
Presented at the 1998 IEEE International Conference on Systems, Man, and Cybernetics,
Hyatt Regency La Jolla, San Diego, California, USA , October 11-14, 1998.

A Generic and Symbolic Model-Based Diagnostic
Reasoner with Highly Scalable Properties

Amit Misra, Gregory Provan, Gabor Karsai, George Bloor, Ethan Scarl

Abstract Modern computing technologies - hardware, software,
and algorithmic – have enabled the deployment of more exacting
diagnostic reasoning (DR) systems than has heretofore been
possible. Compromises in algorithm and modeling paradigm
complexity, due to computational throughput and state-space
explosion constraints, have historically dominated practical
applications of such systems. This paper describes approaches that
have been shown to be applicable in a wide set of domains. The
algorithms used are highly scaleable and support a symbolic
modeling formalism for analyzing the properties of the complex,
dynamic systems. Moreover, analysis of simultaneous failures
occurs as a natural byproduct of this formalism.

Index Terms—Diagnostics, causal network, OBDD.

CHALLENGES OF DEVELOPING DIAGNOSTICS
SYSTEMS FOR COMPLEX APPLICATIONS

There exists a wide variety of modeling and inference
methods for diagnostics, including expert systems, neural
networks, and model-based approaches. All of these
approaches can represent and analyze the same artifact but
from different viewpoints, and with different fidelity and
cost

Complex systems, such as commercial aircraft, represent a
challenge both in modeling and inference. Next generation
improvements in the performance of diagnostic systems will
require, at the very least, higher fidelity models, guarantees
on model consistency, and reasoner algorithms that are less
susceptible to state-space-explosion problems.

Moreover, analyses of the diagnostic models for complex
systems must be exacting, and exhaustive. Incomplete
analyses using probabilistic arguments become
progressively more tenuous for complex systems and
unacceptable for safety critical applications.

Powerful and generic modeling paradigms and algorithms
that seamlessly serve many analytic needs are key
ingredients for developing the next generation diagnostic
systems. Models that capture temporal and dynamic system
aspects whose representations scale to complex and non-
deterministic scenarios are critical.

To address these challenges in designing diagnostic systems
for complex applications, we propose a model-based
solution that integrates two state-of-the-art technologies: (1)
causal network diagnostic modeling and inference

algorithms and (2) Ordered Binary Decision Diagram-based
(OBDD) inference algorithms.

Taking advantage of the efficient symbolic manipulations
using OBDDs, researchers have solved a wide range of
problems in hardware verification, testing, real-time
systems, and mathematical logic that would have been
otherwise impossible due to combinatorial explosion.
Symbolic model checking is extensively used in hardware
design (see, e.g., [11]), and has shown to be efficient in
state space sizes 10120 and beyond.

We believe these two technologies can synergistically
provide:
• A generalized modeling and inference approach to

failure domain problems, e.g., diagnostics, safety, and
reliability.

• A symbolic formalism (OBDD) that enables a natural
and mathematical analysis of simultaneous failures.

• A significantly enhanced ability to scale to large
complex applications while maintaining accuracy.

• The ability to guarantee bounds on computational
requirements, a priori, based on modeling paradigm
fidelity.

 In this paper the first section summarizes the diagnostic
representation and inference algorithms known as causal
networks [2]. The second section summarizes the diagnostic
representation and inference algorithms based on Ordered
Binary Decision Diagrams [3,4,5]. The final section of the
document outlines the approach to integrating these two
technologies and overviews the long-term vision.

 CAUSAL NETWORK REPRESENTATION AND
INFERENCE ALGORITHMS

 This section describes the diagnostics enabling technology
that we use. The diagnostic inference algorithms are based
on causal networks and are enhanced using Ordered Binary
Decision Diagrams (OBDDs). The causal network
approach, given a system model, provides consistency and
completeness guarantees for diagnostic inference [2], in
addition to computational guarantees in terms of the
underlying model [15,16]. The OBDD technology provides
a means for further improving the inference space and time
requirements, although with no firm guarantees. Together,
these two technologies allow users to build complex models
without worrying about scale-up issues, as has been the case
in the past. Instead, the computational requirements can be

assessed a priori from the model parameters, and
optimizations introduced, such as changes to models, when
necessary.

