
we have used this technique in some signal processing
applications[13].

6. Conclusions
Model-Integrated Computing shows the following ad-
vantages in the software and system development pro-
cess: (1) It establishes a sofware engineering process
that promotes design for change. (2) The process
shifts the engineering focus from implementing point
solutions to capturing and representing the relation-
ship between problems and solutions. (3) It supports
the applications with model-integrated program syn-
thesis environments which o�er a good deal of end-
user programmability. We have found that the critical
issue in system acceptance has been to facilitate do-
main speci�c modeling. This need has led us to follow
an architecture-based tool development strategy that
helps separate the generic and domain/application
speci�c system components. The Multigraph Archi-
tecture has proven to be e�cient in creating domain
speci�c model-integrated program synthesis environ-
ments for several major applications.

7. Acknowledgements
The SSPF project has been supported by Saturn Cor-
poration. The general MGA research has been sup-
ported, in part, by USAF, NASA, Boeing, DuPont,
Sverdrup, and Vanderbilt University. Their support is
greatfully acknowledged.

REFERENCES

[1] Abbott, B., Bapty, T., Biegl, C., Karsai, G., Szti-
panovits, J.: "Model-Based Approach for Software
Synthesis," IEEE Software, pp. 42-53, May, 1993.

[2] Childers,C.A., Apon,A.W., Hooper,W.H., Gor-
don,K.D., Dowdy,L.W.: "The Multigraph Mod-
eling Tool", Proc. of the 7th International Con-
ference on Parallel and Distributed Systems, Las
Vegas, Nevada, October 5-8, 1994.

[3] O. R. Fonorow: "Modeling software tools with
Icon", Proc. of the ICSE-10, pp. 202{221, Apr.,
1988.

[4] T. Gallo and G. Serrano and F. Tisato: "Ob-
Net: An Object-oriented Approach for Supporting
Large, Long-lived, Highly Con�gurable Systems",
Proc. of the ICSE-11, pp. 138{144, May, 1989.

[5] M. Ganti and P. Goyal and S. Podar: "An Object-
oriented Software Application Architecture". Proc.
of the ICSE-12, pp. 212{200, March, 1990.

[6] N. Iscoe and G. B. Williams and G. Arango: Do-
main Modeling for Software Engineering, Proc. of
the ICSE-13, pp. 340-343, May, 1991.

[7] Karsai, G., Sztipanovits, J., Franke, H., Padalkar,
S., Decaria, F: Model-Embedded Problem Solving
Environment for Chemical Engineering, Proc. of
IEEE ICECCS'95, pp. 227-234, Florida, 1995.

[8] Karsai,G.: "A Con�gurable Visual Programming
Environment: A Tool for Domain-Speci�c Pro-
gramming", IEEE Computer, pp. 36-44., March
1995.

[9] Ledeczi, A., Bapty, T., Karsai, G., Sztipanovits,
J.: "Modeling Paradigm for Parallel Signal Pro-
cessing," The Australian Computer Journal, vol.
27, No.3, pp. 92-102, August, 1995.

[10] Misra, A., Sztipanovits, J., Underbrink, A.,
Carnes, R., Purves, B.: "Diagnosability of Dy-
namical Systems," Proc. of the Third International
Workshop on Principles of Diagnosis, pp. 239-244,
Rosario, WA 1992.

[11] Misra, A. , Sztipanovits, J., Carnes, J. R., \Ro-
bust Diagnostics: Structural Redundancy Ap-
proach," Proc. of Knowledge Based Arti�cial Intel-
ligence Systems in Aerospace and Industry confer-
ence at SPIE's Symposium on Intelligent Systems,
pp. 249-260, Orlando, FLa, April 5-6, 1994.

[12] S. B. Ornburn and R. J. LeBlanc: "Build-
ing, modifying, and using component generators",
Proc. of the ICSE-15, pp. 391{404, Apr. 1993.

