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CHAPTER I

INTRODUCTION

Digital imaging application require huge computational performance due to the

large data sets involved. Applications such as robotics, animate vision, autonomous

vehicle control, and on{line video processing require sequences of images to be pro-

cessed in real{time. Image sequences of normal resolution (640 x 480 pixels) and

standard frame rate (30 frames
sec

) with 256{level gray scale (8 bits
pixel

) represent a data

rate of 8.8 Megabytes per second. A color sequence (24 bits
pixel

) at the same pixel reso-

lution produces 26:4Mbytes

sec
. Typical applications require on the order of hundreds or

even thousands of operations per pixel in order to enhance, segment, and extract fea-

tures from the image sequence [57]. This translates into tens of Giga{operations per

second. It has been estimated that future applications, such as dynamic scene inter-

pretation, may require on the order of hundreds of Giga{operations per second [56].

Hardware architectures consisting of a single general{purpose processor are incapable

of delivering this level computational performance. Even smaller problems, such as

video enhancement, require hundreds of Mega{operations per second. For these rea-

sons, most applications in which real{time imaging has been successfully applied have

usually employed custom hardware designed to perform �xed sets of speci�c image

processing algorithms. Although such specialized hardware solutions have met com-

putational requirements of some real{time image processing applications, there are

many drawbacks to this approach. Hardware implementations are expensive, and
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real{time performance is achieved by sacri�cing end{user programmability and exi-

bility. Also, the scope of success has been limited to those applications in which the

computational needs could be accommodated by the �xed and limited capabilities of

the available hardware.

The need has been stated for research e�orts targeted toward producing real{

time image processing support for recent applications such as remote command and

control, High De�nition Television (HDTV), virtual reality modeling, military target

tracking, and rapid image identi�cation [28]. These applications require more ex-

ible and scalable real{time image processing solutions than are currently available.

The requirement of high performance and scalable hardware, however, should not oc-

clude the need for exibility and ease of use. A hardware architecture with adequate

performance will not be practical without high{level programming environments and

tools designed for building image processing applications. This fact is well demon-

strated by noting that research in parallel processing has produced many architectures

which boast incredible numerical benchmarks. However, since parallel machines are

inherently di�cult to program, it is more rare to �nd applications in which a pro-

grammer without parallel processing expertise has successfully and cost{e�ectively

exploited the technology in a real{world application. A parallel programming envi-

ronment which insulates the user from the underlying parallel implementation details

is crucial.

In this dissertation, I show that by using Model{Integrated Program Synthesis

(MIPS) and taking advantage of the natural parallelism present in image processing

computations, a high{level, graphics{based, parallel programming interface is pos-

sible. With this approach, real{time parallel implementations of image processing
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computations can be automatically synthesized, e�ectively rendering the complex

details inherent to parallel software development transparent to the programmer, en-

abling the cost{e�ective exploitation of parallel hardware architectures for building

more exible and powerful real{time imaging systems than are available today.

I examine the inherent parallelisms present in image processing algorithms, and

formally de�ne a quantitatively speci�able description of image processing algorithms

that is su�cient to determine the ways in which a particular algorithm can be par-

allelized invariantly (i.e. without changing the computed results). This information

is also necessary to quantify the performance which will result as the parallelism is

scaled and the computation is mapped to the underlying resources. Note that the

algorithm description is necessary, but not su�cient, to determine the resulting per-

formance of the parallel implementation. The performance depends not only upon

the computations, but also upon the qualities of the target hardware and run{time

resources, and the mapping of the parallelized computation to those resources. The

following interrelated problems must be solved simultaneously:

{ Decomposing computations: The computation must be broken down into sub{

computations which can be performed concurrently. This process involves de-

composing the problem (parallelization) and scaling the parallelism to meet the

requirements.

{ Mapping computations to resources: The general mapping problem is to de-

compose and allocate the computation blocks to the available resources. This

involves assignment of processes to processors, load balancing, and communi-

cation routing.
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{ Forming performance models: Accurate models of the performance that will

result from a particular decomposition and mapping of a computation to the

available resources are needed in order to predict whether or not the performance

goals will be met.

{ Supporting parallel execution: Run{time support for parallel scheduling, com-

munication, and synchronization must be provided.

Note that in most research{oriented studies of parallel or real{time systems, the

approaches attempt to solve only one, or possibly a few of these problems. However,

the implementation of a real{world embedded imaging system requires these issues

to be addressed simultaneously.

I show that, with key knowledge about the behavior of the run{time system and

the processor architecture on which the hardware network is based, it is possible to

accomplish this simultaneous solution, automatically generate mappings of parallel

computations onto the resources and build accurate performance models for the re-

sulting implementation. As proof of this concept, I have developed MIRTIS (Model

Integrated Real{Time Image Processing System). MIRTIS employs the Multigraph

Architecture (MGA), a framework and set of tools for building MIPS systems, to

generate image processing applications which run under the control of a parallel run{

time kernel on a network of Texas Instruments TMS320C40 DSPs (C40s). MIRTIS is

con�gured by building graphical models representing (1) the computations to be per-

formed, (2) the C40 network con�guration, and (3) the performance constraints of the

target application. The MIRTIS model interpreter reads in the graphical models and

automatically determines the feasibility of a real{time implementation, parallelizes,
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scales, and maps the given computation to the resources such that the real{time con-

straints will be met, and con�gures a graphical user interface with which the user can

adjust processing parameters dynamically while the system runs.

MIRTIS is a clear example of how parallel real{time image processing systems can

be built which are cost{e�ectively programmable, exible, scalable, and built from

Commercial O�{The{Shelf (COTS) components. Although the mapping algorithm

makes assumptions about the underlying hardware architecture and run{time system,

the formal speci�cations of applications in terms of models provides a high level

of architectural independence. Much of the system can be reused when the target

hardware platform evolves with the availability of faster and cheaper hardware.
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CHAPTER II

BACKGROUND

Computer Vision and Image Processing

Vision is the ability to form images from illumination and derive from these images

information about our surroundings. The vision process is complex and not well

understood, so the success in constructing machines which employ vision e�ectively

has been limited. However, the potential power and advantages of machine vision

drive many research e�orts in application domains from military target tracking to

non{invasive medicine.

Computer vision systems take in data from image sensors, which may sense visible,

infrared, or even magnetic radiation, and attempt to construct some model of the

surroundings which may be used in formulating controls over the environment and/or

presented to a human for interpretation. The approach used in computer vision

can be roughly broken down into two sequential steps: (1) image analysis, or early

vision, and (2) scene analysis [23]. Image analysis usually involves massaging the

image data to reduce noise, enhance detail, or manipulate contrast, then locating

features such as edges, corners, and surfaces, and �nally identifying patterns and

objects. Scene analysis involves making inferences of relationships between objects

and deriving understanding of the environment from the scene (refer to �gure 1).
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Scene Analysis
{ Vision & Image Understanding }

Sensor Data
{ Image Formation }

- images -> images

- number crunching on mass of data

- relatively simple computations

- more complex, less regular computations

- images -> edges, objects, etc

- complex inferences

- irregular computations

- objects -> relationships

Early Vision

(Image Analysis)

Vision

(Scene Analysis)

Image Pre-Processing

Image Analysis

Figure 1: The Computer Vision Process

Image Processing Algorithms

The early vision steps are largely made up of algorithms which operate on im-

age data and produce images, transformations of images, or simple data structures

describing images. These are image processing algorithms1, sometimes referred to

as low level vision [13] because the role they play in vision is to pre{process images

for transformation into symbolic data (edges, connected components, etc). Image

processing algorithms usually work toward one or more of the following goals:

{ noise reduction

{ contrast enhancement

{ detail enhancement

{ edge detection

{ segmentation (identi�cation of objects)

1Note that in this dissertation, only digital systems are considered, so an image implicitly means

a digitized image and image processing implicitly means digital image processing
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{ mensuration (measurement of features)

{ depth approximation (3-D vision)

{ motion estimation

{ object location

Table 1 shows some classes of image processing algorithms which were taken from [38].

Algorithm Class Example Algorithms

Adaptive Filters Adaptive Min Mean Squared Error

Filter (MMSE Filter)

Graphics Algorithms Dither, Morph, Rotate/Translate, Warp,

Zoom

Histogram Techniques Histogram Stretch, Histogram Equalize,

Local Histogram Equalization

Mensuration Algorithms Area, Centroid, Moments, Perimeter

Morphological Operations Opening, Closing, Dilation, Erosion,

Outline, Skeleton

Nonlinear Filters Maximum Filter, Median Filter,

Geometric Mean Filter

Pixel Operations Scale/O�set, Gamma Correct

Segmentation Line Detection, Threshold

Spatial Filters Laplacian, Gaussian, Gradient, Sobel,
(Linear Convolution) High Pass, Low Pass

Spatial Frequency Filters Homomorphic Filter, Least Mean Squares

Filter, Wiener Filter

Transformations Discrete Cosine Transform (DCT),
Fast Fourier Transform (FFT), Hough

Transform

Table 1: Some Classes of Image Processing Algorithms

The mathematical properties of these algorithms are well understood, and

detailed descriptions and even source code for implementation can be found

in most image processing texts or reference books. For example, see [38]
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or [23]. The focus of this work is not the details of particular image

processing algorithms, but the intrinsic qualities of image processing algo-

rithms a�ecting the ways in which they can be implemented.

Higher Dimensional Image Processing Algorithms

The aforementioned image processing algorithms operate only in the two spatial

dimensions of the image (2-D image plane). In addition to 2-D image processing

operations, there are also useful algorithms which operate on groups of images simul-

taneously, interpreting them as either time sequences or volumes.

In video processing, the images are organized into a data model containing two

spatial coordinates plus at third time coordinate.

I0(x; y); I1(x; y); :::; It(x; y) �! V (x; y; t) (1)

It is common when processing video to perform calculations which operate along the

time domain. In other words, an output pixel in the current frame is calculated based

on the pixel value at that position in several consecutive frames.

O(x;y)(t) = F (I(x;y)(t); I(x;y)(t� 1); I(x;y)(t� 2); :::) (2)

For example, ensemble averaging (averaging several frames together) is used for noise

reduction, and single time step di�erencing is a simple method of motion detection.

The equations for ensemble averaging and di�erencing are given below.

Avex;y(t) =

PN
k=0 Ix;y(t� k)

N

Diffx;y(t) = jIx;y(t)� Ix;y(t� 1)j
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Other techniques, such as time{based linear �ltering (convolution only in the time

domain) are also commonly used.

Some video algorithms operate both in the 2{D image plane and in the time

domain simultaneously.

O(x; y; t) = F (I(x; y; t); I(x; y; t� 1); I(x; y; t� 2); :::) (3)

Examples of such algorithms are optical ow, 3{D linear �ltering, 3{D morphol-

ogy [41], and image warping.

It is also possible to interpret multiple images as a volume by using the image

index as a third spatial coordinate.

I0(x; y); I1(x; y); ::: �! V (x; y; z) (4)

For example, this model is used in medical imaging, where several 2-D scans are

\stacked" for volumetric processing or visualization. 3{D algorithms, which operate

in all three spatial dimensions, are then used to process and manipulate the data.

General Image Processing Algorithm Model

Image processing algorithms operate on images or transformations of images. In

order to accommodate algorithms which operate on single images, sequences of im-

ages, or volumes made up of images, I will de�ne a general model of an image pro-

cessing algorithm to be used in this work. The model development concentrates not

upon algorithmic issues, but upon the way in which an image processing algorithm

generally forms a results sequence by accessing data from input image sequences and

past states of the results sequence.
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I_N(x,y,t)

I_1(x,y,t)

RI_1

RO

RI_N

O(t)

Input Sequences

Output Sequence

F( )

o(t) = F(RI_1,...,RI_N,RO)

Figure 2: The Image Processing Algorithm Model

Consider image processing algorithm F () which takes N input image sequences

I1(x; y; t):::IN(x; y; t) and produces an output data structure sequence O(t) (see �g-

ure 2). Select a particular data element of O(t), say o(t). (Note that if O(t) is an

image sequence, then this is a pixel in the output at time t, and o(t) = O(x;y)(t).)

o(t) is computed from some set of data made up of pixels from the inputs sequences,

and elements from past values of the output data structure. The corresponding pixels

required from the kth input sequence Ik in order to calculate o(t) necessarily lie in a

�nite set of pixel locations which together form a region R̂Ik inside sequence Ik(t).

R̂Ik =
n
~P = (p; q; r) j o(t) � Ik(p; q; r)

o
(5)

where ~P = (p; q; r) is the pixel location designated by row p, col q, of frame r.

The arrow pointing from the input location to o(t) speci�es that o(t) depends upon
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Ik(p; q; r), which means that in order to compute o(t), the algorithm requires direct

knowledge of the pixel value at location ~P in Ik.

The union of the required regions from the input sequences with the required re-

gion from the past values of the output sequence O(t) forms the total data dependency

set of output data element o(t), D̂o(t).

D̂o(t) =

(
N[
k=1

R̂Ik

)[
R̂O (6)

Image Processing Algorithm De�nition:

For the purposes of this dissertation, a function F () operating on N input image

sequences I1(x; y; t):::IN(x; y; t) and computing output data structure sequence O(t)

is an image processing algorithm if and only if

{ F () is causal. For each output data element o(t) 2 O(t)

r � t for each ~P = (p; q; r) 2 R̂Ik k = 1:::N

i.e. The data dependency set for a current output data element o(t), D̂o(t),

contains only input data locations from the current and past input images.

{ F () is non{recursive. For each output data element o(t) 2 O(t)

!9~P j ~P 2 O(t) and ~P 2 D̂o(t)

i.e. The data dependency set for a current output data element o(t), R̂o(t),

contains no data locations in the current output structure O(t).

{ For each output data element o(t) 2 O(t), the total data dependency set D̂o(t)

required to compute o(t) is �nite, and a bounding set can be determined a priori

12



to the start of computation. The computations need not be �xed, as long as

both the amount of computations and the regions required to compute each

output have speci�able upper bounds.

This de�nition is quite non{restrictive, especially in light of the types of computations

which are usually performed in low{to{mid level vision. Recursive algorithms are not

commonplace, and non{causal algorithms are not realistically implementable in a

real{time vision system.

Specialization of Image Processing Algorithms

Image processing is a highly developed research area, with many current e�orts

on both theoretical and applied fronts. There are conferences and journals dedicated

exclusively to image processing, in which theorists and application engineers present

general techniques as well as specialized algorithms for very speci�c applications. For

example, in an issue of "Optical Engineering", a researcher presented an algorithm

developed speci�cally for automated recognition of raised characters on rubber tires.

An edge detection algorithm was developed which takes advantage of the properties

the developer observed in the data sets. This specially designed algorithm was shown

to be much more e�ective for the application than standard edge detectors, such as

the Sobel, LOG, and morphological edge operators[22]. However, on general data

sets, it is doubtful that the algorithm would be very useful. The notable point is

that the level of success achieved in applying image processing to real applications is

often directly related to the development of specialized algorithms by the people with

intimate knowledge of the application. The most successful solutions are obtained

when the developer can interactively rapid{prototype and experimentwith algorithms
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to come up the best solution for the given problem. This explains the wide use of

development environments such as Khoros, PVWave, and Matlab, which provide

high{level, interactive interfaces and promote rapid prototyping and experimentation

with non{standard computational techniques.

High{level development and rapid{prototyping interfaces play an integral

part in the image processing algorithm development cycle, and should be

considered a non{expendable option in any suitable image processing pro-

gramming environment.

Real{Time Image Processing

A Real{Time system is one which, due to interaction with its environment, must

produce outputs which are not only numerically correct, but which also meet timing

constraints. Such systems are said to be embedded into their environments. The

relevant environmental interactions for image processing systems are receiving data

from sensors or other systems, and outputting data to displays, plots, devices, or

other systems, which may apply controls to the surroundings directly (e.g. a vision

system might generate controls for a robotic arm).

Relevant Timing Constraints

Timing constraints are introduced by these interactions. The system may be

required to service the input devices as quickly as the data is produced, produce

outputs at a certain rate, or to produce an output from each particular input within

a constrained amount of time. The two relevant types of temporal constraints in

real{time image processing systems are:
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{ throughput: the net system data rate. The rate at which results are produced

by the system, usually quanti�ed in frames

sec
.

{ latency: the total time between the sensing of a particular image and the results

of that image leaving the system, usually quanti�ed in seconds, and sometimes

in frames.

Either or both of these temporal constraints may be required by a particular

real{time imaging application, so a general system must have methods of

controlling throughput and latency.

For example, in real{time video enhancement throughput is important, but latency

may not be. It is more critical that all of the data be processed with no down{

sampling. However, in robotics latency is more important. The determination of the

robot's action must be made as soon as possible after the visual sensing, and the

action must be performed before the next sensing.

Real{Time imaging applications can have hard real{time, or soft real{time con-

straints. A hard real{time approach requires the absolute guarantee that the speci�ed

constraints will be met. If they are not met exactly, the system fails. In a soft real{

time application, it may be acceptable to operate below the speci�ed performance if

the constraints cannot be met. In this case a best e�ort approach should be taken.

Since both hard and soft real{time image processing applications exist, a

general approach must include both hard and soft real{time constraints.

In order to pursue a deeper understanding of the nature of these timing constraints,

I examine various applications which use embedded imaging systems in the next

section.
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Real{Time Image Processing Applications

A major application of real{time image processing is video enhancement. In addi-

tion to real{time video enhancement, there are several contemporary, specialized ap-

plications requiring real{time image processing that were discussed by Laplante [28].

{ Video Enhancement: Image sequences are �ltered, cleaned, and otherwise en-

hanced to increase the signal to noise ratio, enhance details, detect phenomena,

or merely improve the visual appearance. Image quality and throughput are

both very important.

{ Remote command and control: Images are transmitted over a channel to provide

visual information at a remote site, which may be used for remote control of a

device or vehicle. The quality of the images need only be good enough for the

control process, but both throughput and latency can be crucial.

{ Broadcast and multimedia communications (eg. HDTV): Image data is trans-

mitted over a channel, and both image quality and throughput are of highest

importance.

{ High speed modeling: Images are generated and displayed su�ciently fast by a

simulation or by a virtual reality model. Image quality and throughput are of

highest importance.

{ Rapid image identi�cation: These applications include military target tracking

and threat identi�cation. Both image quality, latency, and throughput are

crucial.
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{ Medical imaging: Medical applications may involve both rapid image identi�ca-

tion and real{time image synthesis. Examples are mammography, ultrasound,

MRI, and CT. The real{time nature of these applications varies.

{ Robotics: Visual information is used in calculating controls for a robot. Both

throughput and latency can be crucial, but latency is more often the critical

constraint.

An Example Real{Time Image Processing Application:

Here, a speci�c example application will be explained in detail. The application

involves the instrumentation of turbine engine tests, and falls under the category

video enhancement. See �gure 3.

Tuned Wavelength
Light Source

Digital
Storage

Camera
CCD

PlotsDisplays

Interactive
GUI

Image Processing
System

Real-Time

Turbine Compressor

Pressure Sensitive Paint

Figure 3: An Example RTIP Application
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In analyzing and testing turbine engines, information about the physical phenom-

ena occurring within the internal components of the running engine is needed in order

to evaluate the performance, health, reliability, and e�ciency of the engine. Non{

invasive instrumentation of a turbine engine, however, is di�cult. While measuring

structural stresses with strain gauges has been successfully practiced, until recently

there was no method of measuring uid pressure patterns on the moving turbine

blades.

Recent e�orts have begun using Pressure Sensitive Paint (PSP) to e�ectively

instrument the turbine blade surfaces to obtain this valuable data. Pressure sensitive

paint2 is a uorescent paint which, when excited with the correct wavelength of light,

luminesces with a varying intensity which is functionally dependent on the oxygen

depletion at the paint's surface. By (1) applying PSP to the turbine blades of jet

engine's compressor stage, (2) exciting the paint with a tuned wavelength light source,

and (3) strobing a CCD array camera so that it is synchronized with the motion of the

blade, visual data representing the pressure �eld on the moving blade can be obtained

(see �gure 3) . The pressure �eld data must be digitally processed and stored in real{

time. The reasons that a real{time system is needed are: (1) the contrast produced

by the paint is so low that it is di�cult to discern without enhancement, and would

be lost in a normal analog recording of the video, and (2) the plots and enhanced

data could be useful during the test. The processing system is needed to enhance the

images, extract information from the sequence, produce plots and image displays, and

provide real{time disk storage. The types of computations to be performed would

include frame{based noise reduction, contrast enhancement, time gradient detection,

2Pressure sensitive paint is actually a misnomer. It should be called oxygen sensitive paint.
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multiple view registration and/or warping, spatial frequency analysis, and lossless

compression.

The sensor output(s) from a high quality visible light camera would be digitized

into frames of 512x512 16{bit pixels at a rate of 30 frames per second, producing

15Mbytes

sec
of data. Supporting the 30 frames per second frame-rate is a major con-

straint, since short{lived phenomena are important to the turbine engine analysts.

Thus, computational throughput is a hard real{time constraint. Latency, however,

could be relaxed if necessary, since no direct control over the engine will be performed

by the system.

