
Int. Workshop on the Principles of Diag-

nosis, Milan, Italy, October 1991.



the occurrence of the faults or from fi;2 F1

or from fj 2 F1. Then for any d 2 D; with

Node(d) = k, d 2 NSD(fi; fj ; t̂) i�:

�
Reachni;k = 0 ^Reachnj;k = 1 ^ TMaxnj;k � t̂

�
_�

Reachni;k = 1 ^Reachnj;k = 0 ^ TMaxnj;k � t̂
�
.

That is, NSD(fi; fj ; t̂) is a set of all the dis-

crepancies reachable from either fi or fj but

not both. The distance function between fi

and fj is de�ned as d(fi; fj ; t̂) =
1

jNSD(fi;fj;t̂)j
.

4.2.3 Predictability

The algorithm is the same as the �rst algo-

rithm for detectability. The implicants in this

case are the discrepancies that can potentially

cause the critical failures at least time t̂ after

their occurrence.

4.3 Combining Requirements

The algorithms described above generate ad-

vice for detectability, distinguishability and

predictability separately. Obviously, there is a

need to combine the alarm allocation suggested

to satisfy the di�erent criteria. One way to do

so is to allocate alarms to all the discrepan-

cies suggested under the di�erent criteria since

this would guarantee that all three criteria are

satis�ed. However, this method may lead to

redundant alarm allocations since the criteria

are not handled simultaneously.

Alarm allocation under simultaneous cri-

teria can be done by computing the relative

importance of discrepancies in satisfying the

criteria using the algorithms described above.

Then, alarms should be allocated to discrepan-

cies in non-increasing order of their importance

until all the criteria are met (just as is done

when using hierarchical clustering method).

5 Conclusion

In this paper we have de�ned metrics to mea-

sure the diagnosability characteristics of a dy-

namical system in terms of { detectability, dis-

tinguishability and predictability. These met-

rics can be used to specify constraints that

need to be satis�ed when choosing an alarm

allocation. Based on a fault propagation graph

model of dynamic systems, algorithms have

been developed for analyzing diagnosability

characteristics of a given sensor placement, and

for providing advice for alarm placement that

meet selected criteria. The algorithms were

used in the development of a diagnosability an-

alyzer tool, which is used for the analysis of

complex systems.
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1. Form a n � k table T , where k = jF1j.

Let the failure modes in the set F1 be

f1; f2; :::; fk.

2. For i = 1 to k do

(a) l = Node(fi).

(b) For j = 1 to n do

i. Set Tj;i = 1 if Reachl;j+m =

1 and TMaxl;j+m � t̂ else set

Tj;i = 0.

3. Apply the minimum cover algorithm as

described in [2] on T to �nd the set of dis-

crepancies that cover the failure modes in

the set F1. Alarms must be assigned to

each of these discrepancies.

The problem with the minimum cover anal-

ysis is that the algorithm is NP-complete and

can be slow if the number of alternative covers

(not essential implicants) is high. For these

cases we have developed an alternative ap-

proach, based on hierarchical clustering. We

use the minimal spanning tree method for di-

visive clustering. The failure modes will make

up the nodes of a complete graph. The simi-

larity criterion for clustering the failure modes

is the number of shared discrepancies. If a dis-

crepancy is reachable by many failure modes,

then by observing it, all of those failure modes

can be detected. Thus we say that two failure

modes are \close" to each other if they both

share many discrepancies. A distance measure

which expresses this observation is the recipro-

cal of the number of shared discrepancies.

Consider two failure modes fi; fj 2 F1,

where Node(fi) = ni and Node(fi) = nj. Let

us denote by SD(fi; fj ; t̂) the set of shared dis-

repancies of fi; fj 2 F1 that are reachable

after time t̂ of the occurrence of the faults.