 A. Causal Network Inference System

 A causal network is a graph-based representation that can
be used for simulating both normal and abnormal system
behaviors, as well as diagnosing failures of a system under
abnormal operation.
 CNETS is a system for representing and reasoning with
causal networks. CNETS allows the user to create a model
by specifying the cause/effect relationships for the system.
Once the causal model is built, a user will typically engage
in the following type of scenario with CNETS. First, the
user asserts available evidence about the modeled system.
Second, the user makes queries about the behavior of the
system in light of the available evidence and the system’s
model (causal network). These queries depend on the
applications at hand, but they are typically simulation,
prediction and/or diagnostic queries. Following are example

queries that, among others, CNETS provides answers to:
• Shuttle diagnosis (Probabilistic query):

 With respect to the main Shuttle Engine, What is
the probability of Engine failure given that the He
Pressure is low and Ox Inlet Pressure is nominal?

• Shuttle simulation and diagnostics (Boolean query):

 With respect to an avionics control system, given
that bus-apc-5, bus-control-logic-12, bus-control-
logic-13, and mca-status-1 are all high, what are
the possible failure states of the controller? And
given any of these failure states, what functionality
can we expect from the controller?

 B. Causal Network Representation

 A causal network model specifies a causal structure and a
quantification of this structure. These two elements are now
summarized.
 Causal Structure
 The causal structure specifies the cause/effect relationships
among system variables, namely how variable X (a child)
depends on its parents in the causal structure. In other
words, a causal network specifies the causal relationships
among a set V of variables by encoding each variable in V
with a node, and encoding the causal influence of V1 on V2

by a directed arc from V1 to V2. Hence the structure of a
causal network is a directed graph (N,A) of nodes N and
directed arcs A.

 An example of how a causal network encodes the causal
relations of a system, taken from the avionics domain, is
shown in Figure 1: the transmitter in LRU A causes BUS 1
and BUS 2 to carry certain labels, and BUS 1 causes
Receiver 2 to receive certain labels, etc. A causal network is
thus a good way of representing the flow of information in
such systems, and hence reasons about the root causes of
information flow; e.g. Process1 is the root cause of Label
L1 being generated. Conversely, if information is not
flowing as intended, the causal network can help track down
the reason for the “breakdowns” of correct information
flow; e.g., Process 1 could be the root cause of Label L1
being absent at LRU A and B and causing the fault reports
CMC ACT1 and CMC ACT2 to be active. This is called
diagnosing the faults in the system.

 Causal Network Quantification
 The quantification identifies the details of the causal
structure, namely the values that a child variable can take on
given the values of its parent variables. The chosen method
of quantification depends on the application domain, the
reasoning task, and the available information about the
system being modeled. Figure 2 provides three different
quantifications of the same causal structure, which
represents a digital circuit. The given quantifications are:
• Probabilistic quantification:

 For each state of a node and for each state of its
parents, provide the conditional probability of the
node given its parents. For example, in Figure 2, for
each state SF of node F, and for each state SE,D of
its parents E and D, one must provide the
probability of SF given SE,D.

• Order-of-Magnitude Probabilistic (OMP) quantification:

 For each state of a node and for each state of its
parents, provide the conditional OMP of the node
given its parents. An OMP (also known as a
ranking) is a positive integer and represents a
degree of disbelief. OMPs are typically used when
exact probabilities are not available or are judged
to be too detailed by domain experts.

• Symbolic quantification:

Process 3

Process 2

Process 1

Transmitter

ACT Monitor 2

ACT Monitor 1

LRU A

Receiver 1

Receiver 2

CMC ACT2

CMC ACT1

L1

L1

Labels:
L1
L2
L3

Labels:
L1
L2
L3Labels:

L1
L2
L3

L3 has data:
D3-1
D3-2
D3-3

L2

L1

LRU B

BUS 1

BUS 2
LRU C

 Figure 1: Simple Avionics Example

For each node, provide a set of logical statements
(using a multivalued propositional logic) relating
the node to its parents. As described below, a term
of the form OK(X) denotes the mode of component
X, i.e., the what operating mode X is in, such as
normal or faulty.