Challenges of Real{Time Image Processing

In this section I will examine what makes general real{time image processing a

di�cult problem. Real{time systems are inherently complex and di�cult to imple-

ment. Specifying, proving the correctness of, implementing, scheduling, assigning,

and integrating real{time systems are unsolved problems in general. For instance,

the general assignment problem is NP{complete. For these reasons, the study of

real{time systems is a signi�cant branch of current research.

To make the problems of specifying and guaranteeing timing constraints for

real{time image processing tractable, it is mandatory to build a real{time

system specially for image processing which takes advantage of knowledge

about the image processing problem domain.

Real{time imaging applications are characterizable as requiring the following:

{ high I/O bandwidth
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{ high computational throughput

{ low latency

{ predictable and controllable performance behavior

{ interaction with the environment through sensors

I/O Bandwidth:

Image processing algorithms are by nature computational intensive. This is due

in part to the large size of image data. Even transferring data in and out of a

system at the required rates is a challenge. Table 2 shows data rates resulting from

some common video digitization resolutions and frame rates. In particular, consider

the following example. A standard video source3 produces 30frames

sec
. Digitizing the

frames into 640x480, 8 bits
pixel

images produces 8:8Mbytes

sec
of data. This I/O rate resulting

from moderate digitization resolution and only 256 color pixels already surpasses the

capabilities of many standard I/O devices, such as hard drives, Ethernet connections,

and busses.

Note that, although one may argue that there are high performance busses,

drives, and communication adapters available which will support 8:8Mbytes

sec
,

64Mbytes

sec
, or more, the point is that real{time imaging data rates are large,

which requires special attention to the communication and storage hard-

ware bandwidths.

330
frames

sec
is now the standard, however, there are sensors which produce 60

frames

sec
or more.
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resolution data depth frame rate data rate 5x5conv

colsxrows bits
pixel

frames

sec

Mbytes

sec

Mops

sec

256x256 8 30 1.9 98

512x480 8 30 7.0 370

640x480 8 30 8.8 460

1024x1024 8 30 30 1,600

256x256 16 30 3.7 98

512x480 16 30 14 370

640x480 16 30 18 460

1024x1024 24 30 60 1,600

256x256 24 30 5.6 98

512x480 24 30 21 370

640x480 24 30 26 460

1024x1024 24 30 90 1,600

Table 2: Throughput Requirements Of Real{Time Video Processing

Computational Throughput:

Actually performing mathematical operations at the necessary rates is even more

challenging. For example, the last column of table 2 shows the computation rate

required to perform a real{time 5x5 convolution on the corresponding data stream.

This computation rate is obtained by multiplying the pixel rate by 50, since a 5x5

convolution operation requires 25 multiplies and 25 adds for each output pixel (see

�gure 4). The units are Mops

sec
, or Million generic math operations per second, which

may or may not correspond to a machine cycle, depending upon the processing node

architecture. The table shows that performing a 5x5 convolution on the 7.0MBytes

sec

data stream requires 370Mops

sec
.

The computational performance required to execute standard image pro-

cessing computations, such as a 5x5 convolution, on standard digitized

video is beyond the capabilities of most current single processor computer
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Figure 4: The 5x5 Convolution Algorithm

architectures. Even if a single processor can be found which will support

such computation rates, most real applications require that not just a single

algorithm, but several such algorithms be performed (eg. gamma correc-

tion, then time domain averaging, then convolution, then thresholding,

etc). Moreover, many future vision applications may require thousands of

mathematical operations per pixel [57] [13], which represents on the order

of tens of billions of operations per second for even moderate digitization

resolutions. This level of performance is o� the scale of current single

processor technology.

Latency:

In addition to high communication and computational bandwidths, some appli-

cations also require that the computations be performed with very little latency.
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The latency experienced in both communication and computation is largely

dependent on the processing architecture, and is di�cult to control in tra-

ditional computational approaches.

Predictable and Controllable Performance Behavior:

It is important to note here that there is a large di�erence between a high perfor-

mance system and a real{time system. A real{time system may not even require fast

computations. Of great importance in real{time systems is the ability to predict the

performance behavior and guarantee that the constraints will be met. In real{time

image processing applications, it is necessary to know a priori to run{time (1) if a

computation can be done within the timing constraints on the available hardware,

and (2) if so, how to utilize the hardware to realize the real{time system. Predic-

tive models of both throughput and latency are necessary. However, it is generally

di�cult to accurately characterize the performance behavior of a computation.

Performance models must be developed using knowledge of the algorithms

and underlying run{time system. The most reliable methods are based on

practical performance benchmarks.

I/O Interfaces:

A real time imaging system must interact with the environment through an e�-

cient interface with sensors [13]. These interfaces must support the high data rates

of real{time image processing. There are two relevant types of I/O interfaces.
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{ Analog video interfaces: input data is acquired by digitizing video with a special

video A/D device and output data converted to displayable video by a D/A.

{ Digital interfaces: I/O signals may be digital connections to other system com-

ponents (real{time disks, digital cameras, medical data acquisitions systems,

etc.) or other vision systems.

Synchronizing with and servicing these special I/O interfaces inevitably

adds complexity to the implementations of real{time imaging systems.

Also, image processing I/O interfaces do not often exist on commercially

available high performance computers [54], so special e�ort must be spent

in customizing a machine for real{time imaging.

Approaches Toward a RTIP Solution

The computational requirements of general real{time image processing make it a

di�cult problem to solve with traditional uni{processor computer architectures. The

problem requires a computer system which is both high performance and a real{time.

There are two approaches which could be taken in building real{time image processing

computers to support future vision applications:

1. Implement the computations in specialized real{time hardware.

2. Parallelize the computations and scale the solution to achieve real{time.

The �rst approach is the one traditionally taken for real{time imaging. This has

been due to necessity, since specialized hardware has been the only practical and

cost{e�ective solution. Only recently have VLSI and parallel computing technologies
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supplied machines powerful enough to make second option possible. If methods of

cost{e�ectively programming parallel machines can be developed, the parallel solution

will be feasible.

Specialized Hardware Solutions

There are many commercially available machines which perform a small set of

standard image processing computations at real{time rates. (eg. Matrox, Coreco,

DataCube) Some are more general than others. However, all hardware solutions

su�er from the same problems:

{ They are either not end{user programmable, or o�er very limited programma-

bility. The only way to add functionality is through VLSI design, which is a

very expensive and slow process. If a specialized hardware solution is used for

an application, it is not practical for the user to invent and experiment with

non{standard algorithms. As was discussed previously, the ability to rapid{

prototype and experiment with algorithms has been proven to be key to the

success of image processing applications.

{ They o�er limited exibility. The data paths are either hard{wired or have a

�xed number of con�gurations, so the possible ordering of the computations is

limited.

{ They do not scale. With specialized hardware, it is not always possible to scale

the system to meet the performance required for a computation. The amount

of computations that can be performed is limited.
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{ They are di�cult and expensive to use. Learning to use specialized hardware

systems can require months of training, even for an experienced image pro-

cessing expert. Training time and cost is a major factor in the economics of

computer solutions, since labor is traditionally more expensive than hardware.

{ The hardware is expensive. Machines such as the DataCube are very expensive.

The minimum initial hardware investment is large, and incrementally building

a large system by buying a�ordable pieces over a time period is usually not an

option.

The use of specialized real{time image processing hardware has proven

successful for several applications. However, the inherent limitations have

caused the real-time imaging industry to develop the mind-set of trying to

�t problems to the �xed capabilities of the available real{time hardware,

instead of building integrated solutions to the problems at hand.

This has had the unfortunate e�ect of isolating the algorithm development community

from many real world embedded applications. Algorithm developers have never been

able to easily create real{time implementations of new, non{standard algorithms to

use in embedded imaging systems, and as a result much of the theoretical image

processing developments have gone unused.

Parallel Software

In order to produce a machine which is capable of performing general image pro-

cessing computations in real{time, a much more powerful approach must be taken.
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Software systems are by nature programmable and exible. However, many real{

time image processing applications require far more power than is available from

single general{purpose processors.

An approach which can produce the necessary performance while retaining

the exibility and programmability of a software system is to develop a

parallel computer speci�cally for image processing [55].

Di�culties of the Parallel Approach

Developing a general real{time image processing system involves more than build-

ing a high performance parallel hardware architecture. Several very high performance

concurrent architectures have been developed. However, without high{level program-

ming environments and tools designed for developing image processing applications,

these architectures are di�cult to program, and thus not cost{e�ective.

The approach must be to build up environments and tools for automatically

generating parallel image processing software which can be executed on a

number of hardware architectures.

Problem Statement

The goal of this work is to develop a system for performing image processing

computations in real{time. The solution must be as general as possible, in that one

exible architecture should solve many problems.
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Supported Computations

Image Processing Algorithms

The types of image processing algorithms which are considered are those which

{ follow the data access model de�ned in section II.7.

{ have data content independent computation time or an a priori speci�able upper

bound on the computation time.

The second requirement is necessary in order to form predictive performance models.

Without either data independence or an upper bound on the computation time, this

would be impossible.

Synchronous Data Flows

Image processing applications are generally built up by combining several pre{

coded algorithms together to form a larger computation. The speci�cation of a com-

putation can be done using a natural and convenient large grain data ow (LGDF)

programming technique used in signal processing called Synchronous data ow (SDF).

First, a solid de�nition of a SDF is needed.

A data ow graph is a directed graph in which the graph nodes represent pro-

cessing blocks and the arcs represent communication between the blocks, as shown in

�gure 5. Such representations are common in signal processing [32], and also in image

processing. The Khoros environment, for instance, uses data ow graphs to specify

image processing computations [42]. data ow graphs are intuitive and visual, which

promotes the integration of high{level graphical programming interfaces.
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Figure 5: A Computational Data Flow Graph

A computation block is synchronous if each time it is invoked, it will consume a

�xed number of data tokens from each of its inputs and produce a �xed number of

data tokens on each of its outputs, and these �xed numbers are known a priori to

run{time. The data tokens are so called because the importance is not the size or

structure of the data produced or consumed, but the number of times per computation

that some data structure will be produced on or consumed from a connection.4
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Figure 6: A Synchronous Data Flow Graph

A synchronous data ow graph is a network of synchronous computation blocks.

An example synchronous data ow graph is shown in �gure 6. The number associated

with each input and output connection coincides with the number of input tokens

4It is assumed that a computation producing a data token on a connection has the same units of

data as the computations which consume data from that connection.

29



consumed from or output tokens produced on that connection each time the block

runs. For instance, referring to �gure 6, when Block3 runs, it consumes 1 token from

connection 2 and produces 1 token on each of connections 3 and 5.

In this work, the computations which are considered are synchronous data ows

made up of image processing algorithms, or image processing synchronous data ows.

The work will focus on synchronous data ows that do not terminate, but execute

repetitively on an in�nite sequence of data. Also, the data ows are restricted to

those without cycles (a cycle is a loop in the data ow graph which does not contain

a delay element), and without \fan ins" (connections cannot be merged together).

\Fan outs" are allowed (a connection can have multiple readers).

Solution Requirements

Real{Time Performance

Since the target applications are real{time embedded imaging systems, the im-

age processing operations must be fast enough to satisfy the environment's timing

constraints. The relevant timing constraints are latency and throughput.

As is shown in table 2, real{time imaging requires a hardware architecture which is

not only capable of huge computation rates, but which also can support very large sys-

tem I/O and internal communication bandwidths. Also, the architecture must have

facilities for controlling latency in both the communication and computation. I have

determined that the most economical way of providing the extremely high computa-

tional performance needed by image processing without sacri�cing programmability,

exibility, and scalability is to use parallelism [48].

30



A real{time image processing environment must include facilities to determine

a priori to run{time whether the speci�ed throughput and latency goals can be

achieved by parallelizing the computations and executing them on the given hard-

ware. If so, then the throughput and latency requirements must drive the decisions

about the following:

{ the type(s) of parallelism

{ the granularity of the parallelism

{ the mapping of the decomposed computations to the hardware

If it is determined that the computation cannot meet the performance speci�cations,

decisions must be made about what action to take. The possible actions are

{ hard real{time: fail

{ soft real{time: make an e�ort to come as close as possible to the performance

goals through compromises

� down sample the data in time and/or space

� relax throughput and/or latency requirements

For the environment to make these predictions and decisions transparently, it

is necessary that performance models be formed which accurately characterize the

behavior of the parallel computations. Di�culties arise because these models depend

upon the computation, the processing node architecture, the communication network

topology/type, the method/mode of concurrency, and the mapping of the decomposed

software to the hardware network. The challenge is to develop concurrent computing
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constructs and hardware architectures for image processing for which these critical

performance models can be formed.

Cost{E�ective Scalability

The system must be scalable to the requirements of many applications. Appli-

cations with low computational requirements should be mappable to small hardware

con�gurations containing only a few processors. An increase in the application's

computational load should merely require that processors be added to the network.

The system should be both easy and inexpensive to con�gure. Adding processors

to or removing processors from the hardware architecture should require no changes

to the software, and the recon�guration of the system when the hardware is changed

should be automatic.

The cost of the system, both in terms of cost per node and cost per performance,

should be kept to a minimum. Since the computer hardware industry is constantly

producing faster and cheaper processing nodes, it is highly desirable to use hardware

architectures constructed by plugging together COTS components.

High{Level Parallel Programming Interface

Parallel systems are much more di�cult to program than traditional sequential

systems. The lack of suitable programming techniques and environments for parallel

systems has historically been the critical technology inhibiting the use of parallelism

in real world applications. This is due mainly to the complexity of parallel systems,

which can easily overwhelm even an experienced programmer. Task decomposition,
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sub{task assignment, sub{task scheduling, inter{task communication, and synchro-

nization are major sources of complexity in parallel systems. A major issue that must

be faced in developing a parallel real{time image processing programming interface is

how to make these complexities transparent to the programmer by taking advantage

of the properties of image processing algorithms.

A suitable application programming interface is required which provides

the user with transparent access to the parallel facilities.

Such a programming interface would allow programmers to utilize the parallel hard-

ware architecture easily and e�ciently. The complexity of the underlying parallel

architecture would be hidden from the programmer, allowing the development of

architecture independent applications.

Graphical Programming and Rapid{Prototyping Environment

Image processing is most successful when the programmer is allowed to interact

and experiment with computational techniques to �nd an appropriate solution for

the application and the data. An example of an environment which allows this type

of interaction is Khoros, a popular software development tool from the University of

New Mexico. Khoros provides high{level graphical tools with which the user builds

visual data ow programs, which are realized and executed automatically. Khoros

allows the user to rapidly prototype new techniques and interactively converge on

solutions. However, Khoros was developed with exibly and ease of use in mind,

not performance. The resulting implementations, while valuable for algorithm de-

velopment, do not come close to the performance requirements of most real{time
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imaging systems. Khoros is implemented on UNIX workstations, and can be easily

be made to run with concurrency at the data ow level. Work has also been done

toward automatically generating data parallel implementations of Khoros data ows

which run on on Ethernet connected workstations workstation networks [35]. While

signi�cant performance accelerations were achieved, the nature of the platform and

the overheads of the Khoros system limit the scalability of such solutions. The ap-

proach of automatically parallelizing Khoros data ows is insu�cient for real{time

applications [35].

As the success of Khoros has proven, graphical user interfaces are a key

feature in today's applications [11]. A programming environment designed

for parallel real{time image processing should therefore provide graphical

tools with which the developer can program, con�gure, and control the

system.

Summary of Requirements

The problem to be solved is to build a general real{time image processing system

which

{ supports synchronous data ows image consisting of image processing algo-

rithms

{ is based on a scalable hardware architecture, preferably constructed of COTS

parts.

{ provides real time performance, with control over both throughput and latency.
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{ is end{user programmable.

{ includes a parallel programming interface which insulates the programmer from

the underlying parallel implementation.

{ supports the automatic and transparent parallelization of image processing data

ows

{ provides a graphical rapid{prototyping environment and a graphical user in-

terface with which the user can prototype and interactively experiment with

algorithms.
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CHAPTER III

APPROACH

The most di�cult task to be faced in solving the proposed problem is dealing with

the complexities of integrating and programming a parallel system. The approach

of directly implementing image processing algorithms using an architecture speci�c

parallel programming language is not feasible. First, image processing algorithm

developers cannot be expected to have expertise in parallel programming. Second,

writing architecture speci�c programs eventually leads to being bound to out{dated

hardware architectures, since the cost of re{programming a system as new parallel

architectures become available is often prohibitive. For parallelism to be a viable

option, it is necessary to provide facilities which remove the responsibility of writing

parallel programs for the target architecture from the algorithm developer.

Approaches to Parallel Programming

There are various approaches to insulating the programmer from the task of di-

rectly implementing parallel algorithms: (1) parallel languages, (2) automatic code

translation, and (3) meta{level driven techniques. These are discussed next.

Parallel Languages

There have been several recent e�orts to develop architecture independent parallel

languages both for general parallel systems and speci�cally for image processing.

The goal is to write programs using a special parallel language, have a compiler
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generate the parallel support code, and in some cases, the mapping of the code to

the underlying parallel architecture. The complexity in this approach is hidden in

the compiler. The parallel languages must support the new parallel architectures as

they become available, and theoretically the programs must merely be recompiled to

take advantage of the newest technology. Key examples of such parallel languages

are given below.

{ General parallel languages: A few languages support semi{transparent data

parallelism, such as High Performance Fortran (HPF), Parallel C++ (PC++),

and OCCAM. HPF and PC++ are extensions of existing sequential languages

to which data parallel facilities have been added. OCCAM, however, is a truly

concurrent language developed for the INMOS Transputer which is based on

the Communicating Sequential Processes (CSP) processing construct.

{ Parallel image processing languages: Apply and Adapt were developed at CMU

speci�cally for image processing and support automatic split{and{merge data

parallelism on the iWarp architecture.

These languages provide varying degrees of transparent and automatic data

parallelism. However, a major drawback of using a special language is that

the language must be ported to the particular hardware architecture being

used. Since specialized compilers are usually the last to be implemented

for a new architecture, using a parallel language may ensure that a system

will always be resigned to employ out of date hardware technology.

Another major inadequacy of these parallel languages for real{time image processing

is that each fails to provide the necessary performance predictability and control
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over the underlying implementation, so there are no facilities for specifying real{time

constraints, and no way of guaranteeing them.

Automatic Code Translation

Automatic translation of sequential programs into concurrently executing imple-

mentations involves extracting independent parallel programming units via direct

code analysis. The complexity is transferred from the application code to the code

analysis and translation engines. This requires the complex and expensive identi�ca-

tion of intermodule dependencies to determine where it is safe to split the algorithms.

This is especially di�cult when there is global or shared data [7].

The automatic translation of sequential code into independent parallel units via

direct code analysis is an prohibitively costly approach. Moreover, parallel programs

produced by analyzing code are often ine�cient, and the performance gains due to

the parallelism are di�cult to predict [52].

Meta{Level Driven Techniques

Rather than using special languages, or attempting to automatically transform

sequential code directly into parallel code, it is perhaps better to develop methods

of e�ectively specifying computations in a general environment and techniques of

generating parallel programs from these speci�cations. The complexity of the paral-

lel implementation is hidden in the programs which translate the speci�cations into

programs. By generating programs from architecture independent high{level spec-

i�cations, both the application programmer and end{user can be totally insulated

from the parallel implementation, or even the existence of parallelism, and the most
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recently developed parallel architectures can be exploited [43].

Techniques must be developed to either transform the speci�cations directly into

parallel programs, or use the speci�cations as an aid in automatically parallelizing ex-

isting sequential code. The former approach of direct code generation from high{level

speci�cations, although an attractive solution, is expensive in terms of development

time, and does not promote reuse of existing image processing libraries.

As will be seen in a later section, the nature of image processing computations

make them particularly well{suited for automatic parallelization. For this reason, it

is feasible and e�cient to take the approach of �rst capturing pertinent information

about each algorithm in a meta{level information library, and then, with the aid of

this information, automatically parallelize the sequential algorithms. Unlike using

direct code generation, this approach enables the use of normal sequential programs

and compilers, and the use of image processing libraries optimized for the target

architecture.

Two important e�orts toward using meta{level speci�cations in this way are de-

scribed below.

{ The CVIP (Computer Vision and Image Processing) environment: This e�ort

at Purdue University is geared toward the speci�cation and implementation of

parallel algorithms, and automatically mapping the algorithms to an underlying

parallel architecture. CVIP is based on three tools. A program generation

tool called Cloner allows key information about new algorithms to be declared

and stored in a meta{level characteristics set. A tool called Graph Matcher is

used to map the algorithm onto the target architecture. A third tool called

DISC (Dynamic Intelligent Scheduling and Control) is used to generate parallel
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schedules which implement software data ows made up of the algorithms [24].

{ Model{Integrated Program Synthesis: The Multigraph Architecture is a MIPS

environment which supports the generation of general complex software sys-

tems from high{level graphical models. It has been shown that, in addition to

being applicable to various other applications, the MGA can be employed to

automatically generate medium{grained parallel implementations of sequential

image processing algorithms by taking advantage of data parallel constructs,

and that such implementations can be scaled to achieve real{time performance

on parallel DSP hardware architectures [36] [37].