[13] Sztipanovits, J., Wilkes, D., Karsai, G., Biegl, C.,
Lynd, L: "The Multigraph and Structural Adap-
tivity," IEEE Transactions on Signal Processing,
Vol. 41, No. 8., pp. 2695-2716, 1993.

[14] Sztipanovits,J., Karsai, G., Biegl,Cs., Bapty, T.,
Ledeczi,A., Misra, A.: \Multigraph: An Architec-
ture for Model-Integrated Computing", Proc. of
IEEE ICECCS'95, pp. 361-368, Florida, 1995.

[15] CIMPLICITY MMI and MES/SCADA Products:
User Manual, GE Fanuc Automation, February
1996.



a considerable amount of data was available. We also
were able to get a time-stamped production data dump
from one actual shift which we used to test, verify and
successfully demonstrate the prototype. There were
two people working on this phase of the project.

In 1996, the prototype was moved towards a produc-
tion release. This involved a Critical Design Review
and considerable changes in all the SSPF components.
Some of the changes in these were necessitated by the
integration process, but most were just due to added
functionalities. A large part of the e�ort since April
1996 was spent on building the complete models of
Saturn. For this another person was required. The
model-based approach used for this project facilitated
the knowlegde acqisition well enough such that it was
decided by Saturn that we would build plant models.
The modeling phase involved consulting with Saturn
personnel to �nd out the processes, data points being
measured, etc., and then putting this information into
the models.

SSPF was put into production release in the �rst week
of August 1996. In this release, 108 process and about
600 bu�ers have been modeled.

We learned many lessons during our e�orts to integrate
SSPF with Saturn plant:

� A large part of the e�ort was required for model-
ing of the plant. This is not surprising since the
application itself is generated from the models.

� Using the MIC approach helped us considerably
in verifying and testing the application. Be-
fore going into production release, SSPF Beta re-
lease was on-line during the model building phase.
Whenever the models were added to or changed
in any way, the application was regenerated and

tested. This allowed us to verify the application
and the models. The turn-around time was just
the time required to change the models and to re-
generate the con�guration �les. It showed clearly
how exible and maintainable the application be-
comes through the use of models.

� Due to iterations on functional speci�cations for
SSPF, many times during the integration phase,
requirements and/or enhancements in the func-
tionality of SSPF were added. We had a very
quick turn-around time on these since all it re-
quired was a change in one con�gurable compo-
nent followed by re-generation of the application,
and the change would appear for all the pro-
cesses/bu�ers of the plant. Without the use of
MIC, trying to keep an application upgrade con-

sistent for 108 processes (and about 600 bu�ers)
would be a very di�cult and costly task.

� Since the data acquisition systems in di�erent sec-
tions of the plant were implemented by di�erent
people, we had to deal with the \idiosyncracies"
of these implementations. Being able to capture
this information in models also helped consider-
ably.

One of the issues raised during the integration process
related to the performance and robustness of the server
components. The tremendous volume of data owing
through SSPF presented us with implementation chal-
lenges, particularly for SSPF Server components. In
the future, the volume of data is expected to grow and
will necessitate further changes, e.g., multiple servers
for RTDS, databases, etc. Using MIC approach will
aid considerably in experimenting and �ne tuning dif-
ferent architectures.

Another issue raised was that of the adequacy of the
modeling paradigm. Since the application is generated
from the models, its functionality is strongly a�ected
by the models. The �rst modeling paradigm was ad-
equate for the original functional speci�cations. How-
ever, due to the revisions and added functionalities,
it was realized that the modeling paradigm needed to
be redesigned to be able to model the plant in more
detail and capture more physical and behavioral char-
acteristics of processes, etc., and to include many other
features.

5. Other Approaches
The bene�ts of software modeling and generating soft-
ware frommodels (to facilitate rapid development) has
been known for some time[3]. The importance of do-
main modeling in the software development process
has been recently recognized[6][5].

