic multi set.contains(eptopic) then

ep node cache = create node cache(ep)
set listener (ep node cache)
routing service.create topic route(ep)

topic multi set.add(eptopic)

function topic node listener(topic node cache)
rb locator = topic node cache.get data()
if ! rb peer list.contains(rb locator) then

rb peer list.add(rb locator)
routing service.add peer(rb locator)

function endpoint deleted(ep)
delete znode (ep)
topic multi set.delete(eptopic)
if ! topic multi set.contains(eptopic) then

delete node cache(ep)
routing service.delete topic route(ep)

by topics, keyed data types, data contents, and QoS poli-
cies) for connecting anonymous data publishers with data
subscribers in a logical global data space. A DDS data
publisher produces typed data streams identified by names
called topics. The coupling between a publisher and sub-
scriber is expressed in terms of topic name, its data type
schema, and QoS attributes of publishers and subscribers.
To ease the management, each publisher is made up of one or
more DataWriters and each subscriber is made up of one or
more DataReaders. Each DataWriter and DataReader can
be associated with only one topic and perform the action of
writing and reading, respectively.

The algorithm implements the following callback func-
tions for edge brokers which are invoked under the following
conditions:

• endpoint created: This function is invoked when
an endpoint in an isolated network is created and ac-
tivated by a built-in DDS DataReader.

• topic node listener: This function is invoked when
a topic znode managed by an edge broker is updated
with a locator of an assigned worker routing broker. It
is activated by a ZooKeeper client process.

• endpoint deleted: This function is invoked when an
endpoint in a network is deleted and activated by a
built-in DDS DataReader.

The edge broker operates as follows: Like routing brokers,
edge brokers initially connect to the ZooKeeper servers as
clients of the ZooKeeper service. In the context of OMG
DDS, edge brokers make use of built-in entities (i.e., special
pub/sub entities for discovering peers and endpoints in a
network supported by OMG DDS) to discover endpoints in
local networks. For example, when a pub or sub endpoint in-
terested in TopicA is created within some isolated network,
the built-in entities receive discovery events via multicast,
and then edge brokers create znodes for the created end-
points.

PubSubCoord does not need to know the semantics of
these technology-specific mechanisms; all technology-specific



information is masked within the generic znode data struc-
tures. When an endpoint is created with a new topic, an
edge broker informs ZooKeeper of the new topic which in-
serts it into its znode tree and informs the leader routing
broker of the new topic. The routing broker leader then se-
lects one of the existing worker routing brokers to handle
that topic as explained before. This selection is made based
on the load on each worker routing broker.

Edge brokers register a listener on a topic znode (e.g.,
topic A in Figure 2) in which the created endpoint is in-
terested in to obtain the locator of the routing broker that
is in charge of that particular topic. Once a locator of a
routing broker is obtained, an edge broker initiates a data
dissemination path to the routing broker through the rout-
ing capabilities that are assumed to be collocated with the
edge broker.

The endpoint created callback function first creates a
znode for a created endpoint (i.e. ep in Algorithms 2) that
contains the topic name, type, and QoS settings. If a rele-
vant topic to the created endpoint has not appeared in an
edge broker before, a cache for the topic znode and its lis-
tener for the topic are created to receive locator information
of an assigned worker routing broker. When the znode for
the topic is updated by a leader routing broker, it triggers
the topic node listener callback described in Algorithm 2.

In the topic node listener callback function, each topic
znode stores the locator of the worker routing broker that
is responsible for the topic. The locator of a routing broker
is added to the routing capability of the edge broker to es-
tablish a communication path between the edge broker and
a worker routing broker.

The endpoint deleted callback function deletes the zn-
ode for the existing endpoint, and deletes it from the multi-
set for topics. Next, it checks if the multi-set contains the
topic of the deleted endpoint. If the topic is contained in
the multi-set, it means other endpoints are still interested
in the topic. If it is empty, it means no other endpoints that
are interested in the topic exists, and that the cache and its
listener need to be removed. The multi-set data structure
for topics is used because there may still exist endpoints
interested in topics relevant to deleted endpoints.