The focus of the CVIP e�ort is in generating valid network schedules for execut-

ing vision related tasks in parallel with moderate performance and e�ciency. The

performance behavior of the algorithm is not part of the algorithm meta{level char-

acteristics set, and the Graph Matcher tool does not take into account latency or

throughput goals as it maps the algorithms to the underlying architecture [24]. Also,

the system was not designed to include interfaces to live image I/O devices, such

as cameras and real{time disks. However, the approach of generating a mapping of

algorithms onto a parallel architecture based on high{level speci�cations has resulted

in a semi{architecture independent programming environment.

This type of architecture independent speci�cation is also supported by MIPS,

but in a more general way. For instance, the MGA system provides tools for building

models in terms of domain speci�c concepts, and transforming these models into

system implementations. The MGA has been shown to be useful for generating real{

time instrumentation systems which are exible, scalable, and can be easily ported to
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new processing architectures [4][5]. The same approach can be applied to real{time

image processing.

In the case of real{time image processing, the modeling environment should be

con�gured to include the appropriate concepts, such as real{time constraints, algo-

rithm properties, and hardware con�guration. An interpreter should be specialized

to transform models of real{time image processing applications into mappings of im-

age processing algorithms to parallel hardware architectures which yield real{time

performance.

Because a major goal in automatically mapping image processing algo-

rithms to parallel hardware is to satisfy real{time performance constraints,

it is absolutely essential that the necessary real{time concepts be intrin-

sic to the meta{level speci�cation environment and the mapping algorithm.

For that reason, the approach taken in this work was to use the Multigraph

Architecture to develop a meta{level driven software translation system

speci�cally for real{time image processing.

Before going any further with the description of the approach, a more detailed un-

derstanding of MIPS and the MGA is required.

Model Integrated Program Synthesis

MIPS Overview

Model Integrated Program Synthesis (MIPS) is a method of synthesizing software

systems from high-level models. MIPS is related to code generation performed by
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compilers, but the goal of MIPS is not the generation of machine code. MIPS systems

generate instead either code to be executed on a virtual machine, or a con�guration

of existing computations. Common to all the various existing MIPS approaches is a

component called the model interpreter, which actually performs the program synthe-

sis. The model interpreter transforms high{level system models, speci�ed in terms of

a paradigm, or language, into the system program [1].

The Multigraph Architecture

The Multigraph Architecture (MGA) is a MIPS architecture developed at Van-

derbilt University which provides a frame{work and tools for (1) building graphical

domain speci�c models and (2) transforming the graphical models into executable

applications [25]. By using domain speci�c models and interpreters, MGA allows

the domain experts to specify a system in familiar terms without dealing with the

underlying software engineering details. Referring to �gure 7, the MGA consists of

the following components:

{ A graphical model builder (GMB). This is a graphical environment in which

domain speci�c models are built and manipulated. The current MGA model

builder is called XVPE.

{ A model database in which the models are stored. The current implementation

uses a public domain Object{Oriented DataBase (OODB) called obst.

{ Domain speci�cModel Interpreters, which translate the system models into the

various components of the target system.
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Figure 7: The Multigraph Architecture

{ The Integrated Application and Analysis Tools make up the target software

system. In the case of real{time image processing, the integrated application

will be the image processing system running in the embedded environment plus

an interactive user interface. The analysis tools could be an on{line performance

monitoring system which analyzes how well the performance constraints are

being met, and possibly recon�gures the system when the constraints or the

problem change.
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{ The Multigraph Kernel, Run{Time Libraries, and Operating System Platform

represent the real{time kernel, the image processing libraries, and a set of fa-

cilities which provide an interface to the parallel network (tools for loading and

debugging the network, such as the Tick [2] boot loader for C40 networks).

These together represent the run{time environment.

MGA Applications

The MGA has been used to build complex, large scale computing systems. It has

been successfully applied to a wide range of domains, such as real{time embedded

instrumentation [4], chemical plant monitoring and control [26], simulation [12], fault

diagnosis [40], and discrete manufacturing analysis [34]. In particular, the CAD-

DMAS (Computer Assisted Dynamic Data Measurement and Analysis System) is

a real{time parallel instrumentation system which uses a parallel network of high

performance DSPs to solve general signal processing problems [5]. The hardware

con�guration, software con�guration, communication patterns, task{to{processor as-

signment, and the scheduling are managed through manipulating the system models.

A domain speci�c model interpreter transforms the models into a distributed real{

time instrumentation system and a graphical user interface. The complexities of the

implementation are hidden in the model interpretation process.

MGA Models

As was discussed, the models are built and manipulated via the XVPE graphi-

cal model building environment. For each application, XVPE is con�gured to work

speci�cally with that application's modeling paradigm. A very brief outline of what
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a model is and the types of concepts which can be represented is given below.

The Makeup of A Model

The basic conceptual pieces of a model will be described in this section. In explain-

ing each concept, I give examples from the analog circuitry domain containing circuits

made up of voltage and current sources, resistors, capacitors, inductors, transformers,

and switches inter{connected by wires.

{ Attributes: Simple numerical, textual, or logical descriptions of the model. For

instance, some attributes of a resistor model would be its resistance, tolerance,

power rating, type, and physical size. The attributes of a voltage source would

be the voltage/load relationship, type (battery, generator, converter), frequency,

and power rating.

{ Atomic Parts: Objects which themselves have attributes, but which are not

models. Simple circuit elements would be atomic parts.

{ De�ned Parts: Other models contained by or referred to by this model. If

a model contains de�ned parts, it is a compound model. Otherwise, it is a

primitive model. In a complex electrical system such as an audio ampli�er,

the circuit sub{systems would be organized into hierarchical models, such as a

AC/DC converter circuit, pre{ampli�er, �ltration, and power ampli�er stages.

The system circuit model would contain these as sub circuits, and would thus

be a compound model. At the lowest level of the hierarchy would be primitive

circuit models containing discrete components.
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{ Link Parts: Any part can be speci�ed as either a link part, or not. A link part

will be used as a connection point for the model.

{ Connections: Atomic parts, de�ned parts, or link parts of de�ned parts can

be connected together to specify relationships. Connections would be used to

represent the electrical inter{connections between circuit components and sub{

circuits.

{ Conditional Associations: Parts can be conditionally associated with other

parts, specifying some logical relationship between them. This type of relation-

ship might be used to model the dependence of a voltage source upon another

circuit element, or to specify relationships between parts such as switches and

relay states.

Model Aspects

If there is a large amount of information in a model, displaying it all in a single

view is di�cult to comprehend. In order to allow the presentation of information to

the user in an understandable fashion, models can be viewed frommultiple aspects. In

each aspect, a subset of the parts can be made visible which relate in a particular way.

For instance, a circuit model might have a schematic aspect, in which the parts and

inter{connections are speci�ed. It might also have a fabrication aspect for specifying

the physical layout of the components and the routing of the runs on each layer of

the board.
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MGA Models Summary

The modeling concepts available in the MGA system include attributes, parts, hi-

erarchy, connection, association, reference, and multiple aspects. This set of modeling

concepts is rich enough to support the needs of the many varying problem domains

to which MGA has been applied. The con�guration of the editor with a domain

speci�c paradigm is done by �rst specifying the modeling paradigm in a �le using a

simple declarative language (Model Description File, or MDF). A tool called build

is provided which translates the MDF into the XVPE graphical model building en-

vironment for the paradigm. Also generated by build is a C++ class hierarchy to

be used by the model interpreter in extracting information from the model database

during model translation. Although the implementation of the actual interpretation

algorithm, which is always highly domain speci�c, is up to the system developer, this

task is eased by the automatically generated database access classes.

Approach Taken: Application of MGA to RTIP

The approach followed in this work is to use MGA to build a system in which

data ow programs and performance constraints are speci�ed graphically, and both

the decomposition of the sequential algorithms and the mapping of the decomposed

data ow onto the underlying hardware architecture are performed automatically and

transparently with guaranteed real{time performance. Instead of using a parallel lan-

guage such as HPF, PC++, or Apply to write the image processing algorithms, or

trying to directly translate sequential image processing code into parallel code via

code analysis, parallel implementations of image processing algorithms are generated
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through automatic parallelization of sequential code aided by (1) meta{level infor-

mation provided about the algorithms in the modeling environment (2) knowledge of

the inherent parallelism present in image processing algorithms.

This approach is similar to that taken in the CVIP project at Purdue, with the

largest di�erences being that the CVIP (1) provides tools for specifying and develop-

ing parallel programs instead of re{using sequential code, and (2) makes no attempt

to model or guarantee the performance behavior of the implementation. The MGA{

based approach, on the other hand, is a combination of automatic transformation

and meta{level driven program synthesis. The strengths of the approach are: (1) It

allows the exploitation of existing image processing libraries optimized for the target

architecture. (2) The speci�cation of performance requirements and methods of guar-

anteeing them can be built into the design, so the real{time issues can be addressed

in a natural and elegant way.
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CHAPTER IV

TOWARDS A MGA{BASED SOLUTION

This chapter will further develop the approach towards building the speci�ed real{

time image processing environment using the Multigraph Architecture for translating

graphical models into parallel real{time implementations.

The basic components necessary for an MGA Real{Time Image Processing envi-

ronment are:

{ A library of sequential image processing computations.

{ A scalable parallel hardware architecture.

{ A Parallel run{time support system to provide the communication, schedul-

ing, and synchronization required to implement decomposed data ows on the

underlying parallel architecture.

{ A modeling paradigm designed speci�cally for real{time image processing. The

paradigm must contain all the necessary concepts such that models of the soft-

ware, the hardware, and the real{time constraints are adequate such that an

algorithm can be devised to automatically map the computations to the parallel

hardware.

{ An interpreter to decompose and map the image processing computations to

the parallel hardware architecture. The interpreter requires the following:
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� Discovery and generalization of the inherent parallelism of image process-

ing algorithms.

� Development of methods of mapping image processing data ows to par-

allel resources. Mapping involves decomposing (parallelizing) the com-

putations, building performance models of the parallelized computations,

scaling the parallelism, and allocating the scaled solution to the processing

nodes, and must be done in such a way that the timing constraints are met.

� Development of predictive performance models describing the throughput

and latency resulting from the given mapping of the computations to the

resources.

The following presents discussions of the major issues which must be addressed in

building and integrating these components. The ow of the discussion will �rst center

upon how image processing algorithms can be most easily parallelized, and then will

concentrate on selection of an appropriate hardware architecture, and then a run{

time system. After that, the remainder of the chapter will focus on developing the

MGA components of the system which make the approach novel: (1) the modeling

paradigm, which is used for meta{level speci�cation of real{time image processing

applications, and (2) the model interpreter, which is used to automatically transform

the models into a decomposition and mapping of computations to resources which

results in the speci�ed real{time performance.
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Discovering the Inherent Parallelism In Image Processing

Image processing has been the most common area for the application of high

performance parallel computing [54]. This is because the operations have several

characteristics which make them particularly suitable for implementation on parallel

computers [55].

{ They are regular. In most cases the same operation is performed repeatedly

across the image.

{ Usually the algorithms perform fairly simple operations to produce each output

pixel.

{ Most image processing programs traverse the image in raster order. This com-

monality in procedure makes it easy to parallelize many algorithms with the

same technique.

{ Images are large data sets which lend themselves easily to data parallelism.

{ Processing sequences of images with these algorithms requires high computa-

tional power, and many applications (especially the real{time applications) need

the acceleration of parallelization.

These basic parallel computing constructs can be de�ned which best support these

characteristics:

{ Data{parallel constructs

� Spatial decomposition

� Temporal decomposition
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{ Functional parallelism

The next sections will discuss these parallel processing constructs and how they can

be exploited in image processing.

Spatial Decomposition

Because of the properties mentioned above, many image processing algorithms are

easily data parallelizable by decomposition of the data in the image plane. A simple

data parallel programming technique which is applicable to image processing is the

split{and{merge model. In this technique, each input data structure is split into N
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Input Piece(1)

Input Piece(2)

Input Piece(3)

Input Piece(N)

Output Piece(1)
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Input Image Output Image

Figure 8: Spatial Decomposition (Split{and{Merge Processing)

pieces, which can be blocks of rows, blocks of columns, panels, overlapping regions,

etc. The pieces are distributed across the memories of the N worker processors, each

which performs the same algorithm on its sub{section of the data. The partial results
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are then merged to form the output. In �gure 8, a split{and{merge computation is

shown in which the data has been split into blocks of rows, and the �nal result is

formed by concatenating the partial results.

Applicable Algorithms:

It is important to be able to determine whether or not an operation can be per-

formed with this model. In [55], Webb proves that any operation that can be com-

puted in forward or reverse order over a data structure can be performed with the

split{and{merge technique. I will refer to algorithms which meet this criteria as

splittable computations. Since most image processing computation are splittable, it

may be easier to give examples of types of algorithms which are not. Examples of

non{splittable computations are error{di�usion half toning and some region{growing

segmentation algorithms which require a particular image scanning order [55]. Since

these order dependent algorithms are not prevalent in image processing, splittable

image processing computations form a very general class of algorithms.

Performance

Even more relevant than knowing which algorithms are splittable is determining

the performance as the parallelism is scaled, which will depend upon the communica-

tion and computation overheads. Many times a splittable algorithm could be spatially

decomposed and mapped to the available architecture, but the resulting overheads

would limit the performance gains. A method of quantifying the performance of a

spatially parallel computation for a given mapping to resources is necessary.

The acceleration achieved by a split{and{merge computation depends upon (1) the
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communication overhead, and (2) the computation overhead. These are explained

below.

Communication Overhead

Sources of communication overhead in the split{and{merge processing model are:

{ splitting: distributing the image pieces to the processors

{ merging: gathering the partial results to be combined

{ sharing: communicating shared data between worker processors

The splitting and merging communication overheads are obvious. However, the shar-

ing overhead requires some explaination.

Sharing Input Data:

Some algorithms require that part or all of the data be available to more than

one of the worker processors. Consider, for example, the 5x5 convolution operation,

which is implemented by the equation

O(i; j) =
2X

k=�2

2X
l=�2

I(i� k; j � l) �H(k; l)

where H is the 5x5 convolution kernel.

Referring to the equation and �gure 4, suppose that I(p; q) is a pixel lying just

above a horizontal cut in the input image. In order to correctly calculate O(p; q), the

processor must access data from �ve di�erent rows in the input image, two of which

are below the horizontal cut. These rows were distributed to the local memory of a

di�erent processor. They must somehow be available to two di�erent processors, or
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shared. If the architecture is a distributed memory multicomputer (as will be deter-

mined in a later section), this sharing of data must be provided via inter{processor

communication, which results in communication overhead.

The determination of which input data must be communicated to which processors

requires speci�c knowledge of the algorithm's data access patterns. Referring back

to the general image processing algorithm model de�ned in the background chapter,

note that knowledge of the total data dependency set required by the algorithm in

computing each output pixel is su�cient information to determine, for a particular

data decomposition, what regions of the input data must be available locally to each

processor. The shared pixels lie in the overlap between these regions.

Computation Overhead

Sources of computation overhead in the split{and{merge processing models are:

{ merging: combining the partial results to form the output data structure

{ non{linear dependence of execution time on data size

Merging Partial Results:

How the partial results must be combined in the merge step varies with the compu-

tation. Merging may be merely concatenation of partial results, or may involve other

operations such as addition. When the computation is such that each worker proces-

sor produces a section of the output image, the partial results are just concatenated

together to form the output. This is the case shown in �gure 8. However, in some

cases the partial result computed from each local sub{image does not correspond to
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a spatial decomposition of the output data structure. One case in particular is the

histogram calculation. The number stored at each location of a histogram is a count

of the number of pixels in the entire image with value corresponding to the location

index. For instance, the �rst position in the histogram, location 0, contains the num-

ber of pixels in the image for which value = 0. If the split{and{merge technique

is applied to the histogram calculation with the input being distributed as blocks

of rows, the partial results will be histograms of the sub{images. In order to com-

bine these histograms to form the \global" histogram, the \local histograms" must

be point{wise added. These extra additions introduce an additional computational

overhead which must be factored into the performance models.

Relationship Between Execution Time and Data Size:

A reduction in the execution time for any one image is achieved by decreasing

the size of each local data set, and presumably also the number of computations to

be done by each worker processor. The tendency is that an algorithm's computation

time decreases as the number of input pixels decreases, so generally as N scales, the

execution time is reduced. Each of the N processing nodes computes at least 1
N
th of

the result, so the execution time is reduced by a factor of at most N . This translates

to a throughput gain factor of at most N (linear speedup is the best case). However,

the execution times of all algorithms do not depend upon image size linearly. This

deviation from linear speedup can be viewed as computation overhead.

56



Performance Models

The quantities which must be characterized in order to construct perfor-

mance models for split{and{merge computations are (1) the communica-

tion overheads due to splitting and distributing the input data (including

shared data) and gathering the partial results, (2) the time required to com-

bine the partial results, and (3) the time required to execute the algorithm

on the reduced size data set.

These characterizations depend upon the following properties of the algorithm:

(1) the data dependency characteristics of the algorithm (2) how the execution time

varies with image size (3) the method used to combine partial results (4) how the

data structure(s) have been split.

This information alone, however, is not su�cient to build complete performance

models, since the communication overheads will also depend upon the properties of

the run{time system and the communication network. As will be seen later in the

development, these characterizations must be tailored to meet the properties of the

underlying implementation.

Temporal Decomposition

Algorithms which are not splittable, or for which the resulting gains of spatial

decomposition would minimal, can still be successfully data parallelized when oper-

ating on image sequences by taking advantage of their structure. Image sequences

can be decomposed temporally instead of spatially (split the data along the time

domain, instead of the spatial domain). Instead of distributing pieces of an image

to worker processors, as shown in �gure 8, we can distribute the pieces of the image
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Figure 9: Temporal Decomposition (Sequence Splitting)

sequence (entire images) as shown in �gure 9. Input(i) is distributed to processor

(i mod N) + 1, where N is the number of processors, and i 2 f0; 1; : : :g.

Applicable Algorithms:

Since each of the workers processes an entire image, any 2{D image processing

algorithm, either splittable or non{splittable, can be parallelized with this method.

Performance

Each worker processes an entire image, so there is no decrease in the time it takes

for any one image to be processed (latency). However, images are being processed

concurrently, so there is an increase in the rate that images are being processed

(throughput).
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Methods of quantifying the performance characteristics of temporally decomposed

computations for a given mapping to resources are necessary. The performance de-

pends upon the communication overheads, which are:

{ distributing the input images to the worker processors

{ sharing images between the worker processors

{ communicating the results to form the results sequence

Image Sharing Overhead:

Applying temporal decomposition to image sequence algorithms, such as time av-

eraging and 3{D morphology, requires additional communication because these algo-

rithms share data in the time dimension. Two or more consecutive frames are needed

to compute the local output, but temporal decomposition processing puts consecutive

frames on di�erent processors. Instead of rows, or columns being shared, each entire

image is shared by two or more processors. The resulting communication overheads

could preclude performance gains. Performance models for temporal decomposition

require characterizations of image sharing overheads, which depend upon the image

size and the properties of the underlying run{time system.

The sources of overhead in temporally decomposed computations which

must be modeled are (1) the communication overheads necessary to dis-

tribute the images (including the possibility of entire images being shared

between processors), and (2) gathering the results.
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Functional Parallelism

Functional parallelism takes advantage of the natural concurrency of an algorithm.

The algorithm is broken down into semi{independent sub{computations, which in-

teract by passing data.

Sequential Computation �! fSC1; SC2; : : : ; SCNg

The sub{computations along with the data passed between them form an implicit

data ow computation graph. The sub{computations can be executed concurrently

on N processing elements, with data being transferred between the computations

via inter{processor communication. Figure 10 shows a computation which has been

decomposed into four sub{computations, represented by boxes in the �gure. The lines

between the boxes represent the exchange of intermediate data. The �gure also shows

a hardware architecture which mimics the structure of the algorithm, with processing

element PEk executing sub{computation SCk.

Applicable Algorithms:

Functional decomposition is a very general parallel processing construct. Any

algorithm which contains inherent concurrency is applicable. The usefulness of this

paradigm, however, is totally dependent on the structure of the computation. The

prospects of taking a sequentially implemented algorithm and automatically extract-

ing the functional structure and decomposing it into sub{computations is a complex

and costly activity [52], and is not a goal of this e�ort. Here the assumption is

made that any functional parallelism is speci�ed explicitly using a data ow graph

representation.
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Fortunately, the data ow graph is a comfortable and commonly used method

of visualizing a computation. There are commonly used graphics{based tools in

which computations are speci�ed as visual data ow programs which are implemented

using pre{coded software modules [42]. This e�ort will take a similar approach of

specifying computations by building graphical data ows made up of image processing

algorithms. With the sub{computation speci�ed explicitly as a graphical data ow,

the application of functional decomposition to parallelize the computation is straight{

forward.

Performance

The performance gains of functional parallelism are achieved through allowing

the sub{computations to execute concurrently, and are bound by the structure of
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the data ow. The e�ciency is controlled by the relative complexities of the sub{

computations. Unless the sub{computations are of similar complexity, the system

will not be load balanced. Non load balanced systems have performance bottlenecks

that result in the ine�cient use of the parallel resources and poor performance gains.