Many of the concepts developed in [6] are present in
our toolset, MGA. Just like in [5], the domain-speci�c
models play an essential role. What makes our ap-
proach di�erent, however, is the explicit model inter-
preter component, that decouples the execution of the
system from the models. In a sense, our model in-
terpreters are similar to component generators, as de-
scribed in [12]: they instantiate and con�gure generic
components and templates. The di�erences are: (1)
this process may be executed at run-time, and (2) in
our system we explicitly allow re-interpretation. In the
latter case, there can be a feedback from the executing
system to the model interpreter, and thus components
can be changed dynamicallybased on events appearing
in the system. Our run-time system allows this, and



� ODBC Interface: The ODBC interface is used by
RTDS to read shift information and to store de-
tailed and summary production data. HTDS uses
the ODBC interface to retrieve historical produc-
tion data at client request.

� MS/SQL Server and Databases: There are two
databases used by SSPF: (1) SSPFData, which is
used to store current and historical data for one
week period, and (2) SSPFShift, which is used to
store shift information

� Client GUI: This component presents the current
and historical data to users, provides navigation
through various sections of the plant, etc.

� Client Data Handler: This component is respon-
sible for interfacing to RTDS and HTDS and get-
ting and maintaining current and historical data.

� Shift Manager: This is a utility for updating
and maintaining the shift information in the
SSPFShift database.

Interfaces and Communication

For communication between the various components,
either APIs were used or communication protocols
(transport and presentation layers) were developed.
The interfaces and communication mechanisms used
by various components of SSPF are:

� Cimplicity project SSPFPB receives point data
from area nodes at Saturn Site.

� Cimplicity Interface receives the points from
SSPFPB using the Cimplicity API.

� RTDS receives point data from Cimplicity Inter-
face over a TCP/IP connection using a stream
socket.

� RTDS multicasts data and information packets to
SSPF Clients using datagrams. These packets are
used by the clients to update their own copies of
production data. This manner of transmission of
production data between the RTDS and client was
used to allow any number of clients to be running
at any given time and to keep RTDS independent
from the clients. Due to this design, synchroniza-
tion is needed between clients and RTDS, which
is done using stream sockets as described below.

� RTDS opens a stream socket and listens for in-
coming client requests (for startup information,
synchronization, manual input, etc.), services the
request and closes the connection. This allows
RTDS to service any number of clients (at di�er-
ent times).

� HTDS opens a stream socket and listens for in-
coming client requests for historical data. It sends
back the requested data on the same socket.

� RTDS and HTDS make calls to the functions
in the ODBC Interface (no communication in-
volved).

� The ODBC Interface uses the ODBC API to in-
terface to the SQL Server.

3.6. Model Interpretation and SSPF Com-

ponent Con�guration

The Application Generator (AG) \transforms" the
SSPF models into the run-time system. This was ac-
complished in the following manner:

1. Con�gurable run-time libraries and programs
were developed, which get their con�guration in-
formation from con�guration �les produced by
the AG.

2. Schemas for storing production data were de�ned.
At this time, this is a manual process. In the
future, these schemas will also be generated from
the models.

3. AG traverses the model database, extracting the
relevant information and produces a number of
con�guration �les and SQL script �les.

4. The con�guration �les are read by the SSPF com-
ponents to build internal data structures, thus re-
ecting exactly what is in the models.

5. The SQL scripts are executed by the SQL/Server.
The SQL scripts �ll in the rows for the tables
with essential information about the processes,
bu�ers, etc. in the plant. Filling in the tables
from information in the models guarantees that
RTDS, HTDS and ODBC Interface (which are
themselves con�gured from the models) will be
consistent with each other and will log/retreive
the data to/from the proper places. In addition,
model-con�gured database browsing tools can be
developed, allowing easy and consistent access to
production data on a site-wide scale.

If the models are changed to reect changes in the
plant, only the last three steps need to performed. If
a change in the functionality of SSPF is desired, the
�rst two (and possibly the last three steps also) need
to be performed.