To support mobility or termination of endpoints, Pub-
SubCoord relies on some cooperation from the underlying
pub/sub technology. For example, in the context of OMG
DDS, if the created endpoints move to different networks or
are deleted, a timeout event occurs by virtue of using the
liveliness QoS policy (i.e., a DDS QoS policy used to detect
disconnected endpoints where the timeout values are con-
figurable) and accordingly the znodes (which operate in the
ephemeral mode) for those endpoints are deleted from the
coordination servers and the route maintained at the edge
broker is also terminated.

2.6 Implementation Details
Recall that PubSubCoord is meant to work with any un-

derlying pub/sub technology with a goal of making it WAN-
enabled. Any concrete realization of PubSubCoord will re-
quire some concrete underlying pub/sub technology. We
have demonstrated the feasibility of PubSubCoord in the
context of OMG Data Distribution Service (DDS). We have
used Curator,5 which is a high-level API that simplifies using
ZooKeeper, and provides useful recipes such as leader elec-

5http://curator.apache.org

tion and caches of znodes. We use the cache recipe to locally
reserve data objects that are accessed multiple times for fast
data access and reduce the load on ZooKeeper servers.

3. EXPERIMENTAL VALIDATION OF PUB-
SUBCOORD

We now present results of experiments we conducted to
validate our claims. We focus on PubSubCoord performance
and scalability, and overhead of the coordination layer.

3.1 Overview of Testbed Configuration and De-
fault Settings

Our testbed is a private cloud managed by OpenStack
comprising 60 physical machines each with 12 cores and 32
GB of memory. We emulated a WAN environment in our
testbed using Neutron,6 which is an OpenStack project for
networking as a service that allows users to create virtual
networks by using an Open vSwitch plugin.7 To that end, we
created a total of 120 virtual networks. 380 virtual machines
(VMs) are placed across these virtual networks. Each VM
is configured with one virtual CPU and 2 GB of memory.
We use RTI Connext 5.1 8 as the implementation of the
OMG DDS standard technology, and its Routing Service is
integrated with brokers for our test applications.

We used all the 380 VMs for our scalability experiments
discussed below. Each broker executes inside its own VM
for which we used a total of 160 VMs: 120 VMs for hosting
edge brokers (implying 120 isolated networks) and 40 VMs
for routing brokers (implying a cluster of 40 routing bro-
kers). Of the remaining 220 VMs, 20 VMs are used for host-
ing publishers and 200 VMs for subscribers. Each of these
VMs runs either 25 publisher or 50 subscriber test applica-
tions. We locate 50 publishers or 100 subscribers within each
isolated network (i.e., 2 VMs inside each network). This ap-
proach keeps the experimental apparatus simple. The entire
number of publishers and subscribers is 1,000 and 10,000, re-
spectively. Subscribers in each network are interested in 100
topics out of the total 1,000 topics in a system. Publishers
push data every 50 milliseconds, and the size of a data sam-
ple is 64 bytes; any other size is acceptable, however, we did
not test with simultaneous different packet sizes.

3.2 OMG DDS QoS Policy Settings Used
Since OMG DDS supports a number of different QoS poli-

cies that can be mixed and matched, we used some of these
that are important for the systems of interest to us. Each
QoS policy has offered and requested semantics (i.e., offered
by publishers and requested by subscribers) and are used in
conjunction with data types of topics to match pairs of end-
points, i.e., the DataReader and DataWriter. We describe
the purpose of only those policies that we have used in our
experiments and show how they are used.

The reliability QoS controls the reliability of data flows
between DataWriters and DataReaders at the transport level.
It can be of two kinds: best effort and reliable. The
durability QoS specifies whether or not the DDS middle-
ware stores and delivers previously published data samples
to endpoints that join the network later. The reliability
and persistency can be affected by the history QoS policy,

6https://wiki.openstack.org/wiki/Neutron
7http://www.openvswitch.org
8https://www.rti.com/products/dds/
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Figure 6: Results of Performance and Scalability Experiments

which specifies how much data must be stored in in-memory
cache allocated by the middleware. The lifespan QoS helps
to control memory usage and lifecycle of data by setting
the expiration time of the data on DataWriters, so that the
middleware can delete expired data from the cache. The
deadline QoS policy specifies the deadline between two suc-
cessive updates for each data sample. The middleware will
notify the application via callbacks if a DataReader or a
DataWriter breaks the deadline contract. Note that DDS
makes no effort to meet the deadline; it only notifies if the
deadline is missed.