The major di�culties of using functional parallelism are (1) the success is

totally dependent upon the structure of the computation, and (2) the max-

imum performance gain is controlled by the number of sub{computations,

and (3) unless the system is load balanced, any performance gains may be

lost to ine�ciency.

Hybrid Parallel Constructs

Since it is natural, and quite common, to specify sequential computations by

building data ows of low{level algorithms, it is reasonable to extend this approach

and form a hybrid parallel construct which uses two levels of parallel decomposition,

with the top data ow level being functionally parallel, and the underlying sub{

computations being data parallel. Scaling and load balanced to the target through-

put can be achieved by scaling the data parallelism of the sub{computations inde-

pendently until each achieves the target throughput. This type of hybrid parallel

construct can be applied automatically to data ow computations if methods of au-

tomatically data parallelizing and scaling the sub{computations are developed.
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Summary of Decomposition Techniques

The types of parallelism which are inherently applicable to parallelizing image

processing data ows are:

{ Spatial decomposition (split{and{merge)

{ Temporal decomposition (sequence splitting)

{ Functional decomposition (data ow decomposition)

{ Hybrid decomposition (top level functionally parallel, lower level data parallel)

Selection of a Parallel Hardware Architecture

The available parallel computer architectures vary widely. The following argu-

ment will de�ne a class of architectures which is well suited for the real{time image

processing problem domain.

MIMD Versus SIMD

One way of di�erentiating between parallel architectures is based on how the

parallel execution is controlled. The two major types of architectures applicable to

image processing are SIMD (Single Instruction, Multiple Data) and MIMD (Multiple

Instruction, Multiple Data) architectures [18]. SIMD architectures have traditionally

been used for low{level image processing, and MIMD for mid and high{level vision

operations.

In a SIMD architecture, all of the processors receive instructions from a single con-

trol unit, and the data is distributed across the processing elements (see �gure 11).
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Figure 11: SIMD and MIMD Architectures
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Each processor executes the instructions synchronously in a locked{step fashion. Ex-

amples of SIMD architectures are CLIP{4, MasPar, and the MP{1 [48]. An MIMD

architecture has totally independent processors, each with a control unit. The pro-

cessors can execute di�erent programs and can operate asynchronously. Examples of

MIMD machines are the BBN Buttery, Cedar, and the Intel N{Cube [48].

At �rst look, it might seem apparent that SIMD architectures are optimal for

the problem domain I have de�ned, since usually the same simple computation is

performed across an image. Fine grained SIMD image processing architectures have

been built which take advantage of this property. However, a closer study reveals

that SIMD architectures are not well suited for the general problem domain. Not all

image processing operations considered map well to this programming model. For

instance, histogram operations do not work well on SIMD architectures because they

are not neighborhood operations. By choosing a SIMD model, the ability to e�ciently

perform such computations is lost. Moreover, SIMD architectures do not o�er the

scalability and exibility the solution requires. Due to the fact that SIMD machines

are usually custom built, it is not always possible to add processors or partition the

architecture to match a computation. The desire to use COTS parts also reduces the

attraction of such machines, since most SIMD architectures do not.

A more practical, and no less intuitive approach is possible by using coarser grained

MIMD architectures with fewer more powerful processors. Using the split{and{merge

programming model, which is comparable to a software version of SIMD computation,

MIMD architectures can easily be exploited for low{level image processing [55]. Since

MIMD architectures can perform any type of computation, the same machine can be

used for all operations. By using a MIMD architecture with a moderate number of
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more general purpose processors, we gain exibility and programmability, but lose

the simple SIMD programming model. The COTS issue is well served by MIMD ma-

chines, since there are several commercially available computer architectures designed

to be plugged{together to form parallel MIMD networks.

Shared Versus Distributed Memory

Another way in which parallel architectures di�er is in the memory model used.

Both shared memory and distributed memory (message passing) architectures have

been used for image processing. Although shared memory systems have the advantage

of being easy to program, using a shared memory model has several drawbacks. One

is that systems which physically share memory are �xed architectures, and therefore

are not modular, extensible, or scalable. Virtual shared memory architectures, such

as the KSR (from Kendall Squared Research), actually have physically distributed

memory, but emulate a shared memory space between distributed memory banks

by passing messages. A drawback of virtual shared memory architectures is that the

scalability is highly problem dependent, and moreover implementation dependent. By

the same causes, it is also very di�cult in general to form dependable computational

performance models for such systems. These models are crucial to the development of

a parallel real{time image processing system. Distributed memory/message passing

architectures, although they are in general more di�cult to program, can be designed

to be much more scalable and exible than shared memory machines. Therefore,

I have determined that a distributed memory hardware architecture would better

support the needs of general real{time image processing.
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Distributed Memory Multi{Computers

The class of hardware platforms to be considered has been limited to Dis-

tributed memory MIMD architectures, also know as Multi{Computer ar-

chitectures [44].

Several such multi{computer architectures have been developed which approach the

needs of real{time imaging. Examples are Carnegie Mellon's iWarp architecture [9]

and the Kyushu recon�gurable parallel processor [33]. In addition to these, it has

also been shown that platforms powerful enough for real{time image processing can

be build from processors designed to be parallel processing building blocks, such as

parallel DSPs (Digital Signal Processors) [36] [37].

The constraints that the hardware architecture should be exible and cost{e�ective

to build, con�gure, and manage, lead to the preference of machines built from COTS

parts over those with specially designed processors. Also, since the industry is con-

stantly updating the processor technology, using COTS parts allows the most up{to{

date processors can be integrated quickly. Since parallel DSP modules deliver high

performance per cost and are widely available COTS, building a multi{computer

architecture based on DSPs is a very powerful solution.

Of the many parallel architectures which could have been used for this

work, the type of hardware platform chosen is a distributed memory, mes-

sage passing, multi{computer. Speci�cally, I chose parallel DSPs because

(1) such architectures are appropriate for the problem domain, (2) they

can be built from COTS parts, and (3) I was fortunate to have a moderate

number of C40s available with which to build a prototype.
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Note that the MIPS approach taken could be applied to other hardware platforms,

even mixed mode or recon�gurable architectures, with little change in the top{level

components.

Parallel Run{Time Support

In this section, the parallel run{time issues involved in implementing parallel

image processing data ows on multi{computer networks will be discussed. Decisions

will be made as to the type of communication, synchronization, and scheduling which

are most appropriate for the problem domain.

When using a distributed memory multi{computer, scheduling, communication,

and synchronization must be handled explicitly in the software. A parallel run{

time kernel which provides these facilities is necessary. There are several ways to

handle each of the tasks, and the solutions must be chosen based on the needs of

the application. The following discussion will narrow the scope to run{time support

techniques most appropriate for implementing real{time image processing data ows

on multi{computers.

Synchronous Versus Asynchronous Communication

The communication system can be synchronous, or asynchronous. Synchronous

communication imply that both the sender and receiver must be ready for a transfer

before it can occur. A sender will block until the receiver is ready and the transfer has

been performed. Thus the tasks are automatically synchronized whenever they com-

municate. With asynchronous communication, there is a bu�ering process between

the sender and receiver which queues the communication bu�ers and allows the tasks
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to operate more independently. The bu�ering process adds overhead in asynchronous

communication.

Static Scheduling Versus Dynamic Scheduling

Task scheduling can be done either statically, or dynamically. Static schedulers

perform a pre{determined schedule, or sequence of tasks, and introduce very little or

no computation overhead. The schedule to be performed on each node must some-

how be determined prior to run{time from knowledge of the computation structure.

Algorithms and heuristics exist for generating static schedules for synchronous data

ow graphs, such as the Lee{Messerschmidt algorithm [32].

With dynamic scheduling, the task to be run on a node is chosen based on the

state of the system. Possible methods are (1) priority driven scheduling, and (2) data

driven scheduling. In priority driven scheduling, each task is assigned a numerical

priority which places it in a scheduling queue. The priority may or may not change

each time the scheduler runs. For example, the dynamic priority scheduler used in the

UNIX kernel increases the priority of processes which have not run recently. In data

driven scheduling, a task is scheduled when its input data is available. There are many

other dynamic scheduling techniques which are not mentioned here. In each, however,

overheads are introduced by the run{time mechanism which determines dynamically

which task will run next.

69



Synchronous Communication and Static Scheduling

Real{time image processing applications such as video processing require huge

computation and communication rates, and the current generation of parallel com-

puters is just above the necessary performance threshold. Thus, the scheduling and

communication overheads in the run{time kernel must be minimized. In addition to

high performance, the real{time nature of such systems requires that the computation

and communication performance be guaranteed, so the scheduling and communica-

tion techniques used must have predictable behavior.

To minimize overheads and achieve predictability in the run{time kernel,

it is necessary for the kernel to use static scheduling techniques and syn-

chronous communication.

Development of the RTIP System Synthesis Approach

In order to use the system synthesis techniques provided by MGA to automatically

decompose synchronous image processing data ows and allocate them to a network

of C40s, the following are required:

{ A real{time image processing modeling paradigm for specifying the software

data ow, the hardware network, and the performance goals

{ A model interpreter to transform the models into a mapping of the data ow

to the resources which meets the timing constraints

The overall design for the interpreter component will be developed in this section.

During the discussion of the decomposition and mapping schemes, information and

concepts which must be present in the models will be mentioned. This approach
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of discussing the interpreter before the modeling paradigm was taken so that the

motivation behind the elements of the models will be more clear when the �nal

modeling paradigm design is presented in the next chapter.

Interpretation: Mapping Computations to Resources

Somehow, the computations (a synchronous image processing data ow), must be

mapped to the underlying resources (a parallel run{time system running on a C40

network). Note that although the hardware architecture chosen for the prototype

implementation is a C40 DSP network, the mapping technique should be kept as gen-

eral as possible to ease the migration of the resulting system to new multi{computer

architectures.

Overall Approach

The goal of the interpretation processes is to automatically decompose the image

processing synchronous data ow, build performance models of the implementation,

scale the parallelism, and allocate the parallelized, scaled computations to the under-

lying run{time system and processing nodes.

The image processing data ows will be decomposed using the two{level hybrid

decomposition technique introduced in a previous section. This approach is to use

functional decomposition at the top data ow level, and spatial or temporal decom-

position for each sub{computation. Referring to �gure 12, note that the data ow

has �rst been partitioned into sub{computation blocks before the second level decom-

position and scaling. The reason for this extra step has to do the implementation of

the prototype run{time system and mapping algorithm, and will be explained later.
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The second level decomposition is done by searching for decomposition methods

and scaling factors for each of the blocks which will result in the performance con-

straints being met. In evaluating each combination of block decomposition methods,

predictive performance models are used. Building the performance models requires

a priori information about (1) how each of the algorithms accesses data in building

the partial results (data dependency), (2) the execution time/image size relationships

for each algorithm, and (3) how the parallelized sub{computations will be mapped

to the underlying run{time system and hardware architecture.

Di�culties

Note that the construction of performance models requires knowledge of the map-

ping between computations and hardware, but that the mapping is done after the

parallelization decisions have been made (see �gure 12). A major obstruction to au-

tomating the decomposition, scaling, and mapping processes is that these tasks are

inherently inter{dependent. Determining acceptable data ow decomposition tech-

niques and scaling the parallelism require performance models, which require the

mapping and knowledge of the run{time system.

Because of these inter{dependencies, the general problem of mapping image pro-

cessing synchronous data ows to arbitrary multi{computer networks while simulta-

neously guaranteeing that throughput and latency constraints are met has no closed{

form solution. Moreover, performing an exhaustive search of all decompositions and

allocations until the constraints are met is not a practical alternative because the

search space is too large.

73



The approach toward automatically mapping the computations to the re-

sources must be to reduce the size of the search space by developing simpli-

�ed decomposition procedures and allocation techniques which exploit the

capabilities of the target hardware architecture and favor the properties of

the majority of the applications.

The rest of this section discusses the overall assumptions made in this work about the

image processing computations to be performed, the decomposition techniques with

which they will be parallelized, and the types of hardware architectures they will be

mapped to. However, the behavior of the run{time system, the sub{task to processor

allocation technique, and the speci�cs of the performance models are purposely not

discussed here. These parts of the system are considered to be less general and more

dependent upon the chosen implementation. In the following chapter, a run{time

system, an allocation technique, and the related performance models are discussed

for an implemented example system.

Assumptions

The following assumptions are made about the image processing computations

and the hardware architecture in order to reduce the complexity of the solution.

Well Behaved Algorithms:

It is assumed that each of the image processing algorithms in the data ow is well

behaved. In addition being an image processing algorithm as de�ned in section II.7, a

well behaved image processing algorithm meets the following constraints:

{ The execution time of the algorithm either
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� is independent of the data content and time invariant

� has an a priori speci�able upper bound

{ The algorithm has been benchmarked on the target processing node type (using

a single processor) for an adequate range of data sizes such that linear interpo-

lation on these benchmarks will produce an accurate estimate of the execution

time for a given data size. (The same can be done with upper bounds if the

algorithm is data or time dependent.)

{ The total data dependency set for each output data element (refer to �gure 2 and

equation 6 ) is bounded and known prior to interpretation time. In other words,

the manner in which the inputs and past values of the output are accessed in

constructing the output data structure is known and speci�ed (in the models).

System With Single Input/Output:

This work has been driven by a particular need for a stand{alone real{time video

processing system to be used in both on{line and o�{line analysis of a running turbine

engine compressor stage. The target system processes video obtained from a single

sensor, and displays the results on a monitor or writes them to a real{time disk (see

�gure 3). For this reason, the scope of this work has been limited to systems in which

there is exactly one source of image data and exactly one sink of image data. The

image processing synchronous data ow graphs, then, have a single source block (a

computation with no inputs) and single sink block (a computation with no outputs).

The structure within the system, however, is not constrained to a single computation

path. Algorithms can have multiple inputs and outputs, and connections can \fan
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out", meaning that output data can be distributed to multiple consumers. However,

connecting to an input from multiple outputs (\Fanning in") is not supported. Data

can be looped back through delay elements. Figure 13 shows an example data ow

with a single input and output, but with complex internal structure.

Source A5

A6

A4A2

A3

A1

Z^-1

Sink

DelayFan Out Multiple Inputs

Multiple Outputs

Figure 13: A Complex Data Flow

Although the single image stream limitation �ts applications in which a single

visual sensor is used to produce a single stream of results, many vision applications

require that data from multiple sensors be used to produce multiple results streams.

For instance, in robotics, it is common to use stereo vision (two or more sensors with

di�erent viewing angles) in constructing a 3-dimensional scene model. Also, military

vision systems often use multiple sensors of di�erent types (e.g. radar, visible light,

and infrared) and combine the data to gain additional information. In these cases,

several independent or inter{dependent analysis may be done on the data streams. In

order to support data ows with multiple data sources and data sinks, the approach

discussed in this work will have to be extended. One method would be to decompose
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the system data ow into communicating sub{systems, each having a single data

source and sink. Dealing with this issue should be part of the future direction of the

project.

Homogeneous Pipeline{Connected Hardware Architecture:

It is assumed that the underlying hardware architecture is a homogeneous network

of C40s connected in a topology containing at least one pipeline{connected sub{graph

beginning at the source node (a C40 image digitizer or a PC) and ending at the

sink node (a C40 image display or a PC). This sub{graph is a path from source to

sink. Homogeneity in this case means that each of the nodes in the path has the

same performance characteristics and the same basic set of resources. Exceptions

are the digitizer and display modules, which have extra capabilities and a di�erent

memory con�guration. The best case is that the longest path includes each of the

C40s (a Hamiltonian path1 between the source and the sink exists) [8]. Note that a

Hamiltonian path is not a requirement, but since only the nodes lying on the longest

path from source node to sink node will be used by the system, the non{existence of

a Hamiltonian path implies that some processors will e�ectively be wasted.

Why is a Hardware Pipeline a Good Choice?:

It may seem that a pipeline is not an adequately exible hardware inter{connection

topology for executing the types of image processing data ows that have been spec-

i�ed. However, most real{time image processing applications process sequences of

images, and in many cases, the latency is not a hard real{time constraint. Thus,

1A Hamiltonian path is a path in a graph which visits every node in that graph exactly once. A

graph containing a Hamiltonian path beginning and ending at the same node is called a Hamiltonian

graph.
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temporal decomposition (sequence splitting) can be used in a large number of ap-

plications. Sequence splitting is very easily implemented and mapped to pipeline{

connected hardware architectures.

As will be explained in the next chapter, in applications in which latency is more

critical, data ows with complex structures can still be functionally and spatially

decomposed and mapped to pipeline{connected C40 networks by constructing a run{

time system which exploits the advanced features of the C40 DMA co{processors to

route all of the communication through the pipeline connections. The specialized

routing support adds complexity to the run{time system, and decreases its architec-

ture independence.

Another approach would have been to require the hardware inter{connection

topology to mimic the structure of the decomposed data ow. However, this would

requiring the hardware topology to be changed whenever the data ow structure

changes. Since it has been assumed that the software recon�guration will occur fre-

quently, and that the implementation should be automatic, requiring no changes to

the hardware inter{connection network, this was not considered a viable option.

There is a trade{o� between (1) simplicity in the hardware topology and allocation

scheme and (2) lower complexity and architecture independence in the run{time sys-

tem. Using a simple hardware pipeline with a more complex run{time system greatly

simpli�es the mapping algorithm. Note that the discussion is not about which real{

time applications should be supported. It has already been established that both

low latency and high throughput applications are necessary, and that complex data

ows will be supported. The issue is whether it is more important to have a simple

mapping algorithm or an more architecture{independent run{time system.
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To decrease the search space of data ow to network mappings, I deter-

mined that the decomposition and allocation algorithms should be simpli-

�ed if the automatic mapping of processes to processors is to be practical.

This simpli�cation in the mapping algorithm was made possible by adding

complexity to the run{time system. Speci�cally, a special routing tech-

nique was implemented for the C40 which enables all communication to

be routed along a hardware pipeline.

The run{time system was kept semi{architecture independent by implementing the

communication components as a separate layer which can be re{implemented for new

hardware architectures, thus re{using a large part of the implementation. In the next

chapter, both a prototype C40 run{time system and the resulting mapping algorithm

which were designed and implemented for this work will be discussed. It will be seen

that special support in the run{time system reduced the complexity of the mapping

algorithm signi�cantly, making the interpretation process more feasible.
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CHAPTER V

MIRTIS: A PROTOTYPE SOLUTION

In this chapter, I present a prototype MGA{based environment for real{time im-

age processing. The system, called MIRTIS (Model Integrated Real{Time Image

Processing System), is a realization of the ideas which have been developed in the

previous chapters. It uses a combination of automatic program translation and meta{

level driven software synthesis to automatically parallelize image processing data ows

made up of sequentially coded algorithms, and then scale and allocate the decom-

posed data ows to the underlying parallel resources. The decomposition and scaling

decisions are driven by the real{time constraints, which are modeled explicitly.

I will �rst discuss the overall MIRTIS architecture. Then I give an overview of

the modeling paradigm. Next, I describe the prototype run{time system developed

and implemented on C40s. After a brief description of the image processing library,

I then outline the design of an interactive run{time graphical user interface for the

system. In the last section, my discussion centers on the main component of the

MIRTIS system, the model interpreter. In that section, I describe the interpretation

algorithm.

The MIRTIS Architecture

The MIRTIS system architecture, shown in �gure 14, follows the basic model{

based system architecture shown in �gure 7. The design consists of the following

components

80



{ The IPDL{VPE model building environment

{ The model database

{ The MIRTIS model interpreter

{ An image processing application library

{ The PCT{C40 run{time system

{ The MIRTIS graphical user interface

{ A Network of C40s

The IPDL Modeling Paradigm

The MIRTIS modeling paradigm, called IPDL (Image Processing Description Lan-

guage) was designed speci�cally for real{time image processing. The concepts were

developed by extracting the set of information required to support the automatic

decomposition and mapping approach outlined in the previous chapter. This section

will briey describe the paradigm, putting emphasis on the novel concepts. A de-

tailed explanation of the paradigm with examples of each type of model is given in

the appendix.

IPDL contains three types of models, Signal Flow, Hardware, and Constraints,

which represent the data ow computation to be performed, the hardware resources

available for the solution, and the timing constraints required by the solution, respec-

tively (see table 3). The combination of a Signal Flow Application model, a Hardware

Network model, and a Constraints RealTimeConstraints model together form a the

speci�cations for a real{time image processing system.
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Figure 14: The MIRTIS Architecture

Data Flow Models

Data ow models are used to specify the image processing computations to be

performed. The two types of data ow models are Application models, and Algorithm

models.

Application Models

The computations to be performed are represented by an application model, which

is a data ow graph made up of image processing algorithm models (see table 4). The
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IPDL Paradigm
Paradigms Models Model Aspects

SignalFlow

Algorithm Structure
Constraints

DataDependency
ParameterInterface

Application Structure

Hardware

Node Hardware

HostNode Hardware

Network Hardware

Constraints RealTimeConstraints Goals

Table 3: IPDL Modeling Paradigm

idea of specifying an application as a graphical data ow is also used in the Khoros

image processing environment, and is widely accepted as an intuitive and easy to

learn approach.