4. Experiences
The SSPF project was started in September of 1995,
with an Engineering Study and preliminary design.
By the end of the year, a prototype was devel-
oped. The prototype included the modeling paradigm,
AG, RTDS, HTDS, Client, ODBC Interface, database
schemas and Cimplicity Interface. About one-third of
the plant was modeled. This was the section where



Figure 4: Production Model for Vehicle Initial Build

Databases

Pentium/Windows NTi86/Windows 95

Client GUI

VPE

Model

Client Data

Database
(OODB)

Ap
pl

ic
at

io
n 

G
en

er
at

or

DEC Alpha/Windows NT

MS/SQL
Server

MS/SQL

Point Bridge

FDDI

Handler

ODBC Interface

Historical
Data Server

Real-time
Data Server

Cimplicity
Interface

Cimplicity
Project

(SSPFPB)

(MFS8)

Manager
Shift

Figure 6: SSPF Architecture

Data Server (RTDS), Historical Data Server (HTDS),
Cimplicity Interface, a Cimplicity project (SSPFPB),
ODBC Interface and one or more MS/SQL Server and
MS/SQL Database; (3) SSPF Client which consists of
the Client Data Handler and the Client GUI.

The SSPF Server and SSPF Client together are called
the SSPF Application. The SSPF Server components
run on a DEC Alpha/Windows NT Server. The SSPF

Clients run on a number of Intel workstations dis-
tributed throughout the Saturn Site. The various com-
ponents and their functionalities are:

� Visual Programming Environment (VPE): The
VPE is used to build graphical models of the Sat-
urn plant.

� Model Database: This is an object-oriented
database which is used to store the models.

� Application Generator: This is the model inter-
preter which con�gures the various run-time com-
ponents of SSPF. The dotted lines from Applica-
tion Generator to the various components in Fig-
ure 6 indicate this fact.

� Real-Time Data Server (RTDS): The RTDS re-
ceives real-time point data, processes the data,
multicasts the data to clients, logs the raw com-
puted real-time data and shift and day sum-
maries, reads shift information for the processes
from the shift tables, provides clients with startup
and synchronization information, etc.

� Historical Data Server (HTDS): HTDS services
client requests for historical data.

� Cimplicity Interface: This component gets point
data from the SSPFPB point bridge project and
forwards the data to RTDS.

� Cimplicity project SSPFPB: This is a point bridge
Cimplicity project that gets the plant data from
various PLCs at Saturn Site.



plant undergoes changes (the extent and degree of the
change varies). SSPF needs to be able to incorporate
these changes with minimal e�ort and no disruption
of the plant operations.

Evolution. In its initial incarnation, SSPF is a data
collection, logging, retrieval and display service. In
the future, however, SSPF will have many more com-
ponents added to it that will provide simulation, bot-
tleneck analysis, diagnosis, decision making support,
etc. These components will face the same issues out-
lined above. Thus SSPF had to be designed for easy
extensibility.

3.3. SSPF Modeling Paradigm

The SSPF application o�ers a structured view of the
data representing the state of the manufacturing pro-
cesses. This structured view and the related visual-
ization services create a tight conceptual relationship
between the plant and the SSPF software. In this sec-
tion, we summarize the key modeling concepts that
are used for de�ning the SSPF application and that
are also provided for the users of the system.

Background. The manufacturing plant is viewed as
an aggregate of processes and bu�ers. Processes repre-
sent the operations required for making a car, such as
casting, machining, welding, assembly, etc. Associated
with each process are certain measurements that relate
to the productivity of the process. Examples of such
measurements are : cycle-time, production count (how
many parts were machined, assembled, etc.), Work In
Process (WIP) (how many parts are currently being
worked on), production downtime (equipment break-
down, etc.).

Bu�ers (or banks) lie between processes and hold parts
that are produced by an upstream process before they
are consumed by a downstream process. The infor-
mation about banks that is relevant to production is:
bank count (number of parts/sub-assemblies in the
bu�er) and the minimum and maximum capacities of
the bu�er.

The inter-connectivity of processes and bu�ers cap-
tures the sequence of operations required to produce
a car. The concept of production ow is concerned
with the ow of material (raw materials, parts, sub-
assemblies, etc.) through the processes and bu�ers,
and encompasses all the production related entities of
processes and bu�ers (e.g. production count, WIP,
bank count, starving, blocking).