Then for any d 2 D; with Node(d) = k,

d 2 SD(fi; fj; t̂) i�:

(Reachni;k = Reachnj;k = 1) and�
TMaxni;k � t̂

�
and

�
TMaxnj;k � t̂

�

The distance function between fi and fj is

de�ned as d(fi; fj ; t̂) = 1

jSD(fi;fj;t̂)j
. We will

build a graph, G, whose nodes will represent

the f 2 F1. The graph G will be a complete

graph with the length of edge < i; j > between

nodes representing failure modes fi; fj 2 F1,

given by d(fi; fj ; t̂). If two failure modes do not

share any discrepancy, the distance between

the corresponding nodes in G will be in�nite.

The algorithm to �nd an alarm allocation

is:

1. Create G as de�ned above.

2. Find the minimal spanning tree T for the

graph G.

3. Break the edges in T in non-increasing

order of their length to generate clusters.

Also keep track of which discrepancy(ies)

are reachable from failure modes in which

cluster and gives them points

4. Sort the discrepancies by the points

given to them in non-increasing order.

Then, one by one, allocate alarms for

the discrepancies in this list in their non-

increasing order of points until the de-

tectability criteria is met.

4.2.2 Distinguishability

The algorithm for advising alarm allocation for

distinguishability is based on hierarchical clus-

tering and is very similar to the one used for de-

tectability. The di�erence is the similarity cri-

teria used, which in this case is the number of

discrepancies not shared by the two. Since two

failure modes can be distinguished more easily

if they give rise to di�erent sets of discrepan-

cies, we say that the two failure modes are, in

a sense, \close" each other and the distance

between them is the reciprocal of the number

of non-shared discrepancies.
Consider two failure modes fi; fj 2 F1

withNode(fi) = ni andNode(fi) = nj. Let us

denote by NSD(fi; fj ; t̂) the set of not shared

disrepancies that are reachable after time t̂) of



Criteria Metric Evauation Advice

Detectability of < terl; tlat > �nd terl and tlat � t̂ 8f 2 F1;

failure mode f tlat 8f 2 F F1 � F; and given t̂

Distinguishability of DIS(f; t̂) Compute DIS(f; t) DIS(f; t) = TRUE

failure mode f TRUE or FALSE 8f 2 F 8f 2 F1; F1 � F;

at given t and given t and given t̂

Predictability of < tmin; tmax > �nd tmin and tmin � t̂; 8d 2 D1;

discrepancy d tmax 8d 2 D D1 � D and given t̂

Table 1: Diagnosability Analyses

to node j in FPG, Reachi;j = 1 otherwise it

is 0. TMini;j is the minimum time a failure

will take to propagate from node i to node j.

TMaxi;j is the maximum time a failure will

take to propagate from node i to node j.

In the algorithm descriptions that fol-

low, we will use the procedure Node(failure)

which, for any given failure, returns its cor-

responding node number in the failure propa-

gation graph. The failure might be a failure

mode, denoted by f , or it might be an discrep-

ancy, denoted by d.

4.1 Evaluator

The evaluator's task is to determine the de-

tectability, distinguishability and predictabil-

ity characteristics for any given alarm assign-

ments.

Detectability: To compute the de-

tectability of a failure mode in a FPG, we form

a list of all the monitored discrepancies that

the failure mode reaches. If the list is empty,

the failure mode is not detectable. If the list

is non-empty, its elements are sorted in non-

decreasing order by using the minimum prop-

agation time from the failure mode to the dis-

crepancies as the key. The �rst item in the

sorted list gives terl. Similarly, sorting the list

in non-decreasing order using maximum time

of propagation as the key gives tlat.

Distinguishability: For �nding the dis-

tinguishability of failure modes the algorithm

has to check the uniqueness of the observed dis-

crepancies after a time interval t̂ passed since

the fault occurrence. The problem can be re-

duced to the covering analysis described by

Chang et al. in [1].

Predictability: To compute the pre-

dictability of a discrepancy d in a FPG, we

form a list of all the observed discrepancies

that reach d. If the list is empty, then d is

not predictable. If the list is non-empty, its

elements are sorted in non-increasing order by

using the minimum propagation time from the

observed discrepancies to the discrepancy d

as the key. The �rst item in the sorted list

gives tmin. Similarly, sorting the list in non-

decreasing order using maximum time of prop-

agation as the key gives tmax.