Our experiments use the reliability and durability DDS
QoS policies for pub/sub communications to validate Pub-
SubCoord for higher service quality in terms of reliability
and persistence of data delivery both of which are impor-
tant for our systems of interest. Depending on the sys-
tems’ requirements, QoS policies can be varied and perfor-

mance results may change according to the different QoS
settings. Specifically, we use reliable reliability QoS to
avoid data loss at the transport level through data retrans-
mission. We use keep all history QoS to keep all historical
data and transient durability QoS to make it possible for
late-joining subscribers to obtain previously published sam-
ples. The lifespan QoS is set to 60 seconds so publishers
guarantee persistence for 60 seconds.

3.3 Testing Methodology
To evaluate our solution, the system performance is mea-

sured in terms of the end-to-end latency from publishers to
subscribers, while scalability of data dissemination is mea-
sured in terms of CPU usage on brokers. CPU usage is
shown along with latency to understand how different con-
figuration settings, i.e., number of topics per network and
number of routing brokers, affect dissemination scalability.



Moreover, we measure latency of coordination requests and
the number of data objects and notifications on ZooKeeper
servers to show coordination scalability. To measure end-to-
end latency from publishers to subscribers, we calculate time
differences with timestamps of events on publishers and sub-
scribers. For clock synchronization, we exploit the Precise
Time Protocol (PTP) [5] that guarantees fine-grained time
synchronization for distributed machines, and achieves clock
accuracy in the sub-microsecond range on a local network.
Due to space limitations, we have not presented results on
system behavior and performance due to dynamic churn in
the different aspects of the system.

3.4 Performance and Scalability Results
For end-to-end latency of measurements, we collect la-

tency values of 5,000 samples in total for each subscriber
and use values only after 1,000 samples since the latency
values of the initial samples are not consistent due to co-
ordination and discovery process overhead until the system
stabilizes (e.g., time for discovery of brokers and creating
routes). Figure 6 summarizes all the results that are ex-
plained below.

3.4.1 Evaluating the Broker Overlay Layer
Since the edge brokers are responsible for delivering data

incoming from other edge brokers via worker routing brokers
to subscribers in a local, isolated network, the computation
overhead on edge brokers grows linearly as the number of
adopted topics increases. Figure 6a, 6d, and 6g show results
with different number of topics per edge broker, increasing
the number of topics from 20 to 100 out of 1,000 topics in
a system. The CPU utilization linearly increases according
to the number of adopted topics, and latency values grow
as well. From these results, we can infer that if the number
of incoming streams increases due to more number of topics
per network, it adversely affects latency values even though
the CPUs of edge brokers are not saturated.

Our solution supports load balancing in the group of rout-
ing brokers and makes it possible to flexibly scale systems
with the number of topics. Figure 6b, 6e, and 6h present
latency and CPU usage across different number of routing
brokers. When the number of routing brokers is small, in
this case 5, the CPU of the routing brokers become satu-
rated and latency values are adversely impacted. However,
after increasing the number of routing brokers to 10, latency
values improve. The results in Figure 6h also validate that
CPU usage linearly decreases by increasing the number of
routing brokers.

3.4.2 Evaluating the Coordination Layer
We evaluate the scalability of a ZooKeeper-based central-

ized coordination service by increasing the number of simul-
taneous joining subscribers. Figures 6c and 6f show latency,
i.e., the amount of time it takes for the server to respond
to a client request. Figure 6i presents the number of used
znodes and watches. We use mntr, a ZooKeeper command
for monitoring service,9 to retrieve the experimental values
presented in our results. We increase the number of sub-
scribers from 2,000 to 10,000 in steps of 2,000. The average
latency increases from 10 milliseconds to 20 milliseconds and

9http://zookeeper.apache.org/doc/trunk/
zookeeperAdmin.html

the number of znodes and watches linearly increase approx-
imately 2,000 and 4,000, respectively, as the number of sub-
scribers increase. The reason why the number of watches are
twice compared to the number of znodes is that ZooKeeper
needs to notify brokers for both publishers and subscribers
if they have matching pub/sub endpoints.

