
can be changed dynamicallybased on events appearing
in the system. Our run-time system allows this, and
we have used this technique in some signal processing
applications[13].

10. Conclusions

In this paper we presented a model-integrated so-
lution for monitoring and analyzing production 
ow
at a discrete manufacturing plant. MIC technol-
ogy provides a conceptually strong solution frame-
work for the SSPF application. Diverse services are
required for the application such as PM&C, process
simulation, statistical analysis packages, and other
data manipulation tools. Integration of these tools
into a common problem-solving environment is readily
achieved through the use of model integrated comput-
ing. Model-Integrated Computing shows the following
advantages in the software and system development
process: (1) It establishes a sofware engineering pro-
cess that promotes design for change. (2) The process
shifts the engineering focus from implementing point
solutions to capturing and representing the relation-
ship between problems and solutions. (3) It supports
the applications with model-integrated program syn-
thesis environments which o�er a good deal of end-user
programmability.

References

[1] Abbott, B., Bapty, T., Biegl, C., Karsai, G., Szti-
panovits, J.: "Model-Based Approach for Software
Synthesis," IEEE Software, pp. 42-53, May, 1993.

[2] Childers,C.A., Apon,A.W., Hooper,W.H., Gor-
don,K.D., Dowdy,L.W.: "The Multigraph Mod-
eling Tool", Proc. of the 7th International Con-
ference on Parallel and Distributed Systems, Las
Vegas, Nevada, October 5-8, 1994.

[3] O. R. Fonorow: "Modeling software tools with
Icon", Proc. of the ICSE-10, pp. 202{221, Apr.,
1988.

[4] T. Gallo and G. Serrano and F. Tisato: "Ob-
Net: An Object-oriented Approach for Supporting
Large, Long-lived, Highly Con�gurable Systems",
Proc. of the ICSE-11, pp. 138{144, May, 1989.

[5] M. Ganti and P. Goyal and S. Podar: "An Object-
oriented Software Application Architecture". Proc.
of the ICSE-12, pp. 212{200, March, 1990.

[6] N. Iscoe and G. B. Williams and G. Arango: Do-
main Modeling for Software Engineering, Proc. of
the ICSE-13, pp. 340-343, May, 1991.

[7] Karsai, G., Sztipanovits, J., Franke, H., Padalkar,
S., Decaria, F: Model-Embedded Problem Solving
Environment for Chemical Engineering, Proc. of
IEEE ICECCS'95, pp. 227-234, Florida, 1995.

[8] Karsai,G.: "A Con�gurable Visual Programming
Environment: A Tool for Domain-Speci�c Pro-
gramming", IEEE Computer, pp. 36-44., March
1995.

[9] Ledeczi, A., Bapty, T., Karsai, G., Sztipanovits,
J.: "Modeling Paradigm for Parallel Signal Pro-
cessing," The Australian Computer Journal, vol.
27, No.3, pp. 92-102, August, 1995.

[10] Misra, A., Sztipanovits, J., Underbrink, A.,
Carnes, R., Purves, B.: "Diagnosability of Dy-
namical Systems," Proc. of the Third International
Workshop on Principles of Diagnosis, pp. 239-244,
Rosario, WA 1992.

[11] Misra, A. , Sztipanovits, J., Carnes, J. R., \Ro-
bust Diagnostics: Structural Redundancy Ap-
proach," Proc. of Knowledge Based Arti�cial Intel-
ligence Systems in Aerospace and Industry confer-
ence at SPIE's Symposium on Intelligent Systems,
pp. 249-260, Orlando, FLa, April 5-6, 1994.

[12] S. B. Ornburn and R. J. LeBlanc: "Build-
ing, modifying, and using component generators",
Proc. of the ICSE-15, pp. 391{404, Apr. 1993.

[13] Sztipanovits, J., Wilkes, D., Karsai, G., Biegl, C.,
Lynd, L: "The Multigraph and Structural Adap-
tivity," IEEE Transactions on Signal Processing,
Vol. 41, No. 8., pp. 2695-2716, 1993.