These quantifications lead to probabilistic, OMP, and
symbolic (or Boolean) causal networks, respectively (see
Figure 2).

CNETS Specification Language
To allow a causal network to model a system such as that
shown in Figure 2, we need to specify:

1. the variables in the model, which represent the
components, e.g., Process 1, Receiver 1,
Transmitter, Bus 1, etc.;

2. the assumables, which are the variables describing
the operating characteristics of the components;

3. the quantification, e.g., for a symbolic network the
equations relating the variables and assumables;

4. the evidence variables, which are the variables that
can be observed;

5. the weights for the assumables, which specify the
likelihood or ranking of the assumable fault modes.

Some further clarification about the component modes: they
characterize the ways the component works under an
exhaustive set of scenarios. Thus, we might say that Bus 1,
if OK, transmits labels correctly, but if broken transmits no
data. In Boolean logic, we might write this as:

IF (input-label = X) AND (bus1-mode = OK) THEN
(output-label = X)
IF (input-label = X) AND (bus1-mode = broken)
THEN (output-label = no-data).

Causal Network Inference

CNETS possesses a number of inference algorithms that can
be used to process such queries. The fundamental class of
algorithms that CNETS uses to transform the input causal
network into a form for facilitating the particular type of
query-processing. The main algorithm used at present is a
modified version of the clique-tree algorithm [10]. If the
queries are probabilistic and the user has access to CNETS
on a machine with a powerful CPU, then an algorithm like
the clique-tree algorithm can be used directly. CNETS also
supports a Boolean form of this algorithm for answering
Boolean or symbolic queries.

D. CNETS Compiler

CNETS has a compiler that allows the user to generate a
run-time version of the system model by using a compiler in
conjunction with an algorithm like [10]. This way
diagnostic queries can be performed on embedded platforms
with limited processing power. This compiler is described
in detail in [9].

Using this novel compilation technique [9], CNETS is able
to compile a causal network into a Boolean expression,
called a Query-DAG, or Q-DAG, that contains all possible
diagnoses for the system, given inputs for the observable
variables of the system. The Q-DAG allows the use of a
trivial evaluator in the embedded system that greatly
reduces the processor and memory requirements, as
compared to the original causal network model and CNETS
software.

E. Complexity Guarantees

One of the key features of the causal network approach is
that, for diagnostic inference, it can provide complexity
guarantees in terms of the model parameters. The structure
of the network is the most critical aspect that governs the
complexity of inference, and this is why causal networks are
one of several classes of techniques termed "structure-
based" approaches. Hence, in the causal graph the integer
nP, the maximum of the parent nodes of any node, is one of
the most significant parameters. A more precise parameter,
called a clique table, is a function of nP: when the causal
graph is transformed into a tree of cliques (where the
maximum clique size is closely related to nP), the clique
table is the product of the variable domain sizes of the
clique variables.

Because all significant complexity parameters are ultimately
derivable from the system structure, one can manipulate the
structure to obtain acceptable inference complexity without
altering the diagnostic coverage. Approaches that are not

not D D
A .9 .1

not A .1 .9

C B A

E

F

D

not A A
.5 .5

not F F
E, D .05 .95

E, not D .05 .95
not E, D .05 .95

not E, not D .95 .05

Probabilistic Causal Network

not E E
C, B .01 .99

C, not B .99 .01
not C, B .99 .01

not C, not B .99 .01

not B B
.5 .5

not C C
.5 .5

not D D
A 0 1

not A 1 0

C B A

E

F

D

not A A
0 0

not F F
E, D 2 0

E, not D 2 0
not E, D 2 0

not E, not D 0 2

Ranked Causal Network

not E E
C, B 3 0

C, not B 0 3
not C, B 0 3

not C, not B 0 3

not B B
0 0

not C C
0 0

B and C and ok(Y) implies E
not (B and C)) and ok(X) implies not E

(D or E) and ok(Z) implies not F
not (D or E) and ok(X) implies not F

A and ok(X) implies not D
not A and ok(X) implies D

C B A

E

F

D

Symbolic Causal Network

Z

XY

E D

F

ABC

Digital Circuit

Figure 2: Quantification of Causal Networks

structure-based do not have this capability to alter inference
complexity without altering the diagnostic coverage.