4.2 Adviser

The adviser's task is to suggest an alarm al-

location, which satis�es speci�cations for de-

tectability, distinguishability and predictabil-

ity.

4.2.1 Detectability

The �rst algorithm to generate alarm alloca-

tion advice for detectability is based on �nding

minimum cover in a bipartite graph. The prob-

lem is equivalent with the well-known mini-

mum cover analysis for logic function mini-

mization [2]. The implicants in our case are

the discrepancies reachable from the selected

failure modes within time t̂. The algorithm in-

cludes the following steps:
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Figure 1: Failure Propagation Graph

pass before f can be included in the am-

biguity set after its occurrence, and tlat

is the maximum time that will pass be-

fore its inclusion in the ambiguity set. If

terl = tlat =1, then f is not detectable.

De�nition 2. The distinguishability of a fail-

ure mode f in time t, denoted by

DIS(f; t), is true if the ambiguity set

contains only f when time t has passed

after the occurrence of f , else it is false.

Note that even if f is not distinguish-

able in time t, it might be distinguish-

able in time t1 > t because at time t1

there might be more evidence (observed

discrepancies) available for the diagnosis.

De�nition 3. Predictability of a discrepancy

d is the pair < tmin; tmax >; tmin �

tmax, where tmin is the shortest available

time period between a forewarning and

the actual occurrence of d, and tmax is

the longest available time period between

a forewarning and the actual occurrence

of d. If tmin = tmax = 0, d is not pre-

dictable at all.

Using the metrics de�ned above, we can

perform several analyses, which are listed in

Table 1. Evaluation of an alarm allocation

means the computation of the values for the

metrics de�ned above for each failure mode

and discrepancy in the system. The advice

column shows the use of the metrics to specify

constraints for generation of an alarm alloca-

tion. The constraints consist of a set of failure

modes and/or discrepancies and the limits on

the time by when they should be detectable,

distinguishable or predictable.

4 Algorithms

In this section, the basic algorithms that have

been developed to tackle the problems de-

scribed above are summarized. The algorithms

operate on a failure propagation graph (FPG).

We will assume that there are m failure modes

and n discrepancies in a failure propagation

graph. The nodes in the graph correspond-

ing to failure modes are numbered from 1 to

m, while nodes corresponding to discrepan-

cies are numbered from (m + 1) to (m + n).

Reachi;j represents the reachability of nodes

in the graph. If there is a path from node i



Our goal has been the development of tech-

niques to analyze systems in terms of their di-

agnosability characteristics. and to determine

the relative importance of sensors from the

point of view of diagnosis. The results can be

combined with other considerations on sensor

placement so as to provide an economical sen-

sor placement which meets the requirements.

2 Fault Models

The faults in a system and their interactions

are modeled by using a labeled digraph to rep-

resent the dynamics of the system under fault

conditions. An example of such a digraph,

called Failure Propagation Graph (FPG) is

shown in Figure 1.

The square boxes in the �gure represent

the failure modes, e.g., valve stuck open, of

components in the system. The circles rep-

resent the anomalies in the system behavior,

called discrepancies, e.g., loss of flow. The

dotted circles represent those discrepancies

that have alarms associated with them. These

are called monitored discrepancies, which

means that the occurrence of these discrepan-

cies can be observed and will be indicated by

\ringing" of the associated alarm. The empty

circles represent discrepancies that do not have

alarms associated with them and are called

non-monitored discrepancies. An alarm allo-

cation describes the assignment of alarms to

discrepancies.

The ellipses represent the sensors in the

system. Sensors measure the values of phys-

ical variables. The signals provided by these

sensors are used to decide if a discrepancy

exists and to generate (ring) the associated

alarm. The dotted lines between the sen-

sors and monitored discrepancies represent the

(possibly very complex) mapping between sen-

sors and the alarms they generate. A sensor

allocation describes this mapping from sensors

to alarms. To satisfy the diagnosability of a

system, one needs to �rst determine an alarm

allocation and then determine the sensor al-

location needed. The research described here

deals with issues involving alarm allocation.