Connections between the algorithm models represent the ow of data between the

algorithm outputs and inputs. Connections which transfer image data are referred to

as ImageFlow connections, and those which transfer other types of data, such as inte-

gers, oats, and arbitrary arrays are called SignalFlow connections. The distinction

between image and signal connections is used in the partitioning stage of the interpre-

tation algorithm, which creates a top{level functional decomposition satisfying the

PCT Partition constraint, which will be discussed later.
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Application Models Structure

?

�

Object Name Object Description

Attributes

Parts
Algorithms algorithm models from the im-

age processing algorithm model
database

D

Connections

Signal Flow connections between algorithm
output signals and input signals:
ow of non{image data

D

Image Flow connections between algorithm
output image streams and input
image streams: ow of image data

D

Conditionals

Table 4: Signal Flow Application Models

Algorithm Models

Each algorithm in the image processing library has an associated algorithm model,

which provides various types of information about the algorithm. Table 5 shows a

breakdown the algorithm model parts, attributes, and aspects. Although only the

most important of these components will be discussed in this section, a complete

discussion is given in the appendix.

Data Dependency Speci�cation:

When implementing temporal or spatial decomposition, the interpreter must be

able to determine how the input data is to be split and allocated to the worker pro-

cessors so it can (1) con�gure the communication system correctly, and (2) accurately

model the communication overheads.

For a given algorithm following the general image processing algorithm de�nition

shown in �gure 2, the total data dependency set for a given output image pixel is
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Algorithm Models
Structure

?

�

Constraints

?

�

Data Dependency

?

�

Parameter Interface

?

�

Object Name Object Description

Attributes
Library Function name of the ip library function D

Partial Results Combo Method only concatenation is supported D

Memory Constraint memory required in kbytes D

Parts

Input Images input image data sequence D I

Output Images output image data sequenc D I

Input Signals non{image input data D

Output Signals non{image output data D

Benchmarks empirically
gathered execution times for var-
ious data sizes

D

Requirements the algorithm's processor or re-
source requirements

D

NodeRefs reference to a hardware node D

NodeResourceRefs reference to a node's resource D

HostNodeRefs reference to a host node D

HostNodeResourceRefs reference to a host's resource D

Data Dependencies mathematical specs of the way the

algorithm accesses data

D

Flag Parameters dynamic booleans (switchs) D

Continuous Parameters dynamic numerical parameters

(scroll{bars)

D

Select Parameters dynamic multiple{choice parame-
ters (pull{down menus)

D

String Parameters textual parameters (text boxes) D

Parameter If Modes groupings of parameters D

Connections

Conditionals

BenchmarkToNodeAssociations speci�es the benchmark node D

RequirementToResource
Associations

speci�es a node, hostnode, or re-
source requirement

D

ModeToParameterAssociations speci�ess which parameters are ac-

tive in each mode

D

Table 5: Signal Flow Algorithm Models

the set of all locations in the input image sequences which will be accessed directly

in computing that output pixel. (For simplicity, assume an algorithm with a single

image input and output.) If the algorithm is well behaved, as has been assumed, then

this set of locations will de�ne a 3-dimensional region in the input image sequence.

In order for worker n to compute it's partial result, the communication system

must place the total data dependency set for each output pixel to be computed by

worker n in it's local memory. The total region of the input seen by that worker will

85



be the union of the total data dependency sets of each of it's local output pixels, and

the total amount of overlap data between worker n and worker m is the intersection

of their total local regions. These quantities are used directly in the characterization

of the communication overhead in the performance models, the details of which are

described later.

For modeling the data dependency behavior of the algorithms, I have devised a

mathematical dependency speci�cation format which is unique to this development.

The idea is to show a mathematical relationship between an output pixel location and

a region in an input image sequence. The data dependency speci�cation is contained

in a textual attribute of the algorithm model (see table 5), the format of which is

given by:

Out[rvar; cvar; tvar] � In[rowrange; colrange; timerange]

where Out and In are names of two of the algorithm's image signals, rvar, cvar,

and tvar are dummy row, column, and time index variable names, and rowrange,

colrange, and timerange are range speci�cations. A range speci�cation has the fol-

lowing format:

begin() [:::end()] j 00 :00

where begin() and end() are algebraic formulas specifying the �rst and last indices of

the range, and a ":" speci�es the entire range of valid indices.

The data dependency speci�cation de�nes a dependency relationship between out-

put pixel location Out(rvar; cvar; cvar) and the locations lying within a 3{dimensional

box{shaped region in the input sequence space. This box is de�ned by row; col; time
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such that each of the following are true:

rowbegin() � row � rowend()

colbegin() � col � rowend()

timebegin() � time � timeend()

The simpli�cation to a box{shaped region is not restrictive, since any 3-dimensional

region in the input sequence can be enclosed by such a region, and most image pro-

cessing algorithms access data in box{shaped regions anyway. In the case that the

box speci�cation includes input locations which are not actually accessed by the al-

gorithm, the only a�ect will be extra communication overhead.

Note that any of the algebraic range formulas can depend upon any of the dummy

index variables, possibly non{linearly, which implies that this speci�cation supports

dependencies for which the relative position and dimensions of the dependency box

varies with position in the output image sequence (e.g. the data access patterns could

vary from top to bottom in the output image plane).

To further clarify this de�nition, a few examples are necessary. The data de-

pendency speci�cation for the 5x5 convolution algorithm is given below, assuming

that the convolution model's input and output image signals are named In and Out,

respectively.

Out[i; j; k]  � In[i� 2:::i+ 2; j � 2:::j + 2; k]

This dependency speci�cation de�nes a rigid 5x5x1 dependency box located in the

input sequence, centered around the input pixel In(i; j; k).

To demonstrate another feature of the speci�cation format, suppose that the al-

gorithm is a non{neighborhood operator, such as a global histogram operation. The
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data dependency speci�cation would be given by:

hist[n; k]  � In[:; :; k]

This speci�cation includes the total range speci�er ":", which indicates that all loca-

tions along that dimension are required. In other words, calculating the nth element

of the kth histogram requires all pixel locations in the kth input image.

The �nal example given is the application of the speci�cation format to a 2{D

decimation algorithm which decimates each image in the row and column dimensions

by constant integer factors. In other words, a (R;C) decimation divides the number

of rows by R and the number of columns by C. The data dependency speci�cation

for this algorithm would be given by:

Out[row; col; frame] � In[row=R; col=C; frame]

In this case, each range speci�cation is a single formula, which implies that each

output pixel depends upon a single input pixel (located at a di�erent position in the

input sequence).

A data dependency parser was implemented which parses and interprets the data

dependency speci�cations during interpretation and determines the data access pat-

terns for each algorithm in the data ow. When the decomposition is performed, the

data dependency information is used in characterizing the amount of communication

and sharing overheads for the performance models.

Benchmarks:

The approach taken in modeling an algorithm's execution time as a function

of data size was to rely upon empirically gathered benchmarks. Using measured
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execution times instead of other approaches is both more accurate and straight{

forward.

Each algorithm model contains a set of Benchmark parts (see table 5), each hav-

ing an attribute specifying the dimensions of the algorithm's input images for that

measurement. By providing execution time benchmarks for various data sizes, an

execution time versus data size curve can be constructed. The method of estimating

the execution time of an algorithm for a particular data size is to use linear interpo-

lation on the benchmarked data sizes. If only a single benchmark has been provided,

then linear interpolation is done between that benchmark and an implicit benchmark

of zero seconds for zero data size. This unique benchmark{based interpolative ap-

proach to approximating execution time has proven to provide very accurate results

in testing.

Note that in the models, each benchmark is related to a particular node type by

association with a reference to a Hardware Node model (see BenchmarkToNodeAsso-

ciations in table 5). Thus, separate execution time curves can be formed for di�erent

processor types, and the interpolation will be done on the benchmarks related to the

node type being used.

Parameter Interface Aspect:

The parameter interface aspect of the algorithm model de�nes the algorithmic

parameters which can be changed dynamically during run{time. The names of the

parameters, their possible values, the type of graphical widget which will be used

to adjust the parameter in the GUI, and the format of the messages the GUI must

send to the run{time system to update the parameter are speci�ed in each parameter
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model. The details of this speci�cation are not given here, but some detail is given

in the appendix. Similar speci�cations of adjustable parameters are used in the

Khoros environment. However, the mechanism used in updating the parameters of

the running real{time computation is unique to this system.

Hardware Models

The types of hardware models are Node models, HostNode models, and Network

models.

Network Models

Network models are inter{connected hierarchies containing nodes, hostnodes, and

other networks (see table 6).

Network Models Hardware

?

�

Object Name Object Description

Attributes

Parts

Nodes node models D

Host Nodes models of host nodes: PCs and
workstations which can boot the
system, provide disk I/O, or may

host other I/O devices

D

Sub Networks other network models which are
contained by this network (there

is hierarchy)

D

Connectors passive connections between the
nodes in this network and the
nodes of other networks

D

Connections

HW Connections connections between the node
comm ports, hostnode network in-
terfaces, and sub network connec-
tors which form the communica-

tions network

D

Conditionals

Table 6: Hardware Network Models
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Node and HostNode Models

Node Models Hardware

?

�

Object Name Object Description

Attributes

CPU Type C40 or C44 processor D

CPU Perf performance rating of the CPU in
MFlops

D

MemType type of memory (wait{states) D

MemSize amount of memory on each bus
(\Mbytes x Mbytes")

Parts

CommPorts I/O ports: have speed rating and
port type

D

Resources device enabling special capability
(e.g. grabber or display hardware)

D

Connections

Conditionals

Table 7: Hardware Node Models

Node models represent the network nodes which perform the image processing

computations on the data stream. In the case of the prototype, these are C40 DSP

modules. Each node model has attributes describing the node type and con�guration,

the ports, and any special resources (see table 7).

HostNode models represent the PCs or workstations which provide services such

as network loading and disk I/O, or run the parameter adjustment GUI. They contain

various attributes and parts, notably host interface card parts (see table 8). These

represent cards located in PC bus slots that provide communication links to the C40

network through which loading and run{time communication occur.

Constraints Models

The types of timing constraints relevant to real{time image processing are latency

and throughput. Thus, constraints models contain latency and throughput parts (see
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HostNode Models Hardware

?

�

Object Name Object Description

Attributes

Host Speed CPU clock speed of host computer
in MHZ

D

Host Type type of host computer: X86 PC,
Pentium, or Sun workstation

D

Parts

Resources relavant resources, such as real{
time disks and other host{based
video I/O devices

D

Host Interfaces cards which provide a C40 port in-
terface, or a memory mapped C40
interface through which the net-
work can be booted and otherwise
interacted with: there are several
commercially available PC host in-
terface cards

D

Connections

Conditionals

Table 8: Hardware HostNode Models

table 9).

Throughput models have a numerical attribute specifying frame rate in frames

sec
, and

latency models have attributes specifying latency in frames. Depending on the

application, if the interpreter determines that the speci�ed constraints cannot be met

using the available resources, it may be acceptable to relax either the latency or

throughput constraint, or to reduce the size or frequency of the image data source.

These ideas are conveyed with boolean attributes of the throughput and latency

constraint models which specify whether that constraint is a hard, or soft constraint.

The constraints model itself also has an attribute specifying whether the application

is hard real{time, meaning no concessions should be made in performance, or soft

real{time, meaning that one or more of the timing constraints may be relaxed, or the

data source can be down{sampled, if necessary.
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Real{Time Constraints Models

Object Name Object Description

Goals

?

�

Attributes
FailureMode nature of the real{time con-

straints: hard real{rime or best
e�ort

D

Parts

Throughput Constraints the target throughput in frames
per second and speci�cation of
whether the throughput can be re-
laxed if necessary

D

Latency Constraints the target latency in frames and
speci�cation of whether the la-
tency can be relaxed if necessary

D

Connections

Conditionals

Table 9: Real{Time Constraints Models

Applying the IPDL Modeling Paradigm

The XVPE graphical model building environment has been con�gured with the

IPDL paradigm, and several examplemodels have been built. The MDF con�guration

�le and more information about the IPDL paradigm, including example models, are

given in the appendix.

Of course the models themselves are not of very much use without some form

of execution environment and interpreter which can implement the system that has

been modeled. The largest part of the work that has been done is building the PCT{

C40 parallel run{time system, and the MIRTIS model interpreter. The job of the

interpreter is to transform the system models into an implementation which runs on

a C40 network under the control of the PCT{C40 kernel.

Before describing the interpreter, I �rst will explain the details of the PCT{C40
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run{time system, which provides the underlying parallel execution support. After

that, the reader should have some understanding of the high{level aspects of the

system (the models) and the low{level aspects of the system (the run{time system and

the C40 network). The �nal section will explain how the interpreter provides a path

between these levels which allows the user to specify applications in the high{level

modeling environment and generate the real{time implementations automatically.

The PCT{C40 Run{Time System

A real{time image processing kernel called PCT{C40 has been implemented which

provides run{time support for data parallel execution of image processing synchronous

data ows on pipeline{connected C40 networks. The kernel runs on each C40 node

and performs the scheduling, communication, and synchronization necessary for data

parallel computations.

The scheduler on each node runs a Periodic Admissible Sequential Schedule (PASS)

which implements the synchronous data ow local to that node. The kernel con�gures

and starts the PCT communication engine, which, in cooperation with the neighbor-

ing nodes, distributes the input data appropriately across the processors and combines

the local results to form the output data.

Since the computation and communication schedules are static, the scheduler

introduces minimal run{time overhead. This also has the e�ect of simplifying the

kernel by pushing the work of generating computation and communication schedules

into the model interpretation process.

In the following sections, the PCT{C40 run{time system details are given. First

the concepts and C40 implementation details of the PCT communication scheme are
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explained. Then the details of the scheduler and how it is synchronized with the

communication engine are given. A summary of the PCT{C40 kernel follows.

Pipeline Cut{Through

Pipeline Cut{Through (PCT) is a communication technique which allows syn-

chronous data ows to be parallelized with the spatial or temporal data parallel

constructs and mapped to a group of C40s connected in a pipeline. PCT automates

the distribution of input data, the collection of partial results, and the coordination

between the communication and computation processes, so the data parallelism is

absolutely transparent to the programmer.

Related Techniques

The name pipeline cut{through was chosen due that fact that the technique routes

all communication along the hardware pipeline by "cutting through" intermediate

processors. The technique is similar to two general message routing techniques, cir-

cuit switching and wormhole routing[31], in that messages between non{neighboring

nodes are routed through intermediate nodes with no local bu�ering. During trans-

fers, messages pass through intermediate nodes without entering the local memory or

interrupting the computation. The largest di�erence between pipeline cut{through

and these techniques is that they are designed for routing asynchronous messages in

more general inter{connection topologies. The messages can vary in length, and can

be sent at any time. In pipeline cut{through, the message tra�c patterns are known

prior to run{time, and transfers are routed along the pipeline by coordinating the

communication engines to execute pre{determined transfer sequences. PCT is not a
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general message passing routing algorithm, and is unique to this development.

Before discussing the PCT technique and its implementation details, a few key

concepts are de�ned and some background information about the C40 is given.

PCT{Related De�nitions

Partition:

A partition of a synchronous data ow graph is a grouping of the computations

into blocks. Usually the assumption is that each block of a partition will be mapped

to a di�erent processing node. Data ow partitioning is usually used for balancing

computation and communication loads on the processors to maximize e�ciency. The

synchronous data ow graph shown in �gure 15 has been partitioned into 3 blocks.

Block1

Partition of a Data Flow Graph

1

2

3

Block2

4

Block3

1

2

21

1
2

1

1

5

1 4

2 3

2

2

Figure 15: A Partition of a Synchronous Data Flow
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PCT Block1 PCT Block2 PCT Block3 PCT Block4

PCT Partition of the Application "Demo1"

Figure 16: A PCT Partition of an Image Processing Synchronous Data Flow

PCT Computation Block:

A PCT Computation Block, or PCT Block, is an image processing data ow sub{

graph which meets the following constraints:

{ The sub{graph has at most one input connection and one output connection.

{ The input and output connections transfer image data.

The reasoning behind these constraints is given later in the text.

PCT Partition:

Given an image processing synchronous data ow (with each algorithm following

the previously discussed general image processing algorithm de�nition), a PCT par-

tition is a partition for which each computation block is a PCT Computation Block.

A PCT Partition of the application model Demo4 into 4 PCT Computation Blocks is

shown in �gure 16.
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PCT Computation Block

OutputInput OutputInput OutputInput

Stream

OutputInput

Stream

Downstream Peers of Node 2

Upstream Peers of Node 2

CPU1

Node1

Memory1 Memory2

CPU2

Node2

Memory N

Node N

CPU N

2nd Partial Result

PCT Group

Figure 17: Demonstration of the PCT Group Concept

PCT Group:

N pipeline{connected nodes working together to data parallelize a PCT compu-

tation block are referred to collectively as a PCT group. A PCT group together with

the PCT block it is implementing are shown in �gure 17.

Upstream/Downstream Peers:

Given node k of an N{node PCT group, the nodes in the pipeline which are closer

to the source data stream are referred to as upstream peers of node k, and those

farther from the source data stream are referred to as downstream peers of node k

(see �gure 17).
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Partial Result:

The work load is being spread across the nodes by decomposing the data stream.

For any given cycle, node k will compute a subset of the output data referred to as

the kth partial result (see �gure 17).

Required Input:

Referring to the general image processing algorithm described in �gure 2, the

computation of the kth partial result requires the values of the pixels from a subset

of the possible input image pixel locations. These locations together form a region

within the input image sequence. The set of input data required is referred to as the

required input of node k.

Shared Input:

A pixel is said to be shared if it is part of the required inputs of two or more nodes

in a PCT Group. The number and positions of shared pixels depends upon the data

dependency properties of the computation, the number of nodes in the PCT group,

and which data parallel decomposition method is being used (spatial or temporal).

Intermediate Results:

Connections internal to a PCT Block are referred to as intermediate results. Re-

ferring to �gure 16, the connection between 5x5 Conv and Sub is an intermediate

result local to PCT Block2.
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SIMIOAC (Simultaneous I/O and Computation):

The PCT run{time system supports two forms of process/computation synchro-

nization, one in which the computations are performed simultaneously to the I/O

communication, and one in which they are not. This option will be referred to as

SIMIOAC.

Decomposition Method:

The way in which the computation is being decomposed across the PCT Group.

The supported methods are Sequential, Temporal, and Spatial (rows), which will be

discussed in the text.

Decomposition Alternative:

The combination of a Decomposition Method and a SIMIOAC setting. There are

six supported decomposition alternatives (3 Decomposition Methods * 2 SIMIOAC

Settings).

C40 Background

The C40 DSP was designed to be used as a parallel system building block. It has

6 communication ports and 6 autonomous DMA co{processors on the chip which can

transfer data either (1) from memory to memory, (2) from a communication port to

memory, (3) from memory to a communication port, or (4) directly from a communi-

cation port to another communication port1. The DMAs can operate independently

of the CPU, which enables the communication and computation processes to occur

1This is possible since the C40 communication ports are memory mapped devices, and the DMA

can be programmed to transfer directly to or from the port address. In this mode, however, the port

synchronization features do not work, so care must be taken not to create a deadlock.
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simultaneously.

A powerful feature of the C40 DMA engines is that each DMA can be set up

to automatically "re{program itself" when a transfer terminates (see Fun With Link

Pointers in [50]). This feature, called link pointer auto initialization, allows the DMAs

to be programmed with link pointer tables and interrupt routines so that they operate

as autonomous communication engines.

PCT Overview

With these de�nitions and background information out of the way, the next sec-

tions will explain how the PCT{C40 technique works and how it was implemented.

Each node of a PCT group (a pipeline{connected group of C40s) will perform the

same computations on a di�erent section of the image data. The incoming stream

must be split and spread across the memory banks of the group nodes, and after the

local data ow computation has produced the partial results, they must be combined

(merged) to form the output data stream. The type of decomposition that is being

performed, and the data dependency requirements of the algorithms in the data ow

determine exactly how the data stream will be split and merged. As well as dis-

tributing the decomposed data across the memory banks, the communication engine

must also support the sharing of pixels from the input sequences between two or more

nodes in a PCT group.

PCT Communication State Machines:

The distribution of the required inputs (including replication of shared pixels)

and collection of partial results in a PCT group is achieved by programming two
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of the DMAs on each node to operate together as a synchronous communication

state machine. A PCT communication state machine has four possible states (see

�gure 18):

1. receive & send: read input data from input port to memory and simultaneously

send partial results from memory to output port

2. insert: send copies of local input pixels which are to be shared with downstream

peers to the output port

3. forward: send data from input port to output port (cut{through).

4. idle: cycle has terminated and communication engine is idle, waiting to be

restarted

The implementation is achieved by programming the DMAs with link tables so

that they execute the correctly timed sequences of receive & send, forward, and insert

that cause the input data stream to be distributed appropriately across the memories

of the group, and the output stream to be assembled.