Beyond the complexity guarantees, the causal network
approach has been optimized in a number of ways. This
approach uses a focusing mechanism to focus inference on
only the most likely diagnoses [2], and it makes use of
observations to decompose the system (and hence reduce
overall inference complexity) [16].

ORDERED BINARY DECISION DIAGRAMS

Causal networks offer one technique for representing a
system for diagnostic purposes. An alternative approach
uses fault propagation graphs (FPGs), that model the
system in terms of interconnected components, their failure
modes, and propagation links that describe how failures
interact. FPGs can have propagation delays associated with
their edges, thus provide a way for modeling dynamic
behavior. Efficient graph-algorithms can be used to quickly
calculate a “diagnosis”: an explanation for an evolving fault
scenario[11]. These algorithms are polynomial in the
number of nodes of the graph. However, if arbitrary logical
connectives are allowed among the fault modes, (AND, OR,
NOT), the algorithms become exponential leading to
combinatorial explosion. However, a different approach
offers an engineering solution to the problem.
Diagnosis and fault analysis tasks with discrete models can
be formulated in terms of operations over finite domains.
Combinatorial explosion is the result of the exponential
increase in the number of discrete elements (states,
hypotheses, etc.) during operations, which sooner or later
makes the individual access to the elements unfeasible. By
introducing a binary encoding, the individual elements, sets
of elements, and relations among them can be expressed as
Boolean functions. For example, the 2100 states of a finite
state automaton can be encoded with binary variables
{s(1),…,s(100)} forming a binary state vector s. The
Boolean functions

 f1[s(1),…,s(100)]=s(1)’∧s(23)∧s(99) and
f2[s(1),…,s(100)]=s(1)∧s(22)∧s(89)

represent two subsets, S1 and S2, of the 2100 states including
297 elements each. The set S3=S1∪S2 can be derived
symbolically as the disjunction of the two Boolean
functions:

f3[s(1),…,s(100)]= f1[s(1),…,s(100)]∨
 f2[s(1),…,s(100)]= s(23)∧s(99)∨s(22)∧s(89)

without the need to enumerate and compare the individual
elements - which would be a formidable task otherwise. In
general, using Boolean function representations, we can
express operations and algorithms in diagnosis and safety
analysis in symbolic form, by means of symbolic Boolean
function manipulations.

OBDDs provide a symbolic representation for Boolean
functions in the form of directed acyclic graphs, and are a
restricted, canonical form version of Binary Decision
Diagrams (BDD) [3]. Bryant [3] described a set of
algorithms that implement operations on Boolean functions

as graph algorithms on OBDDs. Taking advantage of the
efficient symbolic manipulations, researchers have solved a
wide range of problems in hardware verification, testing,
real-time systems, and mathematical logic using OBDDs
that would have been otherwise impossible due to
combinatorial explosion. Symbolic model checking is
extensively used in hardware design (see, e.g., [11]), and
has shown to be efficient in state space sizes 10120 and
beyond.

DISCRETE EVENT SYSTEM AND RELATIONAL MODELS FOR

DIAGNOSIS

A broad category of systems, such as digital hardware,
switching, distribution, and communication networks, etc.,
are naturally modeled as DES. Beyond this, the behavior of
continuous systems can also be approximated with DES
models.