[14] Sztipanovits,J., Karsai, G., Biegl,Cs., Bapty, T.,
Ledeczi,A., Misra, A.: \Multigraph: An Architec-
ture for Model-Integrated Computing", Proc. of
IEEE ICECCS'95, pp. 361-368, Florida, 1995.

[15] CIMPLICITY MMI and MES/SCADA Products:
User Manual, GE Fanuc Automation, February
1996.



store shift information
� Client GUI: This component presents the current
and historical data to users, provides navigation
through various sections of the plant, etc.

� Client Data Handler: This component is respon-
sible for interfacing to RTDS and HTDS and get-
ting and maintaining current and historical data.

� Shift Manager: This is a utility for updating
and maintaining the shift information in the
SSPFShift database.

7.2. Model Interpretation and SSPF Compo-

nent Con�guration

The Application Generator (AG) \transforms" the
SSPF models into the run-time system. This is accom-
plished in the following manner:

1. Con�gurable run-time libraries and programs
were developed, which get their con�guration in-
formation from con�guration �les produced by
the AG.

2. Schemas for storing production data were de�ned.
At this time, this is a manual process. In the
future, these schemas will also be generated from
the models.

3. AG traverses the model database, extracting the
relevant information and produces a number of
con�guration �les and SQL script �les.

4. The con�guration �les are read by the SSPF com-
ponents to build internal data structures, thus re-

ecting exactly what is in the models.

5. The SQL scripts are executed by the SQL/Server.
The SQL scripts �ll in the rows for the tables
with essential information about the processes,
bu�ers, etc. in the plant, thus keeping the site-
wide database consistent.

If the models are changed to re
ect changes in the
plant, only the last three steps need to performed. If
a change in the functionality of SSPF is desired, the
�rst two (and possibly the last three steps also) need
to be performed.

8. Experiences

The SSPF project was started in September of 1995,
with an Engineering Study and preliminary design. By
the end of the year, a prototype was developed. About
one-third of the plant was modeled. This was the sec-
tion where a considerable amount of data was avail-
able.

In 1996, the prototype was moved towards a pro-
duction release. This involved a Critical Design Re-

view and considerable changes in all the SSPF compo-
nents. Some of the changes in these were necessitated
by the integration process, but most were just due to
added functionalities. A large part of the e�ort since
April 1996 was spent on building the complete mod-
els of Saturn. SSPF was put into production release
in the �rst week of August 1996. To date, about 160
processes and about 600 bu�ers have been modeled.

We learned many lessons during our e�orts to in-
tegrate SSPF with Saturn plant. A large part of the
e�ort was required for modeling of the plant. This is
not surprising since the application itself is generated
from the models. Using the MIC approach helped us
considerably in verifying and testing the application.
Whenever the models were added to or changed in
any way, the application was regenerated and tested.
The turn-around time was just the time required to
change the models and to regenerate the con�gura-
tion �les. It showed clearly how 
exible and main-
tainable the application becomes through the use of
models. Many times during the integration phase, re-
quirements and/or enhancements in the functionality
of SSPF were added. We had a very quick turn-around
time on these since all it required was a change in one
con�gurable component followed by re-generation of
the application, and the change would appear for all
the processes/bu�ers of the plant. In addition, since
the data acquisition systems in di�erent sections of
the plant were implemented by di�erent people, we
had to deal with the \idiosyncracies" of these imple-
mentations. Being able to capture this information in
models also helped considerably.

9. Other Approaches

The bene�ts of software modeling and generating
software from models (to facilitate rapid development)
has been known for some time[3]. The importance of
domain modeling in the software development process
has been recently recognized [6, 5].

Many of the concepts developed in [6] are present in
our toolset, MGA. Just like in [5], the domain-speci�c
models play an essential role. What makes our ap-
proach di�erent, however, is the explicit model inter-
preter component, that decouples the execution of the
system from the models. In a sense, our model in-
terpreters are similar to component generators, as de-
scribed in [12]: they instantiate and con�gure generic
components and templates. The di�erences are: (1)
this process may be executed at run-time, and (2) in
our system we explicitly allow re-interpretation. In the
latter case, there can be a feedback from the executing
system to the model interpreter, and thus components



...

models

Process compound {

StructuralAspect "Structure" {

icon rect { left : InConveyors;

right : OutConveyors; };

attrs { attr PartNames; attr LineSpeed;

attr JPHLow; attr JPHLowLow; }

conns { JobFlow { 1 solid line arrow } :

{ InConveyors -> Buffers }

{ InConveyors -> SubProcs InConveyors }

{ Buffers -> SubProcs InConveyors }

{ SubProcs OutConveyors -> Buffers }; }

parts { SubProcs : Process hierarchy;

Buffers : Buffer;

InConveyors : In_Conveyor link;

OutConveyors : Out_Conveyor link;}

}

...