3.5 Evaluating Performance Optimizations for
Deadline-aware Overlays

We also conducted experiments to validate our deadline-
aware overlays showing latency and overhead by comparing
the performance parameters for multi-path and single-path
overlays. A topology used for these experiments is shown
in Figure 3. To emulate variable delays in the network and
packet losses, which are common in WANs, we use Dum-
mynet [23]. These parameters are varied depending on ge-
ographic locations of brokers, which is a factor influencing
the need for deadline-aware overlays.

To ensure realistic network delays and losses, for the multi-
path overlay experiments, we use delay and loss data pro-
vided by Verizon, which shows latency and packet deliv-
ery statistics for communication between different countries
across the globe.10 We categorize delay and loss data into
two groups (i.e., A with 30ms delay and no packet loss, and
B with 250 msec delay and 1% packet loss in Table 1) and
experimented 8 possible combinations with the given links
(i.e., L1, L2, and L3 as shown in Figure 3), and test cases
described in Table 1.

Table 1: Deadline-aware Overlays Experiment Cases

Test Cases L1 L2 L3

Case 1 A A A
Case 2 A A B
Case 3 A B A
Case 4 A B B
Case 5 B A A
Case 6 B A B
Case 7 B B A
Case 8 B B B

A = 30ms delay, no packet loss
B = 250ms delay, 1% packet loss

Figure 7a and 7b show average and maximum latency of
single-path overlays with different network delays and packet
loss and multi-path overlays with 8 test cases, respectively.
From Case 1 to Case 5, the multi-path overlays perform
better than any cases of single-path in terms of latency. All
cases of multi-path overlays outperform a case with 125 mil-
liseconds delay and 1% packet loss in single-path overlays.
In spite of that, a multi-path overlay builds a duplicate path
from an edge broker other than from a routing broker, so it
causes extra overhead compared to a single-path overlay due
to additional computations and extra network transfer at
the edge broker. We measure network transfer overhead for
10,000 samples from a publisher to a subscriber to compare
single-path and multi-path by using tcpdump11 and the re-
sults are presented in Figure 7c. These results validate that
deadline-aware overlay improves latency, but incurs some
overhead.

10http://www.verizonenterprise.com/about/network/
latency

11http://www.tcpdump.org
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Figure 7: Deadline-aware Experiments

3.6 Discussion and Key Insights
The following is a summary of the insights we gained from

this research and the empirical evaluations.

• PubSubCoord disseminates data in a scalable
manner for systems having many pub/sub end-
points and topics. The experimental results show
that PubSubCoord can deliver topic data within 100
milliseconds for a system having 10,000 subscribers
and 1,000 topics distributed across more than 100 net-
works. As the number of topics increases in a system,
our solution uses elastic cloud resources and load bal-
ancing techniques to deliver data in a scalable way.
However, if the number of adopted topics per edge bro-
ker increases, service quality becomes worse as shown
in the experimental results because edge brokers need
to deal with more number of forwarding operations
between routing brokers and pub/sub endpoints. If a
system requires higher frequency or more number of
topics per network, edge brokers can become a bottle-
neck, requiring an elastic solution for edge brokers.

• Centralized coordination services like ZooKeeper
can serve as a pub/sub control plane for large-
scale systems. Our solution employs a centralized
service for coordinating pub/sub brokers for its con-
sistency and simplicity, and our experimental results
show that the average latency of the coordination ser-
vice is 20 milliseconds for 10,000 subscribers joining
simultaneously. Moreover, the number of data nodes
and notifications linearly increase by organizing its data
tree in a hierarchical way. Our experiments use a stan-
dalone server for coordination, but multiple servers
as an ensemble can be used for scalability and fault-
tolerance and ZooKeeper guarantees consistency of data
between multiple servers. The ensemble of servers is
more scalable for read operations, but not for write
operations that require synchronizing data between
servers. In future, we plan to carry out experiments
with increasing the number of coordination servers to
understand its scalability for pub/sub broker coordi-
nation.