To model Saturn Site in terms of its production pro-
cesses and business organizations, the SSPF model-

...

models

Process compound {

StructuralAspect "Structure" {

icon rect { left : InConveyors;

right : OutConveyors; };

attrs { attr PartNames; attr LineSpeed;

attr JPHLow; attr JPHLowLow; }

conns { JobFlow { 1 solid line arrow } :

{ InConveyors -> Buffers }

{ InConveyors -> SubProcs InConveyors }

{ Buffers -> SubProcs InConveyors }

{ SubProcs OutConveyors -> Buffers }; }

parts { SubProcs : Process hierarchy;

Buffers : Buffer;

InConveyors : In_Conveyor link;

OutConveyors : Out_Conveyor link;}

}

...

Figure 5: Fragment of the SSPF paradigm de�nition

ing paradigm was developed. The modeling paradigm
utilizes four kinds of models: (1) Production Models,
(2) Organization Models, (3) Activity Models and (4)
Resource Models. Production models (an example iis
shown in Figure ??) are used to represent the produc-
tion ow at Saturn Site. The Organization models are
used to represent the business units at Saturn and to
establish relationships between business units and pro-
duction units. Activity models are used to con�gure
the SSPF activity(ies) while resource models describe
the allocation of SSPF activity(ies) to workstations.

3.4. Model Builder/Editor Environment

The model editor was generated by customizing the
MGA VPE for SSPF. VPE is customized through a
paradigm speci�cation �le, that contains a declarative
description of the modeling paradigm. This �le is used
to generate the model database schema and the spe-
ci�c database interface code for the model builder [8].
A fragment of the SSPF editor con�guration �le is re-
produced in Figure 5: it shows the de�nition of the
stuctural aspect of the processing models.

3.5. SSPF Architecture

There are three main parts to the SSPF system
as shown in Figure 6: (1) Model-Integrated Pro-

grams Synthesis (MIPS) Environment which con-
sists of the Visual Programming Environment (VPE),
Model Database and the Application Generator (AG);
(2) SSPF Server which consists of the Real-Time



Figure 3: SSPF GUI

client/server architecture. It supports a multi-
tude of users (about 300) with low load on net-
work, server, or clients. The number of users is
high because any person in the workforce at Sat-
urn would be expected to be an active user.

� Production database : The raw plant data and
processed data need to be logged to and retrieved
from a relational database, in a structured and
exible manner.

� Heterogeneous platforms : The components of
SSPF run on di�erent hardware and software plat-
forms.

� Sophisticated GUI : The SSPF GUI needs to show
real-time and historical data and results of anal-
yses, etc., using the same interface, provide easy
navigational facilities, etc.

� Robustness : Robustness against corrupted data is
a very important criteria. Since the PLCs are dis-
tributed throughtout the plant, the data provided
by PLCs is frequently incorrect. Many times the
connection to PLCs also is lost. SSPF is required
to be able to handle such situations.

Integration. The issues faced during integration of
SSPF with Saturn systems are:

� Data collection : The data collection methods
used in di�erent sections of the plant were im-
plemented by di�erent people. As a result, there
was considerable heterogeneity in the data points
with respect to the engineering units used, reset
conditions, etc. This presented signi�cant chal-
lenge for SSPF since its purpose is to provide a
homogeneous view of the plant to the user.

� Zero disruption : The SSPF integration process
was not allowed to disrupt the plant operation
and other software packages in any way.

� Pre-existing hardware and software platforms :
SSPF had to be designed to run on the hadr-
ware/operating systems already in use at Saturn
and to interface with existing software packages
(Cimplicity, MS SQL/Server, etc.).

Maintenance. Due to the continuous, ongoing im-
provments in the product, the production processes
and the engineering and business practices, the Saturn



Figure 2: MGA Components

shifts, weeks, or months of history. To understand the
dynamics of production ow, storage of detailed and
summarized data in a structured format is required.
The current databases at Saturn are di�cult to use
due to the lack of structure or a framework for the
data.