 FS FI

 X Y Z

 Y Z

 f h
 FS FI X

DES Model: Relational Model

(X,FS,Y,f); system model f⊆ X×FS×Y; f(x,fS,y); system model

(Y,FI,Z,g); observation model h⊆ Y×FI×Z; h(y,fI,z); observation model

Figure 3: DES and relational models of static systems

The DES model of a static system (system without
memory) is shown on the left side of Figure 1. Since our
purpose with modeling is sensor-based diagnosis, the model
is divided into a System model and an Observation model.
The system model represents a mapping between the
elements of the input set X, fault set FS, and the elements of
the output set Y: f: X×FS → Y. In this approach, the
component faults are considered as additional inputs to the
system. It is also possible to model the abnormal (out of
range) inputs as elements of the X input set, creating a
‘normal’ and ‘faulty’ partition in X. The observation model
describes a mapping between the Y output set of the system,
and the actually observed outputs, Z; h: Y×FI → Z. The set
FI collects the observation faults (or instrumentation faults)
that can potentially corrupt the observations. We assume
that both f and h can represent many-to-many mapping, i.e.
they are not necessarily functions. This allows non-
deterministic modeling, which is particularly important in
large-scale systems. Non-deterministic constructs allow the
expression of uncertainties in the outcome of inputs due to
noises or non-modeled behaviors.

The right side of Figure 1 shows the equivalent
Relational Model of a static system. In the relational model,
the f and h mappings are considered to be the f⊆ X×FS×Y
and h⊆ Y×FS×Z relations. The significance of the relational
representation is that it directly shows that the models can
be re-written as Boolean functions by introducing some
binary encoding for the sets X×FS×Y and Y×FI×Z. The
Boolean functions f(x,fS,y) and h(y,fI,z) evaluate to true for
those elements of X×FS×Y and Y×FI×Z (encoded by the
Boolean vectors (x,fS,y) and (y,fI,z)), which are related by
the f and h relations.

The DES model and relational model of a dynamic
system are more complicated, as shown in Figure 4.

 FS FY FI

 X Y Z

 S S’ S Y Z

 FS FY FI f g h
 X

 DES Model: Relational Model:

(X,FY ,FS ,S,Γ,f,s0,Y,g); system model f⊆ X× FS×S×S’; transition model
f(x,fs,s,s’);

 g⊆ S× FY×X×Y; output relation
 g(s,fy,x,y)

(Y,FI ,Z,h); observation model h ⊆ Y×FI×Z; observation relation
 h(y,fI,z)

Figure 4: DES and relation models for dynamic systems

In dynamic systems, the DES model is the (X,FY ,FS ,S,Γ
,f,s0,Y,g) finite state automata (see e.g. [12]), where:

 X is the input event set,

 FS ,FY are the sets of transition faults and output faults,
both considered to be input events,

 S is the state set,

 Γ(s) is a set of feasible or enabled events, defined for all
s∈S with Γ (s)∈ X,

 f is a state transition function, f: X×FS×S→S’, defined
only for x∈Γ(s) when the state is s,

 s0 is the initial state,

 Y is the output set, and

 g is an output function, g: X×FY×S→Y, defined only for x
∈Γ(s) when the state is s.
In order to model partial observations of the state

trajectory independently from the outputs of the dynamic
system, we use again the h: Y×FI → Z observation model
describing the mapping between the Y outputs, FI

instrumentation faults, and the Z observations. The finite
state automaton formalism also allows the representation of
non-deterministic state machines, which is an important
requirement for modeling large-scale systems.

The right side of Figure 2 shows the equivalent relational
models. Similarly to the static system models, the

f(x,fs,s’,s), g(s,fy,x,y) and h(y,fI,z) functions are the Boolean
function representations of the relations over the binary
encoded Boolean vectors x,fs,s’,s,fy,y,fI, and z.

Although it is not the purpose of this discussion, it is
worthwhile to note that DES (or relational) models preserve
composability and can be constructed in a modular fashion
using either component oriented modeling approach [13] or
process-oriented modeling approach [14].