Figure 4: Fragment of the SSPF paradigm de�nition

6. Model Editor Environment

The model editor was generated by customizing the
MGA VPE for SSPF. VPE is customized through a
paradigm speci�cation �le, that contains a declarative
description of the modeling paradigm. This �le is used
to generate the model database schema and the spe-
ci�c database interface code for the model builder [8].
A fragment of the SSPF editor con�guration �le is re-
produced below (Fig 4): it shows the de�nition of the
stuctural aspect of the processing models.

7. SSPF Architecture

There are three main parts to the SSPF sys-
tem as shown in Figure 5: (1) Model-Integrated
Programs Synthesis (MIPS) Environment which con-
sists of the Visual Programming Environment (VPE),
Model Database and the Application Generator (AG);
(2) SSPF Server which consists of the Real-Time
Data Server (RTDS), Historical Data Server (HTDS),
Cimplicity Interface, a Cimplicity project (SSPFPB),
ODBC Interface and one or more MS/SQL Server and
MS/SQL Database; (3) SSPF Client which consists of
the Client Data Handler and the Client GUI.

The SSPF Server and SSPF Client together are
called the SSPF Application. The SSPF Server com-
ponents run on a DEC Alpha/Windows NT Server.
The SSPF Clients run on a number of Intel worksta-
tions distributed throughout the Saturn Site. The var-
ious components and their functionalities are:

Databases

Pentium/Windows NTi86/Windows 95

Client GUI

VPE

Model

Client Data

Database
(OODB)

Ap
pl

ic
at

io
n 

G
en

er
at

or

DEC Alpha/Windows NT

MS/SQL
Server

MS/SQL

Point Bridge

FDDI

Handler

ODBC Interface

Historical
Data Server

Real-time
Data Server

Cimplicity
Interface

Cimplicity
Project

(SSPFPB)

(MFS8)

Manager
Shift

Figure 5: SSPF Architecture

� Visual Programming Environment (VPE): The
VPE is used to build graphical models of the Sat-
urn plant.

� Model Database: This is an object-oriented
database which is used to store the models.

� Application Generator: This is the model inter-
preter which con�gures the various run-time com-
ponents of SSPF. The dotted lines from Applica-
tion Generator to the various components in Fig-
ure 5 indicate this fact.

� Real-Time Data Server (RTDS): The RTDS re-
ceives real-time point data, processes the data,
multicasts the data to clients, logs the raw com-
puted real-time data and shift and day sum-
maries, reads shift information for the processes
from the shift tables, provides clients with startup
and synchronization information, etc.

� Historical Data Server (HTDS): HTDS services
client requests for historical data.

� Cimplicity Interface: This component gets point
data from the SSPFPB point bridge project and
forwards the data to RTDS.

� Cimplicity project SSPFPB: This is a point bridge
Cimplicity project that gets the plant data from
various PLCs at Saturn Site.

� ODBC Interface: The ODBC interface is used by
RTDS to read shift information and to store de-
tailed and summary production data. HTDS uses
the ODBC interface to retrieve historical produc-
tion data at client request.

� MS/SQL Server and Databases: There are two
databases used by SSPF: (1) SSPFData, which is
used to store current and historical data for one
week period, and (2) SSPFShift, which is used to



tributed throughtout the plant, the data provided
by PLCs is frequently incorrect. Many times the
connection to PLCs also is lost. SSPF is required
to be able to handle such situations.