SSPF stores the raw data (received from the plant
through Cimplicity) and processed information in a
structured manner using the a relational database (Mi-
crosoft SQL/Server). SSPF also includes tools to re-
trieve stored data for use in analysis and decision sup-
port tools. The database schemas and the interfaces
to the database are con�gured from the plant models,
thereby providing the framework for easy access and
maintenance of the production database.

Graphical User Interface. The primary purpose of
SSPF is to provide the users with current (real-time)
and historical production data, which can be used for
various purposes { monitoring, anlaysis, etc. For pre-
senting the data SSPF includes a Graphical User In-
terface (GUI) (see Figure 3), which is con�gured from
the plant models. The GUI has many features, some

of which are:

� navigation through the plant allowing the user to
examine the production ow through any section
of the plant.

� detailed and aggregate views of the plant.
� alternate views.
� drill-down capabilities.
� textual reports

Bottleneck AnalysisA key concept that is central to
production ow is that of a bottleneck. A bottleneck
is that process that is limiting the overall production
ow. The overall concept of production ow is built on
focusing attention on bottlenecks and potential bottle-
necks. Bottlenecks may at �rst appear to be obvious,
which is true if the process is simple enough and can be
completely observed from a single point. In the case of
a large discrete manufacturing plant such as Saturn,
this is not possible. SSPF is intended to provide a to-
tal virtual view of the production ow across the plant
and thus, aid in clear identi�cation of bottlenecks.

Problem Solving Activities. Simulation, predic-
tive techniques, and decision support will be provided
in a common framework using the same models that
are used for real-time monitoring, data storage and
retrieval. Using traditional techniques for analysis is
facilitated through application of MIC. Tools will be
readily integrated into the problem space, seamlessly
mixed as appropriate.

3.2. Design Challenges and Issues

The design issues and challenges faced by SSPF are
common to most large-scale software systems. They
can be categorized in the followingmanner: (1) Design
and development, (2) Integration, (3) Maintenance,
and (4) Evolution.

Design and Development. The issues faced in de-
sign and development of SSPF are:

� Tight integration with the plant : Since SSPF is
\embedded" into the Saturn plant, the represen-
tation of the plant as used by the SSPF soft-
ware component needs to match exactly the ac-
tual physical processes, bu�ers, machines, etc.

� Real-time performance : There are a large num-
ber of data points that are measured from the
plant and provided to SSPF. The points are asyn-
chronous and necessitate an event-driven archi-
tecture for SSPF. Every measurement that ar-
rives needs to be processed, logged and supplied
to clients for display.

� Distributed system : SSPF has a distributed



Tools and components:

System Development Process:

Model Builder

Model Interpreter

Run-time Support

Creates

Creates

Creates

Define Modeling Paradigm

Develop Model Builder(s)

Develop Model Interpreter

Develop R-T Support

Executable

System

Models

Builds

Use

Use

Execute System

Build System 

(Automatically)

Edit Models

End-User’s Process:

Figure 1: Model-Integrated System Development Process

dataow based run-time kernel: the Multigraph Ker-
nel (MGK). MGK facilitates the dynamic creation of
networks of computing objects, even across processors,
and the scheduling of those objects.

The exibility with which MGA can be adopted to
various application domains has enabled us to use it
in widely di�erent projects during the last 10 years,
e.g., [1, 2, 7, 9, 10, 11]. In the following we describe
the SSPF systems, which was developed using MIC.

3. A Practical System: SSPF
In this section, we describe the functionalities, re-
quirements, design and development of the applica-
tion of MIC towards providing a poblem-solving en-
vironment and decision support tools in the context
of discrete manufacturing operations at Saturn Corp.
The Saturn Site Production Flow (SSPF) system is
a client-server application designed to meet an ini-
tiative within Saturn Manufacturing to increase the
number of cars built utilizing existing manufacturing
facilities and processes. The primary focus of tools
and services provided by SSPF is the ow of material
throughout the production facility (site-wide produc-
tion ow). SSPF is intended to provide an integrated
problem-solving environment needed for informed de-
cision making by the teammembers and leaders within
Saturn.