Each PCT Group node's communication engines are synchronized not only with

the local computation, but also with its upstream and downstream peers so that

together they work as a larger state machine. The operation of a PCT group com-

munication state machine varies depending upon the decomposition alternative being

used. The operation of the PCT group communication will be examined for each

decomposition alternative in the following sections.
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Figure 18: PCT Communication State Machine

Shared Input Data:

The most di�cult part of implementing data parallel computations is dealing with

the shared data. One approach could have been to support dynamic asynchronous

message passing in the communication system so that shared data could be transferred

between the PCT group nodes during the computation. However, this approach

would add complexity to the communication system, and eventually to the mapping

algorithm, since the mapping would have to take into account the strong relationship
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between the routing of the data sharing messages and the performance of the resulting

implementation. To avoid this problem, the approach used by PCT is to place a copy

of each shared input pixel in the local memory of every node requiring it during the

splitting phase, before the computation begins. The determination of which nodes

require which pixels is done by constructing and analyzing the local requirements

sets. This technique eliminates the need for run{time inter{peer communication and

simpli�es the run{time communication system and the mapping algorithm. The down

side is that the replication adds communication overhead.

Shared Intermediate Results:

Similarly to the sharing of input data, sharing of the intermediate results may also

be required. This occurs when there is overlap between the regions of an intermediate

result required by two or more processors. The overlap data must somehow be shared

by the processors.

For example, suppose a PCT block contains two algorithms in series, the second

being a 5x5 convolution, and suppose that spatial decomposition is being used. Each

copy of the convolution algorithm will compute a sub{image of each output frame,

and will require a region of each input image which is slightly larger than the output

region it computes. To be exact, two extra rows must be added on the top and

bottom of any horizontal cut, and two extra columns must be added to the left and

right of any vertical cut. Thus, there are regions in each frame of the convolution's

input image sequence which must be known on more than one of the group nodes.

In other words, regions of the intermediate results sequence must be shared between

peers.
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The run{time system could have been designed to support shared intermediate

results regions by exchanging the data during the computation of the group schedule

via dynamic asynchronous message passing. However, this would cause unpredictable

performance behavior and would add complexity to the system. The mapping algo-

rithm would have to take into account the placement of processes and the routing of

these run{time messages.

The way that PCT implements sharing of intermediate results is by replicating

the computations. In other words, the values of shared intermediate results are cal-

culated locally to each node on which they are required. This obviously introduces

computation overhead, but in contrast to the alternative, it was seen to be the best

method of keeping the generality without jeopardizing the performance predictability

of the PCT kernel and the plausibility of the mapping algorithm. The overhead of

replicating computations will show up in the performance models, which will tend to

discourage decompositions which have large amounts of shared intermediate data.

PCT Details

The communication state machines are implemented by taking advantage of DMA

link pointer auto initialization and DMA interrupt service routines. The communi-

cation engine can be synchronized with the local computation in one of two ways:

the I/O communication and computation can occur at di�erent times, or can occur

simultaneously. Whether or not the I/O and computation will be done simultane-

ously is an option called SIMIOAC in the PCT con�guration. Obviously, if I/O and

computation are simultaneous, the input and output images will have to be bu�ered

locally, since the computation should not work on an input image until it has been
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fully received.

The following examples demonstrate the operation of the PCT communication

engine and how it works in conjunction with the local computation, both with and

without simultaneous I/O and computation. In each case, a pipeline{connected PCT

Group of N C40 nodes is shown implementing a PCT Computation Block called

Comp(in,out) on the image data stream with spatial data parallelism.

Operation Without Simultaneous I/O and Computation:
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Figure 19: Pipeline Cut{Through Without Simultaneous I/O and Computation

The communication and computation states of the PCT mechanism shown in �g-

ure 19 represent the case where the communication and I/O computation processes

are not simultaneous. Any particular node's state cycle begins with receiving a lo-

cal input image from the input port and sending the partial results of the previous

computation to the output port. After this I/O state has terminated, the computa-

tion is begun with the newly received input, and the communication engine begins
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forwarding data from the input port to the output port. The computation and com-

munication processes are synchronized before the next I/O state can begin. At any

given time, one of the nodes is in its I/O state. The rest are in the forwarding state.

Each of the upstream peers is forwarding the input data stream from its input port

to its output port, and each of the downstream peers is forwarding the output data

stream from its input port to its output port. Also, during this time, each upstream

and downstream peer is simultaneously performing Comp(in,out) on its local input

data.

E�ectively, the node in its I/O state is receiving data from the input stream

through its upstream peers, and sending data to the output stream through its down-

stream peers. Through the group cycle, the e�ect is that the input stream is split

across the memories of the N processing elements, and the N partial results are

computed and concatenated to form the output stream.

Operation With Simultaneous I/O and Computation:

The operation of the PCT Group in the case with simultaneous I/O and compu-

tation is largely the same. The only di�erences are that each node is performing the

computation at all times, and the local input and output images are double bu�ered.

The image being split during cycle k will not be used in the computation until cycle

k + 1. For this reason, the PCT group cycle has twice as many states. Notice that a

side{e�ect of the double bu�ering is that additional latency is introduced. Figure 20

shows the case in which communication and computation are simultaneous. Since

the communication is concurrent to the computation, each node is very nearly always

computing.
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Figure 20: Pipeline Cut{Through With Simultaneous I/O and Computation

PCT Group Operation Overview:

The reasoning for supporting two methods of synchronization between the com-

munication engine and the scheduler can be explained easily by referring to �gures 19

and 20. Note that in the case that I/O and computation are not simultaneous,

there are only three states, and that a particular image spends one full computation

cycle in the local memory of the group nodes. However, if I/O and computation

are simultaneous, the double bu�ering causes any particular image to spend two full

computation cycles in the local memory of the group nodes. The di�erence is latency.
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The double bu�ering doubles the latency of the computation. However, also note that

in the case with SIMIOAC, every node is always computing, but in the case without

SIMIOAC, only N � 1 are always computing. This reduces the e�ciency, and causes

more processors to be used to achieve the same throughput. A more in{depth discus-

sion of the trade{o�s involved in choosing a decomposition alternative will be given

later.

Note that in the example in �gures 19 and 20 a simpli�cation has been made

so that the �gures would be understandable. The implementation of data sharing

between processors requires additional insert communication states in which upstream

processors insert copies of local input data into the stream at the appropriate time

during the splitting process, which e�ectively replicates sections of the data stream.

There are no insertion states shown, so no input data is being shared by the processors

in the examples.

Programming the DMA co{processors to achieve the appropriate PCT commu-

nication patterns is tedious. The DMA state table is programmed based on several

variables which are set at run{time, including the image dimensions, the data depen-

dency characteristics of the PCT Block being executed, the number of processors in

the PCT group, the type of data decomposition being implemented, and the proces-

sor's location in the PCT group. These variable are used to determine the timing of

the communication state table, which implements (1) I/O of local inputs and partial

results (2) forwarding of non local inputs and partial results, and (3) duplication of

shared inputs and their insertion into the data stream at the appropriate time. Al-

though doing the con�guration of the PCT DMA engines through hand coding is not

feasible, the con�guration can be automated, as will be seen.
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The PCT{C40 Scheduler

The PCT run{time system implements the local PCT Block data ow computa-

tion with simple round robin static scheduler. The interpreter generates a Periodic

Admissible Sequential Schedule (PASS) for each computation block, which is down{

loaded to the run{time system when the system is started. This static scheduling

scheme introduces almost no run{time scheduling overhead. The generation of the

block schedules will be discussed in a later section.

As the PASS is run, the algorithm currently being executed receives its inputs

and outputs through calls to the PCT run{time support library, and computes its

outputs as if there were no parallelism. The scheduler takes care of the propagation of

local intermediate results between the local producer and consumer algorithms, and

the correctness of the static schedule guarantees that each time an algorithm runs,

its input data will be available.

Scheduler Without Simultaneous I/O and Computation:

In that case that the I/O and computations are not simultaneous, the end of the

local I/O is synchronized with the beginning of the local schedule. The communication

engine is run and allowed to terminate before the scheduler is begun (see �gure 21).

A pseudo code version of this synchronization loop is given in �gure 22.

Scheduler With Simultaneous I/O and Computation:

If the I/O and computations are simultaneous, the scheduler and the communi-

cation engine are started at the same time. Synchronization between the two must

occur before the next cycle (see �gure 23). Whichever one �nishes �rst must wait on
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Figure 21: PCT Scheduler Without Simultaneous I/O and Computation

the other. The management of the synchronization is done through DMA interrupts

from the communication side, and through busy waiting from the computation side.

For further clari�cation, a pseudo code version of the main program loop is given in

�gure 24.

Summary of the PCT{C40 Run{Time System

The PCT run{time system provides the communication, scheduling, and synchro-

nization support necessary to implement a PCT Computation Block data ow on

a pipeline{connected PCT Group of C40 nodes. It is made up of a communication

engine which exploits the powerful DMA engines of the C40, and a scheduler which

implements a PASS data ow schedule provided to it at run{time.

The following decomposition techniques are supported (each can be used with or
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//pct main loop without SIMIOAC

while 1 f
// receive next input and send last output

start I/O engine

while receiving f
busy wait

g
// insert shared local data

start insert engine

while inserting f

busy wait

g

//run schedule

for each algorithm (A) in schedule f
run A

g
g

Figure 22: The PCT Synchronization Loop Without SIMIOAC

without simultaneous I/O and computation):

{ Sequential: no parallelism

{ Temporal data parallelism

{ Spatial data parallelism (splitting into blocks of rows)

{ Spatial+Temporal data parallelism (splitting into 3{D cubes)

The system can implement PCT Partitioned synchronous image processing data

ows having exactly one image data source and one image data sink. The use of

PCT Partitioning, which implies that each computation block has exactly one image

input and one image output (the top level partition data ow is a pipeline of PCT

Computation Blocks), allows the processes of decomposing and scaling the computa-

tion blocks to be decoupled from the allocation of the decomposed data ow to the
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Figure 23: PCT Scheduler With Simultaneous I/O and Computation

hardware (this will be clari�ed later). This decoupling makes the automatic mapping

process feasible.

The PCT Partitioning is not unnecessarily restrictive, since each PCT Computa-

tion Block can have a complex internal structure (several algorithms, local connections

with fan outs, delay loops, etc.). The worst case is that the entire data ow, with

the exception of the source and sink processes, will be in a single PCT Block. Since

many image processing computations are pipeline in nature anyway, and ones that

are not can always be partitioned into this form, this solution is quite exible.
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//pct main loop with SIMIOAC

while 1 f
// receive next input and send last output

start I/O engine

//insertion of shared data will occur automatically

//run schedule

for each algorithm (A) in schedule f
run A

g
while (receiving or sending or sharing) f

busy wait

g

g

Figure 24: The PCT Synchronization Loop With SIMIOAC

Caveats

With the initial PCT implementation, only images can be transferred between

blocks, but other data structures can be passed between algorithms internal to a

block. Also, only concatenation of partial results is supported in the initial prototype.

The Prototype Image Processing Library

The actual image processing functionality is provided by a library of image process-

ing algorithms written in C and compiled with the standard Texas Instruments C40

compiler. This library is the simplest component of the system, since the image pro-

cessing functions can be written as if they were to be used in a normal uni{processor

system, with the exceptions that the programs should not use global variables, and

each function provides two entry points: (1) A COMPUTE function: the normal

function which implements the computation, and (2) a SETUP function: an optional

dynamic parameter setup function. The global variable constraint is not a hard rule,
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but a strong recommendation. The COMPUTE and SETUP entry points will be

discussed next.

The Compute Function

The actual image processing algorithm is implemented with a call to a normal

sequential C{coded function. An application programming interface (API) to the

PCT support library provides an interface through which the compute function gains

access to the current and past states of input and output data bu�ers.

There is no mention of parallelism in the code whatsoever, so any programmer

with experience with the C programming language and an understanding of an image

processing algorithm can add capabilities to the system. A major strong point of

the approach is that it is possible to exploit commercial image processing libraries

which are optimized for the C40. This can dramatically reduce programming cost

and increases performance. Note that in the convolution algorithm code given in

the appendix, the COMPUTE function is merely a wrapper around a call one of the

assembly coded convolution functions aconv3x3 or aconv5x5, which were taken from

an image processing library optimized for C40s.

The Setup Function

The parameter setup function is used in dynamically managing the context of

the running algorithm. It is passed an array of tokenized arguments in the standard

argc,argv format. The functionality of the setup function is actually already part of

any C{coded image processing algorithm which parses the command line arguments

in setting program options. The di�erences are (1) the command line parsing is
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moved into a separate function (2) the setup function will be called multiple times.

The setup function is registered with the PCT run{time system so that it can be

called whenever a parameter update message is received for that function instance.

The run{time system manages the dynamic setup by delivering setup messages to all

nodes running the targeted function instance, parsing the formatted string into the

argc,argv format, and calling the setup function with argc,argv. An example of a

SETUP function (the one used for with the conv image processing library function)

is included in the appendix.

Implemented Algorithms

The algorithms which have been implemented in the prototype image processing

library are shown in table 10. For an example of the coding style and API calls, refer

to the example given in the appendix.

The MIRTIS Model Interpreter

The model interpreter is the heart of any MGA system, and requires the largest

implementation e�ort. The job of the MIRTIS model interpreter is to translate the

IPDL models into a scaled decomposition of the data ow, map the decomposition

to the underlying hardware architecture, and construct network communication and

computation schedules which will be implemented by the real{time image processing

kernel to realize the parallel real{time data ow. Referring to �gure 14, the prod-

ucts of the interpretation are (1) PCT network con�guration �les, and (2) a GUI

con�guration �le. These �les are used in (1) booting the network, (2) con�guring

the network communication engines and schedulers, and (3) con�guring the dynamic
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ALGORITHM NAME ALGORITHM DESCRIPTION

absdi� Absolute value of the di�erence between frames

conv Convolution with 3x3, 5x5, 7x7, or 9x9 kernel

disp Display frames (runs on the NEL Display TIM)

ds Down{sample (in time or in the image plane)

grab Grab frames (runs on the NEL Grabber TIM)

lap3x3 Convolution with a 3x3 laplacian kernel

lut Table lookup

Either generates test patterns or bu�ers frames

makefake and repeatedly sends them in an in�nite sequence
(for test purposes)

plothist Plot histogram (runs on the NEL Grabber TIM)

Specialized algorithm for detecting short{

screech lived \screech" phenomena evident in exit nozzle
turbine engines during altitude simulation tests.

tavg Time average (average last N frames)

track Track an object (runs on the NEL Display TIM)

Table 10: Image Processing Algorithms Implemented

parameter graphical user interface.

Relationship Between Performance Models and Allocation

Performance models are needed for determining (1) if a particular computation

can meet the speci�ed performance goals using the available hardware, (2) a decompo-

sition method and granularity of parallelism (scale) for each block, and (3) a mapping

of the decomposed computations to the hardware that will meet the constraints.

In general, performance models are dependent upon the properties of the partic-

ular computations, the parallelization technique, and the allocation to the hardware

network. This forces the processes of decomposing the data ow and allocating it

to the hardware to somehow occur simultaneously. It is preferable to decouple these
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processes to make the mapping more practical to automate.

Due to the properties of the PCT communication technique, the support provided

by the PCT run{time system, and the restriction of the top{level PCT Partition struc-

ture to a pipeline, the allocation scheme and hardware architecture can be simpli�ed

enough that the throughput and latency models can be built in a separate step be-

fore allocation. This e�ectively decouples the decomposition and allocation processes,

making the automation of mapping data ows to hardware tractable. The emphasis

in developing performance models can thus be placed on the properties of the com-

putations. In a later section, I show that building performance models requires the

following a priori knowledge of each algorithm in the data ow: (1) the relationship

between each algorithm's execution time and data size, and (2) the way that each

algorithm accesses the input data structures in computing each output data element.

The Interpretation Procedure

Because the decomposition and allocation processes have been e�ectively decou-

pled by the assumption that the PCT run{time system will be used, the search for

an appropriate mapping between the image processing data ow and the hardware

pipeline can be reduced to �nding an appropriate data ow decomposition. Decom-

posing the data ow is a two level process: (1) �nd a PCT Partition, and (2) �nd

a decomposition alternative (a supported type of parallel decomposition) and scal-

ing factor for each PCT Block. Judging the success of a particular decomposition

involves (1) building throughput and latency models and comparing them to the

throughput and latency goals speci�ed in the system's RealTimeConstraints model

(2) making sure that the hardware architecture can support the decomposition (it
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must have enough of the right kind of processors, and they must be connected in a

an appropriate topology).

The procedure followed by the interpreter is to �rst partition the SDF into a

PCT compliant partition, determine the valid decomposition alternatives for each

block, and then search for a combination of valid block decomposition alternatives

and scaling factors that will meet the performance constraints and that the hardware

architecture can support.

build a PCT Partition (P) of the application data ow
//initialize partition
for every PCT block (B) in P f

build a PASS for B
construct block data dependencies
initialize alternatives

for every decomposition alternative DA f

build throughput & latency models

scale throughput f
if goal throughput was not reached

use the max throughput
g

g

//search for decomposition alternative set
for every combination of block decomposition alternatives (C) f

//load balance
for every PCT block (B) in P f

scale throughput(B) to throughput(P)
g

if latency(c) > goal latency f
if latency constraint is not hard f
store C in possibilities set

g

continue

g

if throughput(c)< throughput goal f

if throughput constraint is not hard f
store C in possibilities set

g

continue
g

//constraints are met with P & C
allocate P to network

write con�guration �les
g

// no solution was found! choose from possibilities set

for every C in possibilities set f
if constraints can be relaxed to C f

allocate P to network
write con�guration �les

g

// no solution exists
FAIL

Figure 25: Interpretation Procedure
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A pseudo code version of the interpretation procedure is shown in �gure 25. Note

that the decomposition procedure contains two layers, (1) partitioning of the data

ow into PCT{compatible blocks, and (2) data parallel decomposition of the blocks.

The allocation occurs only after a scaled decomposition has been chosen for the

solution. This decoupling of the decomposition and allocation was made possible

by partitioning the top level data ow into a pipeline of PCT Blocks, which can be

implemented on a hardware pipeline using the PCT run{time facilities. Without this

simpli�cation, the performance models would be inextricably dependent upon the

allocation, and thus a much more complicated procedure would be required.

An exhaustive search is made of all decomposition alternative combinations until

either the constraints have been met, or the valid alternative sets have been exhausted.

Alternative combinations which meet the hard real{time constraint(s), but may not

meet the other(s), are stored in the possibilities set during the search. The end result

of a successful search is a partition, and a set of decomposition alternatives and

scale factors for the partition blocks which can be allocated to the hardware pipeline

to achieve the target throughput and latency. If no solution was found during the

search, an attempt is made to relax the throughput and/or latency constraints. If

both constraints are hard constraints, then no concessions are made. Otherwise, the

alternative sets which were stored in the possibilities set are examined, and the one

which most nearly matches the constraints is chosen. The decision of which of these

most nearly matches the constraints is made by putting priority on throughput by

choosing the set which produces the highest frame rate. This decision was made

primarily because the system was designed with real{time video in mind, and in

video applications throughput is most often the more important constraint.
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In the future, this approach favoring throughput should be replaced with a more

exible one to reect the needs of other domains. However, note that this problem

only occurs if no mapping could be found which would meet the constraints.

The initial version of the algorithm is also awed in that, since the latency (in

frames) depends strongly upon the number of blocks and the decomposition alter-

native set, the graph should immediately be repartitioned if the latency apparently

cannot be met with the current partition and the goal is latency is a hard constraint.

This would avoid unnecessarily long searches. This more intelligent approach will be

implemented in any future work on this project.

Partitioning The Data Flow Graph

The image processing synchronous data ow graph must be partitioned into a

PCT Partition to meet the requirement of the PCT run{time system. For a PCT

Partition, each computation block must meet the following set of rules:

{ only image sequences can be inputs and outputs to the block

{ at most one block input

{ at most one block output

{ no other block can share this block's input connection

A simple algorithm is used to �nd the �rst PCT Partition of the synchronous data

ow, which is the PCT Partition with the most blocks. A pseudo code version of the

algorithm is shown in �gure 26.
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//build initial partition

build a partition (P) with exactly one algorithm per block

//combine blocks until each is a PCT Block

while P is not a valid PCT Partition f
for each block (B) in P f

if B is source or sink
continue

if B has ( > 1 input) or ( non{image inputs) f
combine B with block producing of each input
continue

g

if B has ( > 1 output) or ( non{image outputs) f
combine B with each block consuming each input
continue

g

g

g

Figure 26: PCT Partitioning Algorithm

Generating Block Schedules

Of the several available static scheduling algorithms for synchronous data ows,

I chose the Lee{Messerschmidt algorithm for synchronous data ows to generate a

static schedule for each partition block. The algorithm, developed in [32], is based on a

linear algebraic formulation of the internal bu�er levels for the local synchronous data

ow computation. The existence of a PASS is determined by examining the null space

of the next bu�er state transformation matrix, and the schedule is determined through

a simple procedure which repetitively updates the bu�er state vector by application

of an algorithm selection vector to the transformation matrix. The implementation

of the algorithm in the interpreter required a matrix manipulation package, which I

wrote in C++. The details of the Lee{Messerschmidt algorithm can be found in [32].
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Analyzing the Decomposition Alternatives

Each partition block can be assigned one of six supported decomposition alter-

natives, each consisting of a data decomposition method, and whether or not the

I/O and computation processes will be simultaneous. The supported decomposition

alternatives are shown in table 11. For each alternative, the block's net I/O data

dependency is determined, and local input, output, and intermediate data sizes are

computed. These are used in building performance models for the block.