4.2. Integration

The issues faced during integration of SSPF with
Saturn systems are:

� Data collection : The data collection methods
used in di�erent sections of the plant were im-
plemented by di�erent people. As a result, there
was considerable heterogeneity in the data points
with respect to the engineering units used, reset
conditions, etc. This presented signi�cant chal-
lenges for SSPF since its purpose is to provide a
homogeneous view of the plant to the user.

� Zero disruption : The SSPF integration process
was not allowed to disrupt the plant operation
and other software packages in any way.

� Pre-existing hardware and software platforms :
SSPF was had to be designed to run on the hadr-
ware/operating systems already in use at Saturn
and to interface with existing software packages
(Cimplicity, MS SQL/Server, etc.).

4.3. Maintenance

The Saturn plant undergoes yearly model changes
in the car. This results in changes in the plant it-
self (the extent and degree of the change varies). In
addition, some sections of the plant may change even
more frequently due to change in the process, addi-
tions of more machines, etc. SSPF needs to be able to
incorporate these changes with minimal e�ort and no
disruption of the plant or of SSPF.

The change in the plant need not always be in the
form of a change of process(es), change of machines,
etc. Data collection itself usually changes (more data
points may be collected, some may be discarded, etc).
This results in changes in the available data, their en-
gineering units, etc. Once again, SSPF needs to handle
these changes as seamlessly as possible.

4.4. Evolution

In its initial version, SSPF is a data collection, log-
ging, retrieval and display service. In the future, how-
ever, SSPF will have many more components added
to it that will provide simulation, bottleneck analysis,
diagnosis, decision making support, etc. These compo-
nents will face the same issues outlined above. Thus,
SSPF had to be designed for easy extensibility.

5. SSPF Modeling Paradigm

The SSPF application o�ers a structured view of
the data representing the state of the manufacturing
processes. This structured view and the related visual-
ization services create a tight conceptual relationship
between the plant and the SSPF software. In this sec-
tion, we summarize the key modeling concepts that
are used for de�ning the SSPF application and that
are also provided for the users of the system.

5.1. Background

The manufacturing plant is viewed as an aggregate
of processes and bu�ers. Processes represent the op-
erations required for making a car, such as casting,
machining, welding, assembly, etc. Associated with
each process are certain measurements that relate to
the productivity of the process. Examples of such
measurements are : cycle-time, production count (how
many parts were machined, assembled, etc.), Work In
Process (WIP) (how many parts are currently being
worked on), production downtime (equipment break-
down, etc.).

Bu�ers (or banks) lie between processes and hold
parts that are produced by an upstream process before
they are consumed by a downstream process. The in-
formation about banks that is relevant to production
is: bank count (number of parts/sub-assemblies in the
bu�er) and the minimum and maximum capacities of
the bu�er.

The inter-connectivity of processes and bu�ers cap-
tures the sequence of operations required to produce
a car. The concept of production 
ow is concerned
with the 
ow of material (raw materials, parts, sub-
assemblies, etc.) through the processes and bu�ers,
and encompasses all the production related entities of
processes and bu�ers (e.g. production count, WIP,
bank count, starving, blocking).

To model Saturn Site in terms of its production pro-
cesses and business organizations, the SSPF modeling
paradigm was developed. The modeling paradigm uti-
lizes four kinds of models: (1) Production Models, (2)
Organization Models, (3) Activity Models and (4) Re-
source Models.

Production models are used to represent the pro-
duction 
ow at Saturn Site. The Organization models
are used to represent the business units at Saturn and
to establish relationships between business units and
production units. Activity models are used to con�g-
ure the SSPF activity(ies) while resource models de-
scribe the allocation of SSPF activity(ies) to worksta-
tions.



Figure 3: SSPF GUI

thereby providing the framework for easy access and
maintenance of the production database.

3.3. Graphical User Interface

The primary purpose of SSPF is to provide the
users with current (real-time) and historical produc-
tion data, which can be used for various purposes
{ monitoring, analaysis, etc. For presenting the
data SSPF includes a Graphical User Interface (GUI),
which is con�gured from the plant models. The GUI
has many features (an example is shown in Figure 3),
some of which are:

� navigation through the plant allowing the user to
examine the production 
ow through any section
of the plant.