3.1. SSPF Functionalities

SSPF is designed to be an application that evolves
easily. The functionalities described below represent

the capabilities of the system that have already been
identi�ed and have been implemented or are currently
under development. In the future, the requirements
and functionalities of the system are expected to grow
considerably.

Data Acquisition. SSPF functions involve real-time
collection, presentation, storage, retrieval, and analy-
sis of data. There is a data rich environment at Saturn
based on traditional process monitoring and control
(PM&C). There are a large number of points of live
data that are monitored which consist of production
counts, downtimes, bank counts, etc. The majority of
these data points are collected from the Programmable
Logic Controllers (PLCs) of machines using a data
acquisition package called Cimplicity[15]. In the ab-
sence of any plant models to guide the data collec-
tion, logging and presentation, the enormous volume
of data presents considerable di�culties in monitoring
site-wide status and performing simulations and other
decision making analyses.

SSPF uses Cimplicity's data acquisition as its inter-
face to the PLCs. This interface is con�gured from
the models, as described later, thereby a�ording con-
siderable ease in maintenance and upgrade of the plant
data interface as the plant itself changes.

Data Storage and Retrieval. Time is an essential
dimension in understanding the dynamics of produc-
tion ow. There are some dynamics that are within
the bounds of a given shift. Others involve multiple



ther software engineers must become plant engineers
(up to a certain degree, of course) or plant engineers
must become software engineers.

On a deeper level, one can recognize that one source of
the problems is the lack of end-user programmability.
If the plant engineer, as an end-user, would be capable
of describing changes in the plant - which in turn would
result in the required changes in the software system,
the problem would be more easily manageable.

In this paper we describe the Model-Integrated Com-
puting approach as a solution to this problem. First
we describe the approach on an abstract level, next we
present a set of tools that support the approach. The
major part of the paper describes the process the we
followed to develop an actual application for a large-
scale manufacturing operation. We discuss our expe-
rience with the process and give an evaluation of the
work. Finally, we compare our approach to other de-
velopment approaches.

2. Model-Integrated Computing
Recognizing the need for software systems that evolve
with their environment, we propose the extensive use
of models in the development process. The use of mod-
els in software development is not a new idea. Various
analysis and design techniques (especially the object-
oriented ones) very frequently build models of the sys-
tem before realization, and model its environment as
well. However, we propose to extend and specialize
the modeling process so that the models can be more
tightly integrated into the system development cycle
than in traditional techniques. The process support-
ing this activity is called Model-Integrated Comput-
ing (MIC), and it results in a model-integrated system
(MIS).

In an MIC process the models describe the system's
environment, represent the system's architecture and

they are used in generating and con�guring the system.
These models are indeed integrated with the system,
in the sense that they are active participants in the
development process, as opposed to being mere passive
documents.

When MIC is used in developing a system, models
are involved in all stages of the life-cycle. To sup-
port this, the initial step is the building of tools that
support model creation and editing, used by the end-
users when they want to customize the �nal applica-
tion. The model editing tools are typically graphical,
but more importantly, they support modeling in terms
of the actual application domain. This domain-speci�c
modeling is essential for making end-user programma-

bility feasible.

There are two interrelated processes in MIC: (1) the
process that involves the development of the model-
integrated system, and (2) the process that is per-
formed by the end-user of the system (in order to
maintain, upgrade, recon�gure) the system { in accor-
dance with the changes in its environment. Figure 1
shows the processes schematically. The �rst process
is performed entirely by the system's developers (i.e.,
software engineers), the second, usually, by the end-
users.