• Configurable QoS supported by the pub/sub
technology can be used for low-latency data de-
livery in WANs by building multi-path over-
lays. In our experiments and concrete realization of
PubSubCoord, we used OMG DDS and its QoS poli-
cies. We use configurable deadline QoS to deliver data

at low-latency by establishing selective multi-path over-
lays, and validate this approach by providing experi-
mental results. Since not every path can be a delay-
sensitive path, we need some higher level policy man-
agement (e.g., offered and requested QoS management
between network domains) to decide what character-
izes a delay-sensitive path. In addition, although this
approach assures low-latency data delivery, it occurs
extra overhead by duplicating data delivery from mul-
tiple paths. To reduce the costs, we can utilize own-
ership QoS that dynamically selects an owner of data
streams to reduce data traffic from backups, and the
owner is changed to a backup when the owner fails.
Our deadline-aware overlay optimizations were easier
to realize due to OMG DDS features; implementing
similar optimizations for other messaging systems will
require identifying similar opportunities in that pub/-
sub technology.

• End-to-end QoS management is required for ef-
ficiency. Although most of the QoS policies in our
solution are supported by hop-by-hop enforcement be-
tween brokers, QoS policies for persistence, reliability,
and ordering used in our experiments assure end-to-
end QoS. However, this may be inefficient for some
cases. For example, the durability QoS ensures sending
previously published data to late joining subscribers.
To support end-to-end data persistence with hop-by-
hop QoS enforcement, each broker needs to keep his-
tory data in memory that will not be freed until it is
acknowledged. This is beneficial for some late joining
subscribers that require history data with low-latency.
However, keeping duplicate history data on each bro-
ker consumes memory resources. We suggest end-to-
end acknowledgment mechanisms as a solution to ad-
dress these inefficiencies.

4. RELATED WORK
Prior research on pub/sub systems can be classified into

topic-based, attribute-based, and content-based depending
on the subscription model. The topic-based model, such as
Scribe [24], TIB/RV [19], and SpiderCast [8], groups sub-
scription events in topics. In the attribute-based model,
events are defined by specific types, and therefore this model
helps developers to define data models in a robust way by
type-checking. The content-based model [7, 22] allows sub-
scribers to express their interests by specifying conditions



on the data content of events, and the system filters out and
delivers events based on the conditions.

The Object Management Group (OMG)’s Data Distribu-
tion Service (DDS) [20] standard for data-centric pub/sub
holds substantial promise for CPS because of its support
for configurable QoS policies, dynamic discovery, and asyn-
chronous and anonymous decoupling of data endpoints (i.e.,
publishers and subscribers) in time and space. However,
DDS is limited in its support for WAN-based CPS. For in-
stance, DDS uses multicast as a default transport to dy-
namically discover peers in a system. If the endpoints are
located in isolated networks that do not support multicast,
then these endpoints cannot be discovered by each other.
Secondly, even if these endpoints were discoverable, because
of network firewalls and network address translation (NAT),
peers may not be able to deliver messages to the destination
endpoints. PubSubCoord addresses these limitations and
makes it possible for OMG DDS to be used in WAN-scale
CPS without any modifications to the OMG DDS semantics.

Pub/sub systems tend to form overlay networks to sup-
port application-level multicast rather than using IP-based
multicast owing to the fact that IP multicast is not sup-
ported in WANs and the limited number of IP-based multi-
cast addresses would not fit the potential number of logical
channels for fine-grained subscription models [2]. Overlay
architectures for pub/sub systems can be categorized into
broker-based overlay [7, 22, 19], structured peer-to-peer [24],
and unstructured peer-to-peer. GREEN [25] supports con-
figurable overlay architectures for different network environ-
ments. PubSubCoord adopts a hybrid approach that con-
structs unstructured peer-to-peer overlays in LANs by dy-
namically discovering peers via multicast, and broker-based
overlays in WANs.

The BlueDove [16] pub/sub system achieves scalability
and elasticity by harnessing cloud resources. It is a two-tier
architecture to reduce the number of delivery hops and for
simplicity. BlueDove is designed for enterprise systems de-
ployed in the cloud and does not consider the restrictions
of physical locations of pub/sub endpoints. Like BlueDove,
PubSubCoord also uses a hierarchical broker solution and
exploits the cloud for scalability. However, in our system,
pub/sub endpoints located in different networks dynamically
discover each other with the help of edge brokers, and there-
fore we consider physical restrictions of pub/sub endpoints.
Moreover, our approach is decoupled from any specific pub-
/sub technology.