� detailed and aggregate views of the plant.
� alternate views.
� drill-down capabilities.
� textual reports

3.4. Bottleneck Analysis

A key concept that is central to production 
ow is
that of a bottleneck. A bottleneck is that process that
is limiting the overall production 
ow. The overall
concept of production 
ow is built on focusing atten-
tion on bottlenecks and potential bottlenecks. Bottle-
necks may at �rst appear to be obvious, which is true
if the process is simple enough and can be completely
observed from a single point. In the case of a large dis-
crete manufacturing plant such as Saturn, this is not
possible. SSPF is intended to provide a total virtual
view of the production 
ow across the plant and thus,
aid in clear identi�cation of bottlenecks.

3.5. Problem Solving Activities

Simulation, predictive techniques, and decision sup-
port will be provided in a common framework using
the same models that are used for real-time monitor-
ing, data storage and retrieval. Using traditional tech-
niques for analysis is facilitated through application of
MIC. Tools will be readily integrated into the problem
space, seamlessly mixed as appropriate.

4. Design Challenges and Issues

The design issues and challenges faced by SSPF are
common to most large-scale software systems. They
can be categorized in the followingmanner: (1) Design
and development, (2) Integration, (3) Maintenance,
and (4) Evolution.

4.1. Design and Development

The issues faced in design and development of SSPF
are:

� Tight integration with the plant : Since SSPF is
\embedded" into the Saturn plant, the represen-
tation of the plant as used by the SSPF soft-
ware component needs to match exactly the ac-
tual physical processes, bu�ers, machines, etc.

� Real-time performance : There are a large num-
ber of data points that are measured from the
plant and provided to SSPF. The points are asyn-
chronous and necessitate an event-driven archi-
tecture for SSPF. Every measurement that ar-
rives needs to be processed, logged and supplied
to clients for display.

� Distributed system : SSPF has a distributed
client/server architecture. It supports a multi-
tude of users (about 300) with low load on net-

work, server, or clients. The number of users is
high because any person in the workforce at Sat-
urn would be expected to be an active user.

� Production database : The raw plant data and
processed data need to be logged to and retrieved
from a relational database, in a structured and

exible manner.

� Heterogeneous platforms : The components of
SSPF run on di�erent hardware and software plat-
forms.

� Sophisticated GUI : The SSPF GUI needs to show
real-time and historical data and results of anal-
yses, etc., using the same interface, provide easy
navigational facilities, etc.

� Robustness : Robustness against corrupted data is
a very important criteria. Since the PLCs are dis-



Figure 2: MGA Components

to understand an entire class of problems related to
the domain. As opposed to developing a speci�c ap-
plication, we try to develop �rst the domain-speci�c
tools to build that application, then use them (or have
them used by the end-users) to generate the applica-
tion. Many of these ideas can already be found in other
large-scale packages [5]. What is di�erent here is that,
in addition to making the models themselves available
for the end-users, we want to make explicit use of the
models in generating applications.

It seems that MIC necessitates a bigger e�ort than
straightforward application development. This is true
if there is no reuse and every project has to start from
scratch. In recent years we have developed a toolset
called theMultigraph Architecture(MGA)[14] that pro-
vides a highly reusable set of generic tools to do MIC.
We claim that the tools provide a meta-architecture
because instead of enforcing one particular architec-
tural style for development, they can be customized
to create systems of widely di�erent styles. Figure 2
shows the components found in a typical MGA ap-
plication. The shadowed boxes indicate components
that are generic and are customized for a particular
domain (for details about MIC and its components,
refer to [8, 14]).

The 
exibility with which MGA can be adopted to
various application domains has enabled us to use it in
widely di�erent applications (e.g., [1, 2, 7, 9, 10, 11]).
In the following we describe the SSPF systems, which
was developed using MIC. We describe the functional-
ities of SSPF, the design challenges, the MIC solution
and are experiences with the system.

3. SSPF Functionalities

SSPF is designed to be an application that evolves
easily. The functionalities described below represent
the capabilities of the system that have already been
identi�ed and have been implemented or are currently
under development. In the future, the requirements
and functionalities of the system are expected to grow
considerably.