The edges in the graph represent the propa-

gations of failures and capture the interactions

between di�erent failures. Thus, an edge be-

tween two nodes means that the failure repre-

sented by the source node will propagate and

cause the failure represented by the destination

node. Each edge is labeled with a time inter-

val [Tmin; Tmax], which gives the minimum and

maximum time that the source failure can take

to propagate to the destination.

3 Problem Statement

For analyzing the diagnosability of a system

we de�ne three metrics which are based on

these concepts related to fault management {

fault detection, fault isolation and prediction

of consequences of faults. In the de�nitions

we will use the term ambiguity set, which is

the set of all suspected failure modes of com-

ponents. When discrepancies are observed, we

suspect some failure modes to have occurred

and include them in the ambiguity set and

we say that those failure modes have been de-

tected. As more evidence (observed discrep-

ancies) comes in, we prune the ambiguity set

down to the failure modes that have actually

occurred, and we say that those failure modes

have been distinguished (isolated).

In the following discussion, the set of all

failure modes will be denoted by F , its sub-

sets by F1; F2 : : :, and the individual failure

modes by f; f1; f2 : : : etc. The set of all dis-

crepancies will be denoted by D, its subsets by

D,D1; D2 : : : and individual discrepancies with

d; d1; d2 : : : etc. The de�nition of the metrics to

measure the diagnosability characteristics are

the following:

De�nition 1. Detectability of a failure mode

f is the pair < terl; tlat >; terl � tlat,

where terl is the minimum time that will
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Abstract

Monitoring and diagnosis of complex dynamic sys-

tems are based on receiving inputs from sensors.

The number, weight, size, reliability and cost of

these sensors are important design concerns, par-

ticularly in remote systems like the Space Sta-

tion. There is a need to minimize the costs as-

sociated with sensors without sacri�cing the diag-

nosability of the system. We have de�ned three

metrics: (1) DETECTABILITY, which gives the

longest time that is needed to detect a failure, (2)

PREDICTABILITY, which gives the shortest pos-

sible time between the forewarning and the actual

occurrence of a failure, and (3) DISTINGUISHA-

BILITY, which describes the size of the ambiguity

sets given a time limit for the observation. Us-

ing these metrics, we perform two kinds of anal-

yses. In EVALUATION mode, the diagnosability

characteristics of a design with a prede�ned sen-

sor allocation are calculated. In ADVICE mode,

an arbitrary set of requirements can be de�ned for

the diagnosability characteristics, and a satisfac-

tory sensor placement is generated.

1 Introduction

Autonomous operation of large, complex sys-

tems such as chemical and power generation

plants, and aerospace systems requires exten-

sive monitoring, control, automated diagnosis,

and fault recovery functions. These systems

employ a large number of sensors which pro-

vide the data that these tasks use. Because

of their utmost importance in these tasks, the

selection and placement of sensors is a critical

design task. This paper will focus on the prob-

lem of sensor allocation for diagnosability. The

diagnostic functions of a system are best per-

formed when they have an ample amount of

sensor readings, but it is not always possible

to put a sensor on every physical variable in

the system. For example, in a remote system

like the Space Station, reducing the number of

sensors is an important design concern.

Recently, the attention of the research com-

munity has turned to the problem of sensor al-

location for diagnosability. DeKleer et al. [3]

have described a methodology to select the

next point of measurement during diagnosis.

Tanaka discusses diagnosability and optimal

sensor allocation for linear discrete-time dy-

namical systems in [4]. Scarl [5] proposes

a method to derive Minimal Sensor Sets for

device-centered, model-based systems. Chien

et al. have presented [6] an approach to evalu-

ating sensor placement on the basis of its abil-

ity to distinguish normal operation and faulty

operation and to discriminate between di�er-

ent kinds of faults.

1