DA# Decomposition Method Simultaneous I/O and Computation

1 sequential no

2 sequential yes

3 temporal no

4 temporal yes

5 spatial (rows) no

6 spatial (rows) yes

Table 11: Supported Decomposition Alternatives

Building Performance Models

For each supported decomposition alternative, models for throughput and latency

of a PCT Block have been developed, and are discussed in detail in this section. First,

the overall requirements and assumptions of the performance modeling technique are

given, and then the PCT Block and PCT Partition performance models for each

decomposition alternative are developed.
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Requirements and Assumptions

Execution Time Benchmarks:

The approach assumes that for each algorithm, the dependence of that algorithm's

execution time on data size has been determined via empirical benchmarks which

have been declared in the function's model. The performance of an algorithm for

a particular data size is estimated by linear interpolation on these benchmarks, so

each algorithm must be benchmarked with a su�cient set of data sizes such that the

relationship inferred by linear interpolation on the benchmark set is an acceptable

estimate of the execution time for a particular data size. Algorithms with non{

linear execution time/data size relationships require a larger set of benchmarks to be

speci�ed than algorithms with more linear execution time.

Data Dependency Speci�cation:

It is also necessary to assume that the data access patterns for the algorithms

are known. Some sort of data dependency speci�cation will convey the relationship

between elements of the output data sequences and required regions in the input

sequences. From these speci�cations, total data dependency set will be constructed

for each element of the output data sequence, resulting in direct knowledge of what

regions of the input sequences are required to be local to the computation of each

output data element.

Speci�cation of Worst Case Behavior:

Although the execution time and data access patterns of the algorithm must be

known a priori to the performance modeling, neither must be �xed. Both can vary
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with changes in the nature of the data, as long as worst case speci�cation of the

execution time and required regions are available prior to run{time.

For algorithms with data dependent performance, the benchmarks given are as-

sumed to be upper bounds, so the products of the performance analysis are worst

case throughput and latency models. However, note that this practice may lead to

very ine�cient solutions in the cases in which the actual time taken by the algorithm

is far less than the upper bound.

For algorithms with data dependent data access patterns, the worst case behavior

is speci�ed as a bounding region for each of the input images, where a bounding region

is a set of pixel locations which is guaranteed to be su�cient to calculate all local

output data for all cases. Again, note that in cases where the actual data required

locally to each processor is much smaller than the worst case bounding region, the

implementation may be ine�cient due to unnecessary communication overheads.

In the next sections, the latency and throughput models for each of the decompo-

sition methods will be derived, using the assumptions above and also supposing that

the PCT Block data ow will be implemented by the PCT{C40 run{time system.

General Execution Time Model

Given a single node from a PCT Group of processors implementing a PCT Block

data ow using any of the decomposition methods, the execution time required for

that node to compute it's local partial result can be characterized by general execu-

tion time models, depending upon whether the I/O and computations are performed

simultaneously.
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Without SIMIOAC:

In the case in which the I/O and computation are not simultaneous, the local

input must be received, the local output sent, and the local inputs shared with the

downstream processors before the scheduler is allowed to proceed). For this reason,

the I/O and sharing times for this case must be added to the actual computation

time. The resulting model is shown below.

Texec = TI=O + Tshare + Tschedule

With SIMIOAC:

In the case in which the I/O and computation are simultaneous, the local input is

received, the local output is sent, and the local inputs are shared with the downstream

processors as the computation is being performed on the previous input bu�er.

With this synchronization method, the time taken to complete one computation

cycle will depend upon which is slower, the computation, or the communication. The

resulting execution time model is shown below.

Texec =MAX(TI=O + Tshare; Tschedule)

Calculation of TI=O, Tshare, and Tschedule:

The values of TI=O, Tshare, and Tschedule in the general models obviously depend

upon the block input, output, and intermediate local data sizes, the amount of the

local data which is to be replicated and shared with the downstream peers, and the

time taken to compute the local output. These quantities will vary depending upon

the decomposition method and the scaling factor (number of nodes).
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The I/O time, TI=O, scales linearly with the local input and output data sizes,

and is modeled simply by

TI=O =
MAX(sizeinput; sizeoutput)

Bandwidthlink

Similarly, the input sharing overhead is

Tshare =
sizeshared

Bandwidthlink

where sizeshared is determined by analysis of the data dependency speci�cation. The

shared size is the number of pixels lying in the intersection between the region in

the input sequence the node requires locally and the regions in the input sequence

the node's downstream peers require (the total number of pixels which are local to

this node which must be replicated and sent to downstream peers). This quantity

depends upon the decomposition method, and will be characterized for each case in

the following discussion.

The block computation time, Tschedule, is achieved by summing the execution times

of the individual algorithms. Each algorithm's execution time is calculated by linear

interpolation on it's benchmarks using the data size seen on that algorithm's output

connection. The data sizes of the image sequence connections are obtained by �rst

determining the size of the local partial result image based on the total image size,

the decomposition method, and the number of nodes in the PCT group. Then the

data dependency speci�cations of the algorithms are used to propagate back from the

block output through the block data ow to determine the required regions of each

input and intermediate results sequence.

For example, consider the PCT block introduced previously containing two algo-

rithms in series, the second being a 5x5 convolution. The schedule execution time
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for each group node will be derived from the size of the partial results computed on

each node, and the size of the intermediate results which are necessary to compute

the partial results. Since the second computation is a 5x5 convolution, the �rst al-

gorithm must compute two extra rows at the top and the bottom of it's output data

so that the convolution will have all necessary input data. The result is that the �rst

algorithm's output data size is larger that the output algorithm's. Considering two

group nodes, the extra rows of the intermediate result which must be computed on

each are shared between the two, and this sharing introduces computation overhead.

The procedure for calculating Tschedule is to �rst determine the local required region

of each input image and intermediate results sequence based on the local partial results

size and the data dependency speci�cations. The execution time of each algorithm is

then calculated by linear interpolation on the algorithm's execution time benchmarks

using the size of the local required region of it's output image connection. The

individual algorithm execution times are then summed to arrive at Tschedule.

Tschedule(sizelocal output) =
MX
i=0

timealgorithmi
(sizeconnectioni)

whereM is the number of local algorithms, sizelocal output is the size of the local partial

result, and sizeconnectioni is the size of required region of algorithmi's output image.

Note that if spatial decomposition is used, the block output data size will be

sizelocal output =
sizeoutput

N

and if temporal decomposition is used, it will be

sizelocal output = sizeoutput
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Relating Execution Time, Latency, and Throughput:

How the execution cycle time of the individual nodes relates to the throughput

and latency of the PCT Group varies with the decomposition alternative being im-

plemented. If the data is being decomposed spatially, the I/O and execution times

for each group node decreases, which increases throughput and decreases latency (la-

tency in seconds, but not latency in frames). In the case of temporal decomposition,

the I/O and execution times for each group node do not decrease, but several images

will be computed simultaneously, so the number of output per unit time (throughput)

increases. However, because several images will exist in the pipeline all the time, the

latency increases,

In the following sections, throughput and latency models speci�cally for each

decomposition alternative will be developed by examining the timing characteristics

of PCT{C40 implemented data ows. Note that the ordering of the discussion does

not go linearly through the decomposition alternatives shown in table 11, but instead

begins with the spatial decomposition alternatives.

Performance Models for Spatial Decomposition

DA #5 { Spatial Decomposition Without SIMIOAC:

Figure 27 shows the timing of a spatially decomposed PCT Block without simul-

taneous I/O and computation. Notice that the splitting of input(k) and the merging

of output(k�1) are started simultaneously, and that the scheduler is not started until

the I/O processes �nish.

The schedule execution time can be tied directly to the size of the local partial
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Figure 27: Split{and{Merge Timing (Splitting and Computation Not Simultaneous)

result, which is the block output image. In the case of spatial decomposition, the

block output size is sizeoutput
N

, so the schedule execution time is

Tschedule(
sizeoutput

N
) =

MX
i=0

timealgorithmi
(local sizei)

To form the throughput model, notice that N image pieces enter, and N partial

results (one image) exit the system every cycle time, which is given by

cycle time(N) = TI=O + Tshare + Tschedule(
sizeoutput

N
)

The throughput in frames
sec

, then, is merely the inverse of the cycle time.

throughput =
1

cycle time(N)

frames

sec
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Thus, the system throughput is given by

Throughput(N) =
1

TI=O + Tshare + Tschedule(
sizeoutput

N
)

Throughput(N) =
1

TI=O + Tshare +
PM

i=0 timealgorithmi
(sizeconnectioni)

To determine the latency model, refer to �gure 27, and note that output(k) starts

exiting the block exactly one cycle time after input(k) begins to enter the system.

Since output(k) is the result of running the schedule on input(k), the latency is

latency(N) = 1cycle time = 1 frame

Note that the latency in seconds will decrease as the cycle time decreases, but the

latency in frames will remain constant at 1 frame.

DA #6 { Spatial Decomposition With SIMIOAC:

Figure 28 shows the timing of a spatially decomposed PCT Block with simulta-

neous I/O and computation.

PCT{C40 does not allow a particular input image to be received and computed

simultaneously. When simultaneous I/O and computation is used, the input and

output images are double bu�ered. When input(k) is being split (received locally),

output(k�1) is being computed from input(k�1), and output(k�2) is being merged

(see �gure 28).

During any processor's schedule cycle, which lastsMAX(TI=O+Tshare; Tschedule(
sizeoutput

N
))

time units, exactly N pieces, or an entire image, enters and exits the system. Thus,

The throughput is given by

Throughput(N) =
1

MAX
�
TI=O + Tshare; Tschedule(

sizeoutput
N

)
�
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Figure 28: Split{and{Merge Timing (With Simultaneous Splitting and Computation)

Throughput(N) =
1

MAX
�
TI=O + Tshare;

PM
i=0 timealgorithmi

(local sizei)
�

To determine the latency model, refer to �gure 28, and note that the output(k) begins

to exit the block exactly two cycles after input(k) begins to enter the block. Thus,

the latency is given by

Latency(N) = 2cycle times = 2 frames

Discussion:

Note that in either of the models shown, the achievable throughput will of course

have an upper bound. It will either be limited by the hardware communication

bandwidth, or by the nature of the problem.
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In the �rst case, the amount of communication occurring on one of the communi-

cation links reaches it's maximum data rate, and the throughput abruptly reaches a

maximum. At that point, additional processors will begin to decrease the throughput.

In the second case, the schedule time will decrease to the point that it is balanced

with the local I/O time (they are equal). Referring to �gures 27 and 28, note that

if the problem is not computation bound (the Tschedule(sizeoutput) is not very large

with respect to TI=O + Tshare), it is probable that after N increases even slightly, the

throughput will reach a maximum. This case is certainly not disastrous. It is actually

the preferable case, since this means that only a few nodes will be required to scale

the problem to the I/O bandwidth, which is usually the target throughput.

When using either DM#5 or DM#6 (see table 11), the maximum throughput is

reduced to below the hardware link bandwidth as the amount of input data required

to be shared between the group nodes becomes large. In either case, the following

holds true:

Throughput(N) � image size � bandwidthlink � bandwidthshare

In other words, the maximum achievable communication data rate will be bound by

the hardware bandwidth reduced by the bandwidth required to share input data using

the links internal to the PCT Group.

Although the throughput is scalable to the same level with either decomposition

alternative, there are advantages to using one over the other in certain situations.

The obvious advantage of DA #6 is the factor of two latency reduction. However,

examining �gure 27, note that in the case with simultaneous I/O and computation, at

any given timeN processors are computing. In the other case, shown in �gure 28, only
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N � 1 are computing at any one time. By allowing all processors to compute all the

time, higher throughput is achieved with fewer processors, but the double bu�ering

that is required increases the latency. The trade{o� is evident. When latency is

important, then the simultaneous I/O and compute option should not be used, but

when latency is not important, it should.

Performance Models for Temporal Decomposition

The images are not split into pieces with temporal decomposition, so the in-

put/output communication times are easily characterizable. However, there are still

two cases to be considered: with and without simultaneous communication and com-

putation. These cases are represented by the timing diagrams in �gures 29 and 30.

Notice that the timing diagram shows no time for sharing images between the group

processors. The PCT{C40 run{time system does not support sharing entire images

between the group peers because the resulting overheads would be too costly. How-

ever, future versions of the system using higher bandwidth connections may provide

such support. TI=O can be characterized simply by

TI=O =
MAX(sizeinput; sizeoutput)

bandwidthlink

DA #3 { Temporal Decomposition Without SIMIOAC:

Figure 29 shows the timing of a temporally decomposed block when the nodes

do not compute while receiving data. Notice that input(k) enters the system while

output(k�1) exits, and that the computation of output(k) from input(k) begins after

input(k) has been received.

The throughput model is formed by noting that N entire images enter/leave the
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Figure 29: Temporal Decomposition Timing (Communication and Computation Not
Simultaneous)

system every Tschedule + TI=O time units. The throughput is given by

Throughput(N) =
N

Tschedule + TI=O

The latency model in frames is obtained by noting that output(k�N) begins leaving

the block exactly when input(k) begins entering the block.

Latency(N) = N frames

The latency in seconds is obviously

Latency(N) = TI=O + Tschedule
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Note that the latency in frames increases with N , but the latency in time remains

constant.

DM #4 { Temporal Decomposition With SIMIOAC:

Figure 30 shows the timing of a temporally decomposed block when the nodes do

compute while receiving data.
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Figure 30: Temporal Decomposition Timing (With Simultaneous Splitting and Com-

putation)

The throughput model is given by (see �gure 30)

Throughput(N) =
N

Tschedule

Noting that output(k � 2 �N) exits the block at the same time that input(k) enters
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it, the latency is given by

Latency(N) = 2 �N frames

The Latency in seconds is

Latency(N) = 2 � Tschedule

Discussion:

An obvious drawback of temporal decomposition is that the computational la-

tency increases with the number of processors. However, the throughput scales with

N , and the problem of throughput being limited because of the nodes sharing input

pixels is removed. Temporal decomposition is useful for non latency critical appli-

cations, algorithms which have large required regions, or when the algorithms are

non{splittable.

Performance Models for Sequential Execution

These cases, DM#1 and DM#2, are not of interest, since the throughput and

latency models are the same as either the spatial or the temporal models with N = 1.

The Dynamic Parameter Graphical User Interface

A GUI for adjusting the dynamic parameters of the algorithms in the data ow

has been speci�ed, but only partially implemented. The GUI is being implemented

as a set of recon�gurable Java applets which are used in conjunction with HTML

pages and the Netscape web{browser. In lieu of the GUI implementation, a textual

interface is currently used for interacting with the running network. It runs on the
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PC host, and allows the user to dynamically con�gure the running algorithms by

broadcasting messages across the C40 network via the PCT communication system.

The messages are tokenized and passed to the appropriate image processing algorithm

setup functions, which interpret the message and update the parameter values of the

algorithms as they run.

The interpreter generates a GUI con�guration �le from (1) the information con-

tained in the parameter interface aspect of the individual image processing function

models, and (2) the data ow decomposition. This con�guration �le will be used by

the GUI in determining what parameters can be adjusted, the types of widgets to be

used, the initial values, the function to which each parameter belongs, and how the

messages are to be constructed.

As an example, consider the 5x5 convolution algorithm model seen in �gure 37 of

the appendix.

This model de�nes parameters for dynamically adjusting the convolution kernel,

the scale, and the o�set. The convolution function model then contains descriptions

of the kernel, scale, and o�set parameters which are put into the con�guration �le to

(1) inform the user interface to include widgets for adjusting the kernel (an array of

oats), the scale, and the o�set (oats), and (2) describe to the user interface what

messages to send and how to send them in order to update those parameters when

the widgets are adjusted.
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CHAPTER VI

CONCLUSIONS

This dissertation has presented the problem posed by the need for support of

the high performance image processing and vision applications which will become

prevalent in the future. Such vision applications may require on the order of tens of

billions of operations per second.

One approach which shows promise in supporting the applications is to somehow

decompose the image processing computations and map them to parallel architec-

ture. However, parallel architectures are prohibitively di�cult to program. For the

parallel approach be become feasible, high{level parallel programming development

environments and tools for generating the parallel applications are essential.

This work has taken a novel approach toward parallel programming by generating

parallel real{time applications of image processing data ows from high{level speci�-

cations. Both (1) an environment with which the user can build graphical models of

a data ow computation, the hardware resources available to solve the problem, and

real{time speci�cations, and (2) an interpreter for automatically transforming these

models into a real{time implementation have been developed.

The interpreter performs the data ow decomposition, performance modeling,

scaling, load balancing, and scheduling simultaneously and automatically, then allo-

cates the decomposed, scaled computation to a network of DSPs. A parallel image

processing run{time kernel provides communication, routing, scheduling, and syn-

chronization for the implementation.
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Contributions

Parallel Program Generation

A unique approach toward parallel program generation was developed which com-

bines automatic translation of sequential programs and meta{level driven software

synthesis. Existing sequential programs are automatically parallelized with the aid

of information about the algorithms stored in graphical models.

Explicitly Speci�ed Real{Time Constraints

Both throughput and latency constraints are modeled explicitly and drive deci-

sions about the types of decomposition and granularity of the parallelism to be used.

Performance Modeling

Predictive performance models have been developed using a multiple benchmark-

ing technique which enables the parameterization of algorithms which have a non{

linear relationship between execution time and data size. The performance models

also take into account the communication overheads due to sharing of data between

processors.

Data Dependency Speci�cation Language

A mathematical speci�cation language for modeling the data dependency patterns

of image processing algorithms has been developed, along with a method of combining

these data dependency speci�cations to determine the dependency between any two

image signals in a data ow. This capability was necessary to the implementation of
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the multi{level decomposition technique for complex data ows.

PCT{C40 Run{Time Kernel

A run{time kernel has been implemented for C40s which uses a unique commu-

nication routing technique to allow data parallel implementations of complex image

processing data ows to be mapped to a C40 pipeline. The communication engines

are programmed to operate as state machines which route all communication along

the pipeline, cutting through intermediate nodes without a�ecting their on{going

computations.

Automatic Data Flow Decomposition and Mapping

A method of automatically decomposing image processing data ows and map-

ping them to parallel hardware resources has been devised. The decomposition and

scaling decisions are driven by the real{time constraints speci�cations and success of

a particular scheme is gauged with predictive performance models.

Future Work

Some aspects of this model{based approach toward generating real{time parallel

image processing systems are beyond the scope of this dissertation and should be

investigated further in the future.

Support of Applications with Multiple I/O Streams. The MIRTIS system supports

only data ows with single source and sink image streams. Applications such as

robotics routinely use multiple cameras for stereo vision, and military target tracking

systems often use multiple sensors types (visible light and infrared) simultaneously
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in tracking objects. These applications should be supported.

Support of Other Decomposition Methods. Currently, the run{time system sup-

ports temporal and spatial decomposition by blocks of rows. Other methods which

should be supported are spatial decomposition by blocks of columns and windows.

More E�cient Mapping Algorithm. The mapping algorithm used by the MIR-

TIS model interpreter performs an exhaustive search of all combinations of block

decomposition alternatives. For N blocks, this generates 6N possible combinations.

A much more intelligent approach is possible by noting that the latency is depen-

dent only upon the data ow partitioning and the decomposition alternative of each

block. If the latency constraint were guaranteed �rst, during the partitioning stage,

the search space would be greatly reduced. The throughput constraint could then be

satis�ed quickly by treating each of the blocks separately during the scaling stage.

The need for an exhaustive search of all decomposition alternatives would then be

eliminated. Since the blocks can be treated separately, and each has at most six

possible alternatives, the previous search through 6N combinations could be reduced

to at most 6 �N combinations.
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Appendix A

GLOSSARY OF ACRONYMS AND TERMS

{ C40: The Texas Instruments TMS320C40 DSP. A DSP specially designed to

be used as a parallel processing building block. Each C40 has a 40 MFlop oat-

ing point processor and 6 communication ports capable of transferring 20Mbyte

sec
.

C40s can be bought in COTS packages called TIMs (TI Modules) which usu-

ally contain local memory banks, and are plugged onto various types of mother

boards. The inter{processor connections are made with ribbon{cables. Virtu-

ally any topology can be constructed from C40s.

{ COTS: Commercial O�{The Shelf. A standard part purchased from a commer-

cial vendor from stock is said to be COTS.

{ DMA: Direct Memory Access Co{Processor. An autonomous co{processor

which can be programmed to perform memory transfers independent of the

CPU. (DMA transfers can occur simultaneously to CPU execution.) The C40

DMAs can transfer data frommemory to memory, to/from communication ports

from/to memory, or directly from communication port to communication port.

{ DSP: Digital Signal Processor: A class of micro{processors specialized for signal

processing computations.

{ HPF: High Performance Fortran. A version of Fortran 90 which is augmented

with parallel directives with which the programmer gives hints to the complier
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about how an array should be distributed across the memory elements of a

multi{computer.

{ MGA: Multigraph Architecture. A MIPS architecture developed at Vanderbilt

University which provides a frame{work and tools for (1) building graphical do-

main speci�c models and (2) transforming the graphical models into executable

applications [25]. Unlike other MIPS architectures, MGA use domain speci�c

modeling paradigms, which (1) allows the domain engineers to specify a system

in familiar terms, and (2) reduces the search space when trying to transform

the models into a system.

