components and templates. The differences are: (1)
this process may be executed at run-time, and (2) in
our system we explicitly allow re-interpretation. In the
latter case, there can be a feedback from the executing
system to the model interpreter, and thus components
can be changed dynamically based on events appearing
in the system. Our run-time system allows this, and
we have used this technique in some signal processing
applications [13].

6. Conclusions

Model-Integrated Computing shows the following ad-
vantages in the software and system development pro-
cess: (1) It establishes a software engineering process
that promotes design for change. (2) The process
shifts the engineering focus from implementing point
solutions to capturing and representing the relation-
ship between problems and solutions. (3) It supports
the applications with model-integrated program syn-
thesis environments which offer a good deal of end-
user programmability. We have found that the critical
issue in system acceptance has been to facilitate do-
main specific modeling. This need has led us to follow
an architecture-based tool development strategy that
helps separate the generic and domain/application
specific system components. The Multigraph Archi-
tecture has proven to be efficient in creating domain
specific model-integrated program synthesis environ-
ments for several major applications.
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Figure 5: Production Model for Vehicle Initial Build

cesses and business organizations, the SSPF modeling
paradigm was developed. The modeling paradigm uti-
lizes many different kinds of models, the salient among
which are: (1) Production Flow Models (an example is
shown in Figure 5) which capture the processes, buffers
and the flow of material, (2) Organization Models,
which represent the business organizations at Saturn,
(3) Data Acquisition Models which capture the param-
eters for production data acquisition, (4) Screen Mod-
els which allow the user to develop custom screens for
visualization.

4. Experiences

The SSPF project was started in September of 1995,
with an Engineering Study and preliminary design. By
the end of the year, a prototype was developed. In
the first part of 1996, the prototype was moved to a
production release version.

SSPF has been in operation in the Saturn plant since
August, 1996 and has been an integral part of a highly
successful throughput improvement program. The
current implementation is primarily focused on analy-
sis of historical data. The toolset is being extended to
the planned features of decision support.

We learned many lessons during our efforts to integrate
SSPF with Saturn plant:

e Production throughput at Saturn has markedly
improved through the use of SSPF in conjunc-
tion with a focused business process for improved
throughput. The exact amount of improvement
cannot be reported due to competitive reasons.

e Prior to the use of Model-Integrated Computing
approach, MES approaches toward issues concern-
ing throughput improvement were so resource in-
tensive that solutions were not responsive to busi-
ness requirements. High costs of MES were exhib-
ited as missed opportunities in improvement of
throughput. Now with the MGA approach, these

domain specific issues concerning throughput im-
provement are successfully being addressed.

e A large part of the effort was required for model-
ing of the plant. This is not surprising since the
application itself is generated from the models.

e Using the MIC approach helped us considerably
in verifying and testing the application. During
the model building phase, whenever the models
were added to or changed in any way, the appli-
cation was regenerated and tested. This allowed
us to verify the application and the models. The
turn-around time was just the time required to
change the models and to re-inpterpret them. It
showed clearly how flexible and maintainable the
application becomes through the use of models.

e Due to iterations on functional specifications for
SSPF, many times during the integration phase,
requirements and/or enhancements in the func-
tionality of SSPF were added. We had a very
quick turn-around time on these due to the use
of MIC. Without the use of MIC, trying to keep
an application upgrade consistent for hundreds of
processes and buffers would be a very difficult and
costly task.

e Being able to capture the heterogeneity in data
points as part of the models also helped consider-
ably in addressing this issue.

Another issue raised was that of the adequacy of the
modeling paradigm. Since the application is generated
from the models, its functionality is strongly affected
by the models. The first modeling paradigm was ad-
equate for the original functional specifications. How-
ever, due to the revisions and added functionalities,
it was realized that the modeling paradigm needed to
be redesigned to be able to model the plant in more
detail and capture more physical and behavioral char-
acteristics of processes, etc., and to include many other
features.

5. Other Approaches

The benefits of software modeling and generating soft-
ware from models (to facilitate rapid development) has
been known for some time[3]. The importance of do-
main modeling in the software development process
has been recently recognized [6][5].