3.1. Data Acquisition

SSPF functions involve real-time collection, presen-
tation, storage, retrieval, and analysis of data. There is
a data rich environment at Saturn based on traditional
process monitoring and control (PM&C). The data
being measured consists of production count, down-
times, bank counts, and other production related in-
formation. The data points are provided by the Pro-
grammable Logic Controllers (PLCs) of machines and
are collected and presented to users on status screens
that are con�gured using a data acquisition and dis-
play package called Cimplicity[15]. However, in the
absence of any plant models to guide the data collec-
tion, logging and presentation, the enormous volume
of data presents considerable di�culties in using the
traditional PM&C for monitoring site-wide status and
for performing simulations and other decision making
analyses.

SSPF uses Cimplicity's data acquisition as its inter-
face to the PLCs. This interface is con�gured from the
models, thereby a�ording considerable ease in mainte-
nance and upgrade of the plant data interface as the
plant itself changes.

3.2. Data Storage and Retrieval

Time is an essential dimension in understanding the
dynamics of production 
ow. There are some dynam-
ics that are within the bounds of a given shift. Others
involve multiple shifts, weeks, or months of history.
To understand the dynamics of production 
ow, stor-
age of detailed and summarized data in a structured
format is required. The current databases at Saturn
are di�cult to use due to the lack of structure or a
framework for the data.

SSPF stores the raw data (received from the plant
through Cimplicity) and processed information in a
structured manner using the a relational database (Mi-
crosoft SQL/Server). SSPF also includes tools to re-
trieve stored data for use in analysis and decision sup-
port tools. The database schemas and the interfaces
to the database are con�gured from the plant models,



of material through the production facility. SSPF is
intended to provide an integrated problem-solving en-
vironment which presents consistent and pertinent in-
formation, and analysis and decision support services
that are needed for informed decision making by the
team members and leaders within Saturn.

First we give a description of the underlying MIC
approach on an abstract level. Next we present a de-
scription of the SSPF system. We present the require-
ments for SSPF, the models, and the generated sys-
tem. We discuss our experience with the process and
give an objective evaluation of the work. Finally, we
relate to other development approaches.

2. Model-Integrated Computing

Recognizing the need for software systems that
evolve and are maintained in accordance with their
environment, we propose the extensive use of models
in the development process. The use of models in soft-
ware development is not a new idea. Various analysis
and design techniques (especially the object-oriented
ones) very frequently build models of the system before
realization, and model its environment as well. How-
ever, we propose to extend and specialize the modeling
process so the models can be more tightly integrated
into the system development cycle than in traditional
techniques. The process supporting this activity can
be called a Model-Integrated Computing (MIC), and
it results in a model-integrated system (MIS).

In an MIC process the models describe the system's
environment, represent the system's architecture and
they are used in generating and con�guring the system.
These models are indeed integrated with the system,
in the sense that they are active participants in the
development process, as opposed to being mere passive
documents.

When MIC is used in developing a system, models
are involved in all stages of the life-cycle. To support
this, the initial step is the building of tools that sup-
port model creation and editing. The model editing
tools are typically graphical, but more importantly,
they support modeling in terms of the actual appli-
cation domain. This domain-speci�c modeling is es-
sential for making end-user programmability feasible.
The result of the model editing is a set of domain-
speci�c models, that are typically kept in a database.

In order to use the models e�ectively, one needs
(at least) two more components beyond model editors:
(1) tools for transforming abstract models into an exe-
cutable system, and (2) run-time support libraries for
the executable system. The transformation is done
by a component called the model interpreter which

Tools and components:

System Development Process:

Model Builder

Model Interpreter

Run-time Support

Creates

Creates

Creates

Define Modeling Paradigm

Develop Model Builder(s)

Develop Model Interpreter

Develop R-T Support

Executable

System

Models

Builds

Use

Use

Execute System

Build System 

(Automatically)

Edit Models

End-User’s Process:

Figure 1: Model-Integrated System Development Pro-
cess

maps the domain-speci�c models into run-time com-
ponents. Model interpreters can be implemented us-
ing various strategies, depending on what the run-time
system looks like. For instance, if the run-time system
includes a relational database, model interpreters can
generate the SQL de�nitions for the schema; if it is a
multi-tasking kernel, model interpreters generate the
code skeletons performing synchronization.