To summarize, in MIC the system is created through
the development of the following: (1) a modeling
paradigm, (2) the model builder (editor) environment,
(3) the model interpreters and (4) the run-time sup-
port system. The product of this process is a set of
tools: the model builder, model interpreter and generic
run-time support system. Using these, �rst the devel-
opers, but eventually the end-users can build up the
application itself by going through the following steps:
(1) develop models, (2) interpret the models and gener-
ate the system (this step is automatic), and (3) execute
the system. The key aspect of the development pro-
cess is that domain-speci�c models are used in building
the application, and thus it can be re-generated by the
end-users.

It may seem that MIC necessitates a bigger e�ort than
straightforward application development. This is true
if there is no reuse and every project has to start
from scratch. In recent years we have developed a
toolset called the Multigraph Architecture(MGA)[14]
that provides a highly reusable set of generic tools to
support MIC. We claim that the tools provide a meta-
architecture, because instead of enforcing one partic-
ular architectural style for development, they can be
customized to create systems of widely di�erent styles.
Figure 2 shows the components found in a typical
MGA application. The shadowed boxes indicate com-
ponents that are generic and are customized for a par-
ticular domain.

In MGA we use a generic Visual Programming En-
vironment (VPE)[8] for model building. Models are
stored in an object-database: also a customizable com-
ponent. The domain-speci�c customization of these
components determines how the visual editor behaves,
and how the database schema is organized. The model
interpreters are typically highly domain-speci�c, al-
though some of their components are general (e.g.,
low-level database access mechanism). For run-time
support purposes we have successfully used a macro-



Model-Integrated Development of Complex Applications�

Amit Misra, Gabor Karsai and Janos Sztipanovits

Department of Electrical and Computer Engineering

Vanderbilt University

P.O. Box 1824 Station B

Nashville, TN 37235 USA

+1-615-322-2771

fmisra,gabor,sztipajg@vuse.vanderbilt.edu

Abstract

Many large distributed applications are tightly inte-

grated with their physical environments and must be

adapted when their environment changes. Typically,

software development methodologies do not place a

large emphasis on modeling the system's environment,

and hence environmental changes may lead to signif-

icant discrepancies in the software. In this paper we

argue that (1) the modeling of the environment should

be an integral part of the process, and (2) to sup-

port software evolution, wherever possible, the soft-

ware should be automatically generated. We present

a model-integrated development approach that is ca-

pable of supporting cost e�ective system evolution in

accordance with changes in the system's environment.

The approach is supported by a \meta-architecture"

that provides a framework for building complex soft-

ware systems using COTS and custom developed soft-

ware components. This framework has been success-

fully used in various projects. One of these projects, a

site production ow visualization system for a large

manufacturing operation, will be analyzed in detail.

First, we show how the model-integrated process can

be generalized and used to build families of model-

integrated tools that support the development of speci�c

��This work has been supported in part by the DARPA/ITO

EDCS Program, Contract #F30602-96-2-0227

systems. Next, we describe how the generic architec-

ture was customized for the particular domain. Next,

we discuss how speci�c components were implemented,

and present a detailed experience report (both from de-

velopers and end-users).

Keywords

model-integrated computing, end-user programming,
component-based software integration

1. Introduction
Every software practitioner knows the di�culties of
maintaining a large software system which is tightly
coupled to a physical environment that is frequently
undergoing con�guration changes. In fact, it is prob-
able that such systems are rather the rule than the
exception. There are many causes for this problem,
but some are more prevalent than others. Consider an
example system that monitors and controls a large-
scale manufacturing operation. The system collects
data from thousands of sources (PLC-s, microswitches,
etc.), archives the data values, makes the data avail-
able to operators and managers (after processing), and
is also involved in making automatic decisions which
enforce some level of production control. It is a fact of
business that the plant changes and evolves, which will
necessitate changes and upgrades in the software sys-
tem. One has to change the database schema, recom-
pile applications, recon�gure data acquisition systems,
change user interfaces, etc., just to maintain existing
functionalities. These many-faceted activities involve
diverse software engineering issues, and the upkeep of
the system becomes a highly non-trivial activity. To
understand and maintain the relationship between the
plant con�guration and the software con�guration, ei-

1