Many of the concepts developed in [6] are present in
our toolset, MGA. Just like in [5], the domain-specific
models play an essential role. What makes our ap-
proach different, however, is the explicit model inter-
preter component, that decouples the execution of the
system from the models. In a sense, our model in-
terpreters are similar to component generators, as de-
scribed in [12]: they instantiate and configure generic



and (4) Evolution.

Design and Development. The issues faced in de-
sign and development of SSPF are:

Tight integration with the plant

Real-time performance

Distributed system with large number of clients
Heterogeneous platforms

Multiple custom and COTS software components
Robustness

Integration. The issues faced during integration of
SSPF with Saturn systems are:

Data collection : There is considerable heterogeneity
in the data points with respect to the engineering units
used, reset conditions, etc. This presented significant
challenge for SSPF since its purpose is to provide a
homogeneous view of the plant to the user.

Zero disruption : The SSPF integration process was
not allowed to disrupt the plant operation and other
software packages in any way.

Pre-existing hardware and software platforms : SSPF
had to be designed to run on the hardware/operating
systems already in use at Saturn and to interface with
existing software packages.

Maintenance. Due to the continuous, ongoing im-
provments in the product, the production processes
and the engineering and business practices, the Sat-
urn plant undergoes changes continually (the extent
and degree of the change varies). SSPF needs to be
able to incorporate these changes with minimal effort
and no disruption of the plant operations.

Evolution. In its current form, SSPF is a data collec-
tion, logging, retrieval, distribution and visualization
service. In the future, however, SSPF will have many
more custom developed and COTS components added
to it that will provide simulation, bottleneck analysis,
diagnosis, decision making support, etc. These com-
ponents will face the same issues outlined above. Thus
SSPF had to be designed for easy extensibility.

3.3. SSPF Architecture

The SSPF Architecture, shown in Figure 4 has three
levels : (1) the Meta Level, (2) the MIPS Level and
(3) the Application Level.

At the Meta Level, the modeling paradigm (discussed
below) for SSPF is defined, which consists of a declar-
ative representation of the concepts and relationships
used to model the Saturn plant.

From the modeling paradigm, the tools at the MIPS
Level are customized. These tools consist of the model
editor, the model database and the model interpreter.
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Figure 4: SSPF Architecture

The model interpreter is responsible for transforming
the plant models into configuration information, C++
code and SQL scripts for the components in the Ap-
plication Level which fulfill the SSPF functionalities
described above.

The Application Level consists of many components,
which include data acquisiton components, real-time
and historical data servers, data loggers, viewers and
COTS. They will not be described here for sake of
brevity. The Message Layer in the Application Level,
itself configured from the models, is responsible for
data packaging and transfer between the applications
components by using a variety of interfaces including
sockets, OLE, APIs, etc.

Since all the above custom developed components,
and the interfaces to COTS components are config-
ured and/or generated from the models, any changes
in the plant are handled by changing the models and
re-interpreting them. If additional functionality is
desrired, 1t requires only development of a component
or interface which can be configured from the models.
This results in easy and cost-effective maintenance and
evolution of the system as our experiences (discussed
below) have shown.

3.4. SSPF Modeling Paradigm

The manufacturing plant i1s viewed as an aggregate
of processes and buffers. Processes represent the op-
erations required for making a car, such as casting,
machining, welding, assembly, etc. Buffers lie between
processes and hold parts that are produced by an up-
stream process before they are consumed by a down-
stream process. The inter-connectivity of processes
and buffers captures the sequence of operations re-
quired to produce a car. The concept of production
flow is concerned with the flow of material (raw materi-
als, parts, sub-assemblies, etc.) through the processes

and buffers.