DIAGNOSTIC REASONING USING OBDDS

The application of OBDDs for diagnostic reasoning
includes the following steps:
1. Mapping the DES or relational models into OBDD-s:

This step can be completed automatically. In the
framework of the Multigraph Architecture (MGA), the
discrete behavioral models used for diagnosis or safety
analysis are usually domain specific [4]. The domain
specific models can be translated into an OBDD
representation using model interpreters. An example for
converting relay logic diagrams into OBDD
representations is described in [13,14]

2. Diagnosability And Safety Analysis: Diagnosability and
safety analyses are accomplished symbolically, using the
OBDD representations. Diagnosability and safety criteria
are expressed in the form of logic relationships on the
discrete state trajectories generated by the models, and
these relationships are checked using OBDD algorithms.

3. Diagnosis: In a model-integrated framework, MGA [23],
the diagnostic software is built in two steps. First, a
generic run-time support is created. The run-time support
includes a diagnostic engine implemented with OBDD
algorithms. Second, the software synthesis component of
the MGA (one particular form of model interpreters): (a)
configures the run-time system using the MGA
computational model, and (b) synthesizes the OBDD
data structures for the models. The core components of
the diagnostic reasoning are the algorithms that compute
the sets using the relational models.

Diagnostic reasoning in static systems

Although it seems to be restrictive, static system models are
widely used in engineering practice. Fault trees, AND-OR
graphs, most of the rule-based models can be considered as
some form of the static models. Using the relational model
formulation described above, the following calculations can
be performed using OBDD algorithms.

a) Observed output calculation: Given the set of input X,
and the sets of faults FS and FI, the set of outputs Y and the
set of observations Z can be calculated by the following
formulae:

Y =f(X,FS)={y|∃x, fS[(x∈X)∧(fS∈ FS)∧(x, fS,y)∈f]}; (1)
Z=h(Y,FI)={z|∃y,fI[(y∈Y)∧(fI∈ FI)∧(y, fI,z)∈h]};

The required variable quantification and logic operations
are executed symbolically. The resulting f(X,FS) and h(Y,FI)

mappings propagate the elements of the input sets ‘forward’
in the relational model.

b) Diagnosis: Solution of the diagnosis problem requires
the calculation of the hypothesis set D, defined on X×FS×FI

given a set of observations Z:
d(Z)={x,fS,,fI|∃y,z[(z∈Z)∧(y, fI,z)∈h∧(x, fS,y)∈f]} (2)

The diagnostic mapping is derived as a combination of
the functional composition of the relations f and h, and
variable quantification. The d(Z) mapping propagates the Z
observations ‘backwards’ to obtain the set of admissible d∈
X×FS×FI elements forming together the diagnosis. The
result of the diagnosis, the D hypothesis set, includes all of
those d∈X×FS×FI hypotheses that are consistent with the Z
observations. Those elements for which fS={0} and fI={0},
the corresponding x input values represent inputs for fault
free operations. It is interesting to note that the symbolic
computation derives in one step the symbolic representation
(i.e. the OBDD) of the full D(Z) hypothesis set, including all
of the multiple fault combinations.

c) Safety analysis: Safety analysis requires testing models
against selected safety criteria. Here we demonstrate the use
of symbolic model checking in one particular problem, to
test distinguishability of faults. A system and its observation
model provide single-fault distinguishability, if all possible
observations are unique to the single faults. Let ifs∈ X×FS×fI

be inputs to the system with a single fault, i.e., each ifs

includes exactly one fS or fI faults. The condition for single
fault distinguishability can be expressed symbolically using:

d°(h° f) (ifs)= ifs ; ∀ ifs∈ X×FS×FI (3)
That is, the diagnosis relation d is the inverse of the

composition of the h° f relations for all single fault inputs.
Similar symbolic expressions can be derived for multiple
fault distinguishability, fault masking, fault detectability and
other safety characteristics of the models.