On the process level, in MIC we have two interre-
lated processes: (1) the process that involves the de-
velopment of the model-integrated system, and (2) the
process that is performed by the end-user of the sys-
tem (in order to maintain, upgrade, recon�gure) the
application in accordance with the changes in its envi-
ronment. Figure 1 shows the processes schematically.
The �rst process is performed entirely by the system's
developers (i.e., software engineers), the second one is
done initially by them, but later by the end-users.

To summarize, in MIC the system is created
through the development of the following: (1) a mod-
eling paradigm, (2) the model builder (editor) envi-
ronment, (3) the model interpreters and (4) the run-
time support system. The product of this process is a
set of tools: the model builder, model interpreter and
generic run-time support system. Using these, �rst
the developers, but eventually the end-users can build
up the application itself by going through the follow-
ing steps: (1) develop models, (2) interpret the models
and generate the system (this step is automatic), and
(3) execute the system. The key aspect of the de-
velopment process is that domain-speci�c models are
used in building the application, and thus it can be
re-generated by the end-users.

The MIC approach can be contrasted with current
development practices as follows. As opposed to de-
veloping a highly specialized product, in MIC we want



A Model-Integrated Information System for Increasing

Throughput in Discrete Manufacturing

Amit Misra, Gabor Karsai, Janos Sztipanovits, Akos Ledeczi, Michael Moore

Department of Electrical and Computer Engineering

Vanderbilt University

P.O. Box 1824 Station B

Nashville, TN 37235 USA

+1-615-322-2771

fmisra,gabor,sztipaj,akos,msmg@vuse.vanderbilt.edu

Earl Long

Saturn Corp.

Springhill, TN

+1-615-486-6077

104521.1217@compuserve.com

Abstract
The use of Information Systems (IS) has been increas-
ingly playing a critical role towards enhancing pro-
ductivity and throughput in manufacturing enterprises.
The primary drivers are e�ciency and quality increase
through automation, facilitation of better business pro-
cesses and improved decision making. Many problems
and issues relating to the design, development, inte-
gration, evolution and maintenance of ISs in large-
scale and complex plants have become apparent which
are not adequately addressed by the traditional Process
Monitoring & Control (PM&C) systems. Model Inte-
grated Computing (MIC) [14] o�ers a feasible approach
towards providing cost-e�ective development, integra-
tion, evolution and maintenance of ISs through the ex-
tensive use of plant models. This paper describes an
application of MIC in providing a problem-solving en-
vironment and decision support tool in the context of
discrete manufacturing operations at Saturn. The Sat-
urn Site Production Flow (SSPF) system is a client-
server application, designed to provide consistent and
pertinent information, analysis and decision support
services that are needed for informed decision making.

1. Introduction

To remain competitive, manufacturing enterprises
need to increase throughput while keeping the costs
down at the same time. This requires an engineering

process involving day-to-day and long term examina-
tion and analysis of the functioning of the plant and
operations, identi�cation of bottlenecks in the produc-
tion, analysis of capacity, etc., and identi�cation of op-
portunities for improvements. In large-scale manufac-
turing plants, Information Systems (IS) play a critical
role in this engineering process. However, traditional
IS, including Process Monitoring & Control (PM&C)
systems have not been able to address the needs of such
an engineering process due to many problems and is-
sues relating to software design, development, integra-
tion, evolution and maintenance. The problems arise
out of the scale and complexity of plants, the diversity
of IS applications employed, and the tight interdepen-
dence between the two. Model Integrated Computing
(MIC) [14] o�ers a feasible approach towards provid-
ing cost-e�ective development, integration, evolution
and maintenance of IS through the use of design-time
models of the system to provide a common framework
for di�erent applications.

In this paper, we describe the application of MIC
towards providing a problem-solving environment and
decision support tools in the context of discrete manu-
facturing operations at Saturn Corp. The Saturn Site
Production Flow (SSPF) system is a client/server ap-
plication designed to meet an initiative within Saturn
Manufacturing to increase the number of cars built
utilizing existing facilities and processes. The primary
focus of tools and services provided by SSPF is the 
ow

1