To model Saturn Site in terms of its production pro-



vide a suite of decision support tools that are focused
on improving throughput. The intent of the system is
to capture metrics and decision methods that represent
best practices and have these globally used throughout
the Saturn organization. Conceptually this is built on
visual controls, a method that is important for control
of a large organization such as Saturn. To understand
the flow of production through the manufacturing site,
a view of both current status and of historical infor-
mation is required. SSPF is a client/server system in
which the server components collect, process, trans-
form, archive and provide access to production data
to over 300 clients across the site (on plant floor as
well as business offices). Tt is necessary that all par-
ticipants in the manufacturing process have equal and
consistent access to production flow data regardless of
role. A plant manager and a car builder must all have
the same view. There are approximately 2000 people
involved directly in the manufacturing process at any
one time. It i1s estimated that there would be 300 si-
multaneous users. SSPF has an architecture that eas-
ily accommodates a very large number of users without
affecting performance of the system.

3.1. SSPF Functionalities

SSPF 1s designed to be an application that evolves
easily. The functionalities described below represent
the capabilities of the system that have already been
identified and have been implemented or are currently
under development. In the future, the requirements
and functionalities of the system are expected to grow
considerably.

Data Acquisition. SSPF functions involve real-time
collection, presentation, storage, retrieval, and analy-
sis of data. There is a data rich environment at Saturn
based on traditional process monitoring and control
(PM&C). In the absence of any plant models to guide
the data collection, logging and presentation, the enor-
mous volume of data presents considerable difficulties
in monitoring site-wide status and performing simula-
tions and other decision making analyses.

Data Storage and Retrieval. Time is an essential
dimension in understanding the dynamics of produc-
tion flow. There are some dynamics that are within
the bounds of a given shift. Others involve multiple
shifts, weeks, or months of history. To understand the
dynamics of production flow, storage of detailed and
summarized data in a structured format is required.
SSPF stores the data in a structured manner using
the a relational database (Microsoft SQL/Server). The
database schemas and the interfaces to the database
are configured from the plant models, thereby provid-
ing the framework for easy access and maintenance of
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Figure 3: SSPF Viewer

the production database.

Data Distribution. SSPF is required to provide cur-
rent (real-time) and historical data to custom devel-
oped and COTS visualization, analysis and decision
support tools, such as bottleneck analyzers, spread-
sheets, statistical analysis tools, web browsers, etc.
It is required to provide seamless access to the data
and become an integral part of the data warehouse at
Saturn, thereby facilitating informed decision making
through the use of many different tools.

Data Visualization. Visualization of real-time and
historical production flow is an important component
of any business decision making. For visualizing the
data, SSPF includes a viewer (see Figure 3), which
is configured from the plant models. The viewer has
many features, some of which are: navigation through
the plant allowing the user to examine the production
flow through any section of the plant, detailed and
aggregate views of the plant, alternate views, drill-
down capabilities, textual reports, etc.

Bottleneck Analysis and Other Problem Solv-
ing Activities A key concept that is central to pro-
duction flow is that of a bottleneck. A bottleneck
is that process that is limiting the overall production
flow. Identification of bottlenecks and other analyses
such as simulation, predictive techniques, and decision
support will be provided in a common framework using
the same models that are used for real-time monitor-
ing, data storage and retrieval.

3.2. Design Challenges and Issues

The design challenges and issues faced by SSPF are
common to most large-scale software systems. They
can be categorized in the following manner: (1) Design
and development, (2) Integration, (3) Maintenance,



bility feasible.

There are two interrelated processes in MIC: (1) the
process that involves the development of the model-
integrated system, and (2) the process that is per-
formed by the end-user of the system (in order to
maintain, upgrade, reconfigure) the system — in accor-
dance with the changes in its environment. Figure 1
shows the processes schematically. The first process
is performed entirely by the system’s developers (i.e.,
software engineers), the second, usually, by the end-
users.

To summarize, in MIC the system is created through
the development of the following: (1) a modeling
paradigm, (2) the model builder (editor) environment,
(3) the model interpreters and (4) the run-time sup-
port system. The product of this process is a set of
tools: the model builder, model interpreter and generic
run-time support system. Using these, first the devel-
opers, but eventually the end-users can build up the
application itself by going through the following steps:
(1) develop models, (2) interpret the models and gener-
ate the system (this step is automatic), and (3) execute
the system. The key aspect of the development pro-
cess 1s that domain-specific models are used in building
the application, and thus it can be re-generated by the
end-users.