Diagnostic Reasoning In Dynamic Systems

The primary difficulty in dynamic systems is that often
diagnoses are computed based on only partial observations
of the system trajectory. Particularly in the case of non-
deterministic models, the diagnostic reasoning has acute
scaling problems. The symbolic form of the algorithms has
a similar form to that of static systems.

a) Observed output calculation: Given the set of input X
and the sets of faults FS, FY and FI, the sets of next states
S’, outputs Y and observations Z can be calculated by the
following expression:

S=f(X,FS,S)={s’|∃x,fS,s[(x∈X)∧(fS∈FS)∧(s∈S)∧(x,fS,s,s’)∈f]};
Y=g(X,FY,S)={y|∃x,fY,s[(x∈X)∧(fY∈FY)∧(s∈S)∧(x,fY,s,y)∈g]};
Z=h(Y,FI)={z|∃y,fI[(y∈Y)∧(fI∈ FI)∧(y, fI,z)∈h]}; (4)

The symbolic expression above calculates a one-step
propagation forward in the state automata. The result is a
new set of possible states S’, and the related Y outputs and Z
observations. The set of reachable states can be found by
computing the transitive closure of f using fixed-point
calculation, i.e. to find an S for which f(X,FS,S)=S. This is

particularly important in safety analysis, where safety
requirements frequently impose constraints on the
reachability set of the state automata.
b) Diagnosis: There are several ways to perform diagnosis
in dynamic systems. In off-line diagnosis, observations are
collected and analyzed independently from the operation of
the system. In on-line diagnosis, the diagnostic system runs
parallel with the system, and refines the hypothesis set as
new observations are collected. As an example, we describe
an on-line diagnosis method using symbolic expressions.
The on-line diagnostic system re-calculates the hypothesis
set D⊂X×FS×FY×FI×S whenever a new observation event(s)
arrives:
Dj+1=d(Dj,Zj+1)=
 {x,fS,,fY,fI,s’|∃s,y,z[(z∈Zj+1)∧(y,fI,z)∈h∧(fI∈ FI,j)∧
 ∧(s,fy,x,y)∈g∧(x∈Xj)∧(fY∈ FY,j)∧(x, fS,,s,s’)∈f∧(fS∈ FS,j)]} (5)

The (x∈Xj), (fS∈ FS,j), (fY∈ FY,j), and (fI∈ FI,) conditions
assume that during the observation the faults (including
possibly faulty x inputs) are persistent. If this assumption
cannot be made, the conditions must be eliminated from the
reasoning. Receiving newer and newer observations, the
diagnostic algorithm will converge to a hypothesis set that
includes all possible explanations for the observed
trajectory. These explanations extend to the multiple fault
hypotheses as well.

Criteria for fault distinguishability can be derived the
same way as it was described for static systems.

It is important to mention that the diagnostic algorithms
of (2) and (5) (and all of the other expressions above) are
computed symbolically. Symbolic computation here means
that all of the sets and relations are represented as OBDDs
and the logic and quantification operators are executed by
manipulating the OBDDs by means of a small set of
efficient algorithms [3].

INTEGRATING CNETS AND OBBD-BASED DIAGNOSTIC

REASONING

A causal network is a graph-based representation that can
be used for simulating both normal and abnormal system
behaviors for discrete event systems. The expected discrete
behavior of a given system is captured and modeled using
causal networks. Causal networks provide a generalized
modeling paradigm that can serve to populate other
modeling paradigms for many different types of analyses.

For example, the failure propagation topology of a system
may be extracted from the causal network model. This
topology can be translated into a relational model and
ultimately into OBDDs. Thus, starting from a causal
network model of a system, all the advantages of the
OBDD-based analyses can be used, including static and
dynamic analyses of failure propagation graphs.

The complexity guarantees of the CNETS diagnostic
inference engine enable one to predict throughput
requirements. This is a crucial ingredient in the design
process. Moreover, OBDDs may be used to even further
reduce the complexity of the diagnostic inference engine.

The upper bound complexity guarantees of the CNETS
diagnostic inference engine coupled with the highly
scaleable properties of OBDDs make the integration of
these two technologies eminently practical.