Bellavista et al. [3] study QoS-aware pub/sub systems over
WANs and compare multiple existing pub/sub systems sup-
porting QoS including DDS. In [15], the authors evaluate
a pub/sub system for wide-area networks named Harmony
and techniques for responsive and highly available messag-
ing. The Harmony system delivers messages through broker
overlays placed in different physical networks, and pub/sub
endpoints communicate via local brokers located in the same
network. Although this effort describes a WAN-scale pub/-
sub solution with QoS support, it centers on selective routing
strategies to balance responsiveness and resource usage us-
ing multi-hop broker networks. In contrast, PubSubCoord
uses only a two-hop overlay architecture connecting the edge
and routing brokers.

IndiQoS [6] also proposes a pub/sub system with QoS sup-
port to reduce end-to-end latency by exploiting network-
level reservation mechanisms, where message brokers are

structured using distributed hash table (DHT). Similar to
IndiQoS, we pursue low-latency and high availability but our
solution can also support other QoS policies such as config-
urable transport reliability, data persistence, ordering, and
resource management by controlling the depth of history
data and subscribing rate. In other words, we strive to pro-
vide the capabilities of the underlying pub/sub technology
at the WAN level and additionally also provide WAN-based
optimizations. We do not use a DHT solution for brokers
and so a comparison along these lines will require additional
research, which is part of our future work.

Recent research including ours [10, 17] has broadened the
scope of OMG DDS to WANs by bringing in routing engines
to disseminate data from a local network to others. Our so-
lution emphasizes reuse and hence leverages such routing en-
gines and additionally solves the discovery and coordination
problem between routing engines that otherwise requires sig-
nificant manual efforts for large-scale systems. Finally, [28]
suggests separation of control and data plane in next gen-
eration pub/sub systems, which is motivated by software-
defined networking (SDN). We have not explored the ben-
efits of SDN for PubSubCoord, however, our other ongoing
efforts have demonstrated preliminary ideas [11, 21], which
form additional dimensions of future work.

Literature on stream processing is not reviewed since we
feel the comparisons are not accurate due to the differences
in the computation and communication semantics.

5. CONCLUDING REMARKS
Emerging WAN-scale distributed systems found in do-

mains, such as transportation and smart grid, must dis-
seminate large volumes of data between a large number of
heterogeneous entities that are geographically distributed,
and require a variety of QoS properties for data dissemina-
tion from the publishers of information to the subscribers.
Many disparate solutions that handle individual aspects of
the problem space exist but seldom have these techniques
been brought together holistically to solve the broader set
of challenges. There is a need to systematically integrate
these proven solutions while also providing new capabilities.
This is challenging, particularly when the sum of the parts
itself must be made reusable and applicable across a variety
of pub/sub technologies.

To address some of these broader challenges, this paper
presents the design, implementation, and evaluation of Pub-
SubCoord, which is a cloud-based coordination and discov-
ery service and middleware for geographically dispersed pub-
/sub applications. PubSubCoord supports scalability in terms
of data dissemination as well as coordination, dynamic dis-
covery, and configurable QoS properties. Our experimental
results validate our claims.

Insights gained from this research and current limitations
have provided us directions for future work. For example,
we have not fully explored the fault tolerance and security
dimensions in current work. Similarly, the edge broker bot-
tleneck remains to be resolved. Furthermore, our work uses
overlay networks; thus we do not have control over the QoS
over the network links. It is possible to use software defined
networking (SDN) to control the network QoS for pub/sub
traffic and provide differential services to different pub/sub
flows. A recent effort [26] has already showed how pub/-
sub and SDN can be combined to perform filtering at the
level of SDN controllers. Since the systems of interest to us



will almost always comprise heterogeneous technologies, we
need to investigate how the existing architecture can support
WAN-scale pub/sub across distributed isolated networks us-
ing heterogeneous pub/sub technologies (e.g., between DDS
and MQTT). Our future work aims to address these limita-
tions.

PubSubCoord is designed with reuse in mind and can eas-
ily be adopted in industrial settings. To that end, the mid-
dleware and test harness can be downloaded from:
www.dre.vanderbilt.edu/~kyoungho/pubsubcoord.
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