It may seem that MIC necessitates a bigger effort than
straightforward application development. This is true
if there is no reuse and every project has to start
from scratch. In recent years we have developed a
toolset called the Multigraph Architecture(MGA)[14]
that provides a highly reusable set of generic tools to
support MIC. We claim that the tools provide a meta-
architecture, because instead of enforcing one partic-
ular architectural style for development, they can be
customized to create systems of widely different styles.
Figure 2 shows the components found in a typical
MGA application. The shadowed boxes indicate com-
ponents that are generic and are customized for a par-
ticular domain.

In MGA we use a generic Visual Programming En-
vironment (VPE)[8] for model building. Models are
stored in an object-database: also a customizable com-
ponent. The domain-specific customization of these
components determines how the visual editor behaves,
and how the database schema is organized. The model
interpreters are typically highly domain-specific, al-
though some of their components are general (e.g.,
low-level database access mechanism). For run-time
support purposes we have successfully used a macro-
dataflow based run-time kernel: the Multigraph Ker-
nel (MGK). MGK facilitates the dynamic creation of
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Figure 2: MGA Components

networks of computing objects, even across processors,
and the scheduling of those objects.

The flexibility with which MGA can be adopted to
various application domains has enabled us to use it
in widely different projects during the last 10 years,
e.g., [1, 2,7, 9, 10, 11]. In the following we describe
the SSPF system, which was developed using MIC.

3. A Model-Integrated System: SSPF
In this section, we describe the functionalities, require-
ments, design and development of the application of
MIC towards providing a poblem-solving environment
and decision support tools in the context of discrete
manufacturing operations at Saturn Corporation.

The Measurement and Computing Systems Labora-
tory at the Department of Electrical and Computer
Engineering of Vanderbilt University in cooperation
with the Saturn Corporation of General Motors has
introduced the MIC technology in a MES architec-
ture developed for Saturn’s site-wide discrete manufac-
turing operations. Saturn is a flexible manufacturing
plant of GM, producing over 300,000 small-size cars
per year. The Saturn Site Production Flow (SSPF)
system provides a problem solving environment and
decision making support by facilitating structured and
integrated production data collection, archival, visu-
alization and analysis using custom developed and
COTS software components. SSPF is intended to pro-



stallation (the cost of installing and maintaining an
integrated MES solution, using traditional software
technology, is estimated to run between 400,000 and
1 million dollars).

Every software practitioner knows the difficulties of
maintaining a large software system which is tightly
coupled to a physical environment that is frequently
undergoing configuration changes. In fact, it is prob-
able that such systems are rather the rule than the
exception. There are many causes for this problem,
but some are more prevalent than others. Consider an
example system that monitors and controls a large-
scale manufacturing operation. The system collects
data from thousands of sources (PLC-s, microswitches,
ete.), archives the data values, makes the data avail-
able to operators and managers (after processing), and
is also involved in making automatic decisions which
enforce some level of production control. It is a fact of
business that the plant changes and evolves, which will
necessitate changes and upgrades in the software sys-
tem. One has to change the database schema, recom-
pile applications, reconfigure data acquisition systems,
change user interfaces, etc., just to maintain existing
functionalities. These many-faceted activities involve
diverse software engineering issues, and the upkeep of
the system becomes a highly non-trivial activity. To
understand and maintain the relationship between the
plant configuration and the software configuration, ei-
ther software engineers must become plant engineers
(up to a certain degree, of course) or plant engineers
must become software engineers.

On a deeper level, one can recognize that one source of
the problems is the lack of end-user programmability.
If the plant engineer, as an end-user, would be capable
of describing changes in the plant - which in turn would
result in the required changes in the software system,
the problem would be more easily manageable.

Proposed new solutions introduce state-of-the-art
object- oriented software technology, ‘plug-and-play’
software architecture which mitigates but does not
solve the core problem: keeping the MES architecture
and components consistent with the changing manu-
facturing processes. The primary objective of our re-
search has been to provide an evolutionary MES archi-
tecture which supports the automatic reconfiguration
of all MES components with changes in the manufac-
turing processes.