CONCLUSIONS AND FUTURE WORK

Future work will focus on reapplying the concepts outlined
in this paper into an integrated modeling paradigm that will
support translations to other modeling paradigms and thus
bridge the previously mentioned analyses and others.
Difficult issues in the design and implementation of
diagnostic inference engines for complex systems have been
explicitly addressed. In particular, scalability, predictable
complexity, dynamic and static system modeling, exhaustive
symbolic analyses, and a quasi-domain-independent
modeling paradigm (causal networks) have all been
addressed. Finally, all the technologies discussed herein
have been proven through their implementation on real life
complex systems.

REFERENCES

[1] Janos Sztipanovits, Amit Misra: "Diagnosis Of Discrete Event
Systems Using Ordered Binary Decision Diagrams", Proc. Of The
7th International Workshop On Principles Of Diagnosis (Dx96), Pp.
232-238 Val Morin, Quebec, Canada, October 13-16, 1996.

[2] A. Darwiche: "New Advances In Structured-Based Diagnosis: A
Method For Compiling Devices”, Proc. Of The 8th International
Workshop On Principles Of Diagnosis (Dx97).

[3] R. E. Bryant, Binary Decision Diagrams And Beyond: Enabling
Technologies for Formal Verification. Embedded Tutorial At
International Conference On Computer-Aided Design November,
1995.

[4] Sztipanovits, J., Karsai, G., Biegl, C., Bapty, T., Ledeczi, A.,
Misra, A., "MULTIGRAPH: An Architecture for Model-Integrated
Computing," Proc. of the ICECCS'95, pp. 361-368, Ft. Lauderdale,
Florida, Nov. 6-10, 1995.

[5] A Unifying Theoretical Background For Some BDD-Based Data-
Structures By Meinel-C Slobodova-A, Form-Meth-S V11 (3) :
Pp223-237 (1997 Oct)

[6] Misra, A., Sztipanovits, J., Carnes, R.: “Robust Diagnostic
System: Structural Redundancy Approach,” in Proc. of the SPIE’s
International Symposium on Knowledge-Based Artificial Intelligence
Systems in Aerospace Systems in Aerospace and Industry, Orlando,
FL, April 5-6, 1994.

[7] Sztipanovits, J., Wilkes, D., Karsai, G., Biegl, C., Lynd, L: “The
Multigraph and Structural Adaptivity,” IEEE Transactions on Signal
Processing, Vol. 41, No. 8., pp. 2695-2716, 1993.

[8] Rudell, “Dynamic Variable Ordering for Ordered BDDs”,
Proceedings of the International Conference on Computer-Aided
Design, 1993.

[9] Adnan Darwiche and Gregory Provan, “Query-DAGs: A Practical
Paradigm for Implementing Belief-Network Inference,” Journal of
AI Research, 1996.

[10] F. V. Jensen, S. L. Lauritzen, and K. G. Olesen, “Bayesian
Updating in Recursive Graphical Models by Local Computation,”
Computational Statistics Quarterly, 4:269--282, 1990.

[11] Burch, J. R., Clarke, E.M., Long, D. E., “Symbolic Model
Checking for Sequential Circuit Verification,” Technical Report,
CMU-CS-93-211, Carnegie Mellon University, July 15, 1993.

[12] Cassandras, C. G., Discrete Event Systems, IRWIN Inc. 1993.
[13] Sampath, M. et al., “Failure Diagnosis Using Discrete-Event

Models,” IEEE Transactions on Control Systems Technology. Vol.
4, No. 2, pp. 105-124, March, 1996.

[14] Sztipanovits, J., Carnes, R., Misra, A., “Finite-State Temporal
Automata Modeling for Fault Diagnosis,” Proc. Of the 9th AIAA

Conference on Computing in Aerospace, San Diego, CA, October,
1993.

[15] A. Darwiche: " Compiling Devices: A Structured-Based
Approach”, Proc. Of Conference On Knowledge Representation
(KR98).

[16] Adnan Darwiche and Gregory Provan, “The Effect of
Observations on the Complexity of Model-based Diagnosis,” Proc.
AAAI, pp. 91-94, 1997.