In this paper we describe the Model-Integrated Com-
puting approach as a solution to this problem. First
we describe the approach on an abstract level, next we
present a set of tools that support the approach. The
major part of the paper describes the process the we
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Figure 1: Model-Integrated System Development Pro-
cess

followed to develop an actual application for a large-
scale manufacturing operation. We discuss our expe-
rience with the process and give an evaluation of the
work. Finally, we compare our approach to other de-
velopment approaches.

2. Model-Integrated Computing
Recognizing the need for software systems that evolve
with their environment, we advocate the extensive use
of models in the development process. The use of mod-
els in software development is not a new idea. Various
analysis and design techniques (especially the object-
oriented ones) very frequently build models of the sys-
tem before realization, and model its environment as
well. However, we propose to extend and specialize
the modeling process so that the models can be more
tightly integrated into the system development cycle
than in traditional techniques. The process support-
ing this activity is called Model-Integrated Computing
(MIC), and it results in a Model-Integrated System
(MIS).

In an MIC process the models describe the system’s
environment, represent the system’s architecture and
they are used in generating and configuring the system.
These models are indeed integrated with the system,
in the sense that they are active participants in the
development process, as opposed to being mere passive
documents.

When MIC is used in developing a system, models
are involved in all stages of the life-cycle. To sup-
port this, the initial step 1s the building of tools that
support model creation and editing, used by the end-
users when they want to customize the final applica-
tion. The model editing tools are typically graphical,
but more importantly, they support modeling in terms
of the actual application domain. This domain-specific
modeling is essential for making end-user programma-
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Abstract

Many large distributed applications are tightly inte-
grated with their physical environments and must be
adapted when their environment changes. Typically,
software development methodologies do not place a
large emphasis on modeling the system’s environment,
and hence environmental changes may lead to signif-
icant discrepancies in the software. In this paper we
argue that (1) the modeling of the environment should
be an integral part of the process, and (2) to sup-
port software evolution, wherever possible, the soft-
ware should be automatically generated. We present
a model-integrated development approach that is ca-
pable of supporting cost effective system evolution in
accordance with changes in the system’s environment.
The approach is supported by a “meta-architecture”
that provides a framework for building complex soft-
ware systems using COTS and custom developed soft-
ware components. This framework has been success-
fully used in various projects. One of these projects,
a site production flow visualization system for a large
manufacturing operation, will be analyzed in detail.
First, we show how the model-integrated process can
be generalized and used to build families of model-
integrated tools that support the development of spe-
cific systems. Next, we describe how the generic ar-
chitecture was customized for the particular domain.
Next, we present a detailed experience report and con-
clude with comparisions with other approaches.
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1. Introduction

Manufacturing Execution Systems (MES) are middle-
level information systems that bridge the gap between
factory-floor information systems, which focus on the
operation of production equipment and on the control
of processes, and front-office information systems ded-
icated to accounting, forecasting, and other resource
planning activities, or with design and engineering sys-
tems. MES applications track and manage all aspects
of a job on the shop floor, at any point in the produc-
tion cycle, in near real-time. For example, they iden-
tify bottlenecks and material shortages on the shop
floor, and they provide up-to-the-minute process per-
formance results along with comparisons to past per-
formance and to projected business results.

MES software is prototypical for computer-based sys-
tems applications: the software is tightly integrated
with a dynamic, continuously changing manufactur-
ing environment, it implements critical functions in
the manufacturing plant under (soft) real-time con-
straints, it is built from a heterogeneous set of COTS
and custom components installed on a large-scale dis-
tributed computing platform, and it is a front-line pro-
duction critical software subject to high reliability re-
quirements.

Today’s MES solutions are subject to complexities
that make them difficult to implement and integrate
and, often, even more difficult to modify and upgrade.
The introduction of Model-Integrated Computing in
MES has resulted in an evolvable, expandable, highly
reliable system which has been designed, implemented
and installed for less than the cost of a single MES in-