{ MIMD: Multiple Instruction{Multiple Data. A class of parallel computers de-

�ned by Flynn's classi�cation of parallel architectures [18]. In an MIMD ar-

chitecture, each processing unit has a separate control unit, and executes its

unique instruction stream on its separate data stream independently of the

other processors. See �gure 11.

{ MIRTIS: Model{Integrated Real{Time Image Processing System. A real{time

image processing system which employs the MGA to automatically generate

parallel real{time implementations of image processing data ows. The imple-

mentations run on a parallel C40 network under the control of the PCT parallel

run{time system.

{ MIPS: Model{Integrated Program Synthesis. A method of managing complex-

ity in large scale engineering systems which involves synthesizing software based

on models describing the target system.
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{ Multigraph Architecture: A MIPS architecture developed at Vanderbilt Univer-

sity which provides a frame{work and tools for (1) building graphical domain

speci�c models and (2) transforming the graphical models into executable ap-

plications [25]. Unlike other MIPS architectures, MGA use domain speci�c

modeling paradigms, which (1) allows the domain engineers to specify a system

in familiar terms, and (2) reduces the search space when trying to transform

the models into a system.

{ OCCAM:A parallel language based on the Communicating Sequential Processes

(CSP) formalism. OCCAM was designed primarily for programming the Inmos

transputer, a parallel processing building block which was the predecessor to

the modern generation of parallel DSPs, such as the C40 and the C44.

{ PASS: Periodic Admissible Sequential Schedule. A type of schedule for syn-

chronous data ows. See [32].

{ PCT: Pipeline Cut{Through. A communication scheme which automatically

implements the communication necessary for data parallel image processing

algorithms on a C40 hardware pipeline.

{ PC++: Parallel C++. A language speci�cation which includes support for

data parallelism at the data object level. Data parallel objects are derived from

special template primitives which are explicitly distributed across a network.

The implementation of the parallelism is facilitated by the primitive classes and

is semi{transparent.

{ RTIP: Real{Time Image Processing.
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{ SDF: Synchronous Data Flow. A data ow consisting of synchronous com-

putations. A synchronous computation is one which, each time it is invoked,

consumes a �xed number of data tokens on its inputs and produces a �xed

number of data tokens on its outputs.

{ SIMD: Single Instruction{Multiple Data. A class of parallel computers de�ned

by Flynn's classi�cation of parallel architectures [18]. In an SIMD architecture

a single control unit provides an instruction stream to many processing units.

Each processor executes the same instruction of di�erent data synchronously.

See �gure 11.

{ TIM/TIM40: TI Module. TIM40 is an industry standard C40 package. The

TIM40 board contains a C40, memory interface circuitry, and RAM chips, and

�ts to a TIM40 motherboard via two connectors.

{ XVPE: The graphical model editor available with the current generation of the

MGA tool set. It is built on top of X Windows/Motif, and can store models in

either the Obst or the Objectivity object{oriented databases (OODB). The next

generation of MGA tools will also provide a native Windows editor and will

be able to store models in any OODB which is compliant with the ODMG93

standard (a standard programming interface for OODBSs).
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Appendix B

THE IPDL MODELING PARADIGM AND EXAMPLE MODELS

The MIRTIS system uses a modeling paradigm which has been designed specif-

ically for real{time image processing. The paradigm is called Image Processing De-

scription Language, or IPDL, and contains separate paradigms for describing the

computations (Signal Flow Models), the hardware resources (Hardware Models), and

the real{time constraints (Constraints Models). As each of these paradigms is dis-

cussed below, refer to the con�guration �le \ipdl.mdf" also included in the appendix.

Signal Flow Models

The signal ow paradigm contains models of the individual algorithms, and of

applications. Applications are synchronous data ow graphs made up of algorithm

models. The contents of the algorithm and application models are discussed below.

Algorithm Models

Each algorithm in the image processing library has an associated algorithm model.

An algorithm model has several attributes, parts, and conditional relationships be-

tween its parts which are viewed from four aspects (see previous description in MGA

Models section). The algorithm model aspects, and the information conveyed in each,

are:

{ Structure: the function's inputs and outputs
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{ Data Dependency : how the input and output data are accessed in constructing

the output data structure

{ Constraints : performance benchmarks and hardware requirements

{ Parameter Interface : the dynamically adjustable parameters and adjustment

modes

Structure Aspect

The algorithm model's structure aspect relays information about the algorithm's

input and output data and the relevant image processing library function. Referring

to the example shown in �gure 31, it contains the following attributes and parts:

Figure 31: 5x5 Convolution Model Structure Aspect

{ Attributes

� Library function name: name of C function which implements the algo-

rithm and the code library in which it resides.
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Figure 32: Attributes of 5x5 Convolution Image Signal \In"

Figure 33: Attributes of a Non-Image Signal

� Partial results combination method: can be \concatenate" or nothing.

Concatenate means that the partial results from a spatial decomposition

of this function can be merely concatenated. If concatenate is not selected,

the implication is that the function cannot be spatially decomposed (it is

not splittable). No other combinations methods are supported by the

system as of yet.

{ Parts

� Input and Output Images: these parts specify image data inputs and out-

puts of the algorithm. The attributes of an example Input Image part are

shown in �gure 32.
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� Input and Output Signals: these specify inputs and outputs of the algo-

rithm which are not images. For instance, algorithms may produce and

pass integers, oats, or non{image bu�ers. The attribute panel for an

input signal is shown in �gure 33.

Data Dependency Aspect

The algorithm model's data dependency aspect relays information about how the

algorithm accesses input image data and past values of the output data structure

in constructing each output data element. Referring to �gure 34, it contains the

following parts:

Figure 34: 5x5 Convolution Model Data Dependency Aspect

{ Parts

� Input and Output Images: inherited from the structure aspect
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� DataDependencies: these are parts with a single textual attribute which is

a data dependency speci�cation. This speci�cation describes what region of

an image signal is required in calculating a data element of another output

or intermediate image signal. The syntax and meaning of the dependency

speci�cation is described in a later section. A model can contain as many

data dependency parts as necessary to describe all direct dependencies

between the image signals. A useful feature of the interpreter allows the

formulas in the data dependency speci�cation to refer to the global vari-

ables or the values of scalar parameters de�ned in the parameter interface

aspect.

Constraints Aspect

The algorithmmodel's constraints aspect relays information about the algorithm's

performance characteristics and its hardware resource requirements. Referring to

�gures 35and 36, the constraints aspect contains the following parts:

Figure 35: 5x5 Convolution Model Constraints Aspect
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Figure 36: Grab Model Constraints Aspect

{ References to Node and HostNode models from the Hardware paradigm (the

Hardware paradigm will be explained later):

{ References to Node and HostNode model resources from the Hardware paradigm:

{ Requirements: these parts have no attributes, but can be associated with a

reference to a node, a hostnode, a node resource, or a hostnode resource to in-

dicate hardware resource requirements of the algorithm. During interpretation,

these requirement speci�cations are used in determining whether a particular

node satis�es the needs of this algorithm Requirements associated with nodes

or hostnodes are combined with a logical \OR" and the requirements associated

with node or hostnode resources are combined with a logical \AND". If a node

type is either in the hardware reference list, or has all resources speci�ed in the

resource references, then it satis�es the requirements.
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{ Benchmarks: Each benchmark part describes the execution time of the algo-

rithm for a particular data size, and is associated with a node reference which

speci�es on which type of node the benchmark was taken. By adding sev-

eral benchmarks for various data sizes, all associated with the same node, a

piece{wise linear version of the execution time versus data size curve can be

constructed. For functions with near linear time/data size relationships, a sin-

gle benchmark is adequate. However, for functions for which the time/data

size relationship is non{linear may require several benchmarks. For instance,

suppose a 2-D FFT (Fast Fourier Transform) algorithm was being modeled

which was accelerated by zero padding the data into a square image with width

the next highest power of 2. The execution time curve would be piece{wise

constant, with discontinuities at widths of 256 , 512, and 1024. This curve

would be modeled by providing 6 benchmarks, one for just smaller and one for

just larger than each of the discontinuity points: benchmark(255x255), bench-

mark(256x256)=benchmark(511x511), benchmark(512x512)=benchmark(1023x1023),

and benchmark(1024x1024). Linear interpolation on this set would then pro-

duce accurate estimates of the execution time for a particular data size.

Parameter Interface Aspect

The run{time system was designed in a way that as the real{time computation is

being performed on the parallel hardware, special messages can be sent from a the

host node which will make adjustments to so called \dynamic parameters" of the

algorithms. Each of the library functions has an associated dynamic setup function

which interprets the messages and adjusts that function's context. The result is that a
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graphical user interface running on the host node can be con�gured to allow the user to

adjust these dynamic parameters via graphical widgets, such as slider bars, pull{down

menus, and select boxes. The GUI con�guration must include enough information

that the values of the adjustment widgets can be turned into the correctly formatted

messages and sent to the executing system.

Figure 37: 5x5 Convolution Model Parameter Interface Aspect

Figure 38: Attributes of the 5x5 Convolution FlagParameter \ByPass"

The parameter interface aspect of the algorithmmodel contains, for each algorithm
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Figure 39: Attributes of the 5x5 Convolution ContinuousParameter \Scale"

type, the information needed to con�gure the GUI and construct the adjustment

messages. Referring to �gure 37 the parameter interface aspect contains the following

parts:

{ Flag Parameters: A Flag Parameter is a Boolean entity which can be set to

true or false. The parameter ByPass shown in �gure 38, is a parameter of the

5x5Convolution model. If its state is false, which it is by default, it has no e�ect

on the computation. However, if it is set to true, the convolution algorithm will

bypass the function and copy the input image into the output image �eld.

{ Continuous Parameters: A Continuous Parameter is a scalar which can be

adjusted between a minimum and maximum value by the speci�ed increments.

The parameter scale shown in �gure 39, is a parameter of the 5x5Convolution

model. Each pixel in the output image is multiplied by the value of scale after
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Figure 40: Attributes of the 5x5 Convolution SelectParameter \Kernel Size"

Figure 41: Attributes of the 5x5 Convolution StringParameter \User De�ned Kernel"

the mask has been applied to the input data, and the scalar o�set has been

subtracted (see �gure 37).

{ Select Parameters: A Select Parameter is an entity whose value is chosen from

a �xed list of states. The parameter KS (Kernel Size) shown in �gure 40, is a

parameter of the 5x5Convolution model. The attainable values are 3,5,7,and 9.

Figure 42: Attributes of the 5x5 Convolution ParameterIfMode \Laplacian"
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{ String Parameters: A String Parameter is text entered into a �eld to be parsed

by the algorithm's parameter setup function. Some knowledge is required about

the expected text format. For instance, the parameter User De�ned Kernel

shown in �gure 41 is a textual version of a KS by KS convolution kernel. The

expected format is a list of KS �KS numbers. The �rst KS numbers will be

interpreted as the �rst row of the kernel, the second KS the second row, and

so on. Note that the string in the Default �eld speci�es the 5x5 identity kernel

which will have no e�ect on the data.

{ Parameter Interface Modes: The parameter interface mode models are used

to provide some level of exibility in the dynamic parameter user interface.

Conditional associations between the parameter interface modes and subsets

of the parameters are used to group relevant parameters together to represent

operation modes of the algorithm. For instance, the parameter interface mode

Laplacian shown in �gure 42 is taken from the 5x5Convolution model. It cannot

be shown well in the �gures, but the Laplacian mode is conditionally associated

with the Scale, O�set, KS, and ByPass parameters, which implies that, when the

parameter interface is in Laplacian mode, the values of each of these parameters

will used in constructing the message passed to the 5x5Convolution algorithm's

setup function whenever one of the parameters changes. The current operation

mode will be selected from a pull{down menu of the GUI.
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Fixed Parameters

Note that the string FIXED appears in the Comma Separated Choice List �eld of

the 5x5Convolution model's select parameter KS shown in �gure 40. This speci�es

that this parameter may only be set when the system is �rst started. This parameter

cannot be dynamically adjusted. The explanation is simple. The performance char-

acteristics for a convolution with a 5x5 kernel is far di�erent from that with a 3x3

kernel. When the models are interpreted, performance models are built assuming the

performance characteristics for a 5x5 convolution. It the kernel size is changed dur-

ing run{time, the performance characteristics will change. Such parameters must be

�xed at interpretation time. Changing a �xed parameter requires a re{interpretation

so the real{time constraints will continue to be met. Any of the parameter types can

speci�ed as �xed parameters by placing the string FIXED in any of the string �elds,

and the parameter will will disabled in the GUI.

Application Models

Computational data ows are represented as application models. Applications are

made up of algorithm models and their inter{connections. They have no relevant

attributes, and only a single aspect which contains algorithm parts and connections

between the algorithm inputs and outputs. In the XVPE.IPDL model editor an

application is built up by merely dragging algorithm models from the model browser

into the application model pane and then connecting them. Figures 43 and 44 show

the model browser and the application model Demo4, respectively.

One notable fact about application models is that they are not hierarchical. Ap-

plications cannot contain other applications. This simpli�cation was made merely to
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Figure 43: The XVPE.IPDL Model Browser

save time in building the prototype model interpreter. Hierarchy should certainly be

added in the future to save time in building application models.

Hardware Models

The hardware paradigm contains models describing the available hardware re-

sources. The types of hardware models are Nodes, HostNodes, and Networks. The

meaning and the contents of each of these models are discussed below.
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Figure 44: An Application Model

Node Models

A Node model represents one of the network processors (e.g. a C40) which will

be performing the image processing computations. The \TIM40"1 model is shown in

�gure 45. The model shown is a 40MHz C40 with 2Mbytes of dynamic RAM on each

the local and the global bus. Node models have the following attributes and parts:

Node Model Attributes

{ CPU Type: This speci�es whether the CPU is a C40, or a C44

{ Clock Speed (in MHz):

{ Performance: This is the MegaFlop rating.

{ Memory Type: This can either dynamic ram or static ram (static ram is much

faster than dynamic).

1A TIM40 is an industry standard C40 package. The board contains a C40, memory interface

circuitry, and RAM chips, and �ts to a TIM40 motherboard via two connectors.
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Figure 45: TIM40 Node Model

{ Memory Con�guration: a formatted string describing how many MBytes of

memory is on each of the C40's Global and Local busses2. The format is \Lo-

calMemSize x GlobalMemSize" (see �gure 45).

2The C40 has two memory busses, one called the Local Bus, and the other called the Global Bus.
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Figure 46: Commport Model Attributes

Node Model Parts

{ CommPorts: The ports themselves are atomic models, and have attributes for

the port's direction, speed, and port index. Figure 46 shows the attributes of

the TIM40 model's port \P0". Note that the \Communication Port Speed"

attribute contains 10MBytes

sec
, but a C40 port is rated at 20MBytes

sec
. Practice has

shown that this is a more realistic estimate of the real data rate that can be

achieved if the ports are connected via ribbon cables of reasonable length.

{ Resources: Resource parts are used to indicate that this node has some non{

standard capability, such as the ability to digitize video. The types of resources

which can be speci�ed are A/D (Grabber Module), D/A (Display Module), or

Other. The NEL Grabber node model is shown in �gure 47. It represents

a C40 frame grabber TIM. Note the inclusion of the Grabber HW resource,

which speci�es that this node type is capable of digitizing frames of video. The

attribute panel of Grabber HW are shown in �gure 48.

HostNode Models

A hostnode model represents a PC or workstation which may be used to boot

and load the C40 network, act as a data source or data sink by providing disk I/O,
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Figure 47: NEL Grabber Node Model

or run the dynamic parameter adjustment GUI. Figure 49 shows a hostnode model

from the MIRTIS demo network. The machine is a 66MHz Intel 486 named \venus".

The attributes and parts of HostNode models are described below:

HostNode Model Attributes

{ CPU Clock Speed (In MHz):
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Figure 48: NEL Grabber Node Model

Figure 49: A HostNode Model

{ Host Type: This attribute speci�es the host node architecture, which can be

386 Based PC, 486 Based PC, Pentium Based PC, or Sun Workstation.

HostNode Model Parts

{ Host Interface Cards: These parts represent the network interface cards used to

communicate with the C40 network. The two supported interface cards are the

EISA C40 Host Interface Card, which is a Transtech TDMB409 C40 mother-

board, and the Coreco F64 C40 Card, which contains lots of image processing

support hardware in addition to a C40. Other attributes are the cards's hard-

ware I/O address and the measured port speed (in Kbytes
sec

). Figure 50 shows the
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attributes of the Host Interface Card in venus.

{ Resources: HostNode model resources are the same as Node model resources.

An example of a HostNode with a resource part is the PC HostNode model

shown in �gure 49. Note that it has a resource part named File Storage, the

attributes of which are shown in �gure 51.

Figure 50: Host Interface Card Attributes

Figure 51: HostNode \File Storge" Resource Attributes

Network Models

Node and Hostnode models are connected together to form Network models. Net-

work models have only one aspect, HardwareAspect, which contains no attributes.

Network models contain Node parts, HostNode parts, Network parts, and Connector

parts. Note that the inclusion of Network parts means that Network models are hier-

archical. Hierarchy reduces the work required to model large systems. The connector

parts are basically the same as CommPorts, but they have no attributes, since they

are merely passive connectors. The various assembly levels can be modeled once and

replicated to form large network models. For example, the model in �gure 52 is of
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a VME{based 4{C40 motherboard. Note that there are several connections internal

to the card, and 12 ports for external connections. The model shown in �gure 53 is

a VME chassis made up of 3 VME cards and a C40 display module. The hierarchy

allows the many connections internal the VME card to be modeled once and repli-

cated, which saves a vast amount of time. Still another level of hierarchy can be seen

in the Network model in �gure 54. This model represents a 22 node network made up

of the PC Host Venus, an NEL Grabber TIM attached to the host interface card, the

13 nodes of the VME Chassis, and the 8 nodes contained on the EISA motherboards

Card1 and Card2

Figure 52: 4{Processor VME Card Network Model

Constraints Models

The Constraints paradigm contains models which specify the timing constraints of

a particular application. These are RealTimeConstraints models, and are viewed from
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Figure 53: 3{Card VME Chassis Network Model

a single aspect, the GoalsAspect. The contents of the RealTimeConstraints models

are discussed below.

RealTimeConstraints Model Attributes

These models have a single attribute, FailureMode, which can be set to Best E�ort,

or Hard Real-Time (Fail). The Failure Mode is used by the interpreter to determine

what is to be done in the event that the constraints cannot be achieved with the cur-

rent hardware architecture. The best e�ort approach is to sacri�ce either throughput

or latency (or both) and �nd a mapping for which the performance will approach the

goals. A RealTimeConstraints model called RTVideo (Real{Time Video) is shown in
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Figure 54: A Large Network Model

�gure 55.

RealTimeConstraints Model Parts

RealTimeConstraints models have a single throughput part and a single latency

part. These parts have attributes describing the numerical goals in units of frames

second
for

throughput and frames for latency. Note that latency would normally be speci�ed

in seconds, but the speci�cation in frames simpli�ed the formation of the latency

model. The latency goal in seconds can be obtained by simply dividing the latency

goal speci�ed in frames by the throughput speci�ed in frames
second

. Both throughput and

latency parts have a Nature of Constraint attribute (see �gures 56 and 57), which
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Figure 55: Real{Time Video Timing Constraints

specify whether the constraint is critical or non{critical, and are analogous to hard

and soft real{time.

Figure 56: Attributes of Real{Time Video Throughput

In the case of soft real{time, the model indicates that it is acceptable to make

concessions in that constraint when making a best{e�ort approach to meeting the

performance goals. In the case of hard real{time, the model indicates that it is if

the constraint cannot be met, then the interpreter should indicate a failure to �nd a

viable mapping.
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Figure 57: Attributes of Real{Time Video Latency
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Appendix C

THE IPDL{VPE CONFIGURATION FILE

// vpe configuration file for Image Processing Description Language (IPDL)

// ipdl.mdf

attribute NumControlTokens : field int "Control Tokens:" "1";

attribute SignalType : menu "Signal Type"

{

"Trigger" TriggerSignalType ;

"Long" LongSignalType ;

"Float" FloatSignalType ;

"Buffer" BufferSignalType ;

};

attribute DataType : menu "Data Type"

{

"Long" LongDataType ;

"Float" FloatDataType ;

"Buffer" BufferDataType ;

};

attribute DataSize : page "Data Size:" (1 64) "1";

attribute ImageDataType : menu "Image Type"

{

"Packed Bytes" PbyteImageDataType ;

"Long" LongImageDataType ;

"Float" FloatImageDataType ;

};

attribute ImageRows : page "Image Rows:" (1 64) "480";

attribute ImageCols : page "Image Columns:" (1 64) "512";

attribute FrameRate : field float "Frame Rate (frames/sec):" "30.0";

attribute Latency : field int "Latency (frames):" "30";

attribute Hardness : menu "Nature Of Constraint"

{

"Non Critical" SoftConstraint ;

"Critical" HardConstraint ;

};

attribute Comment : page "Comment:" (4 64) "";

attribute PortSpeed : field int "Communication Port Speed (Kbytes/sec):" "8096";

paradigm SignalFlow

{

classes

model Process

{
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StructureAspect

{

attrs

{

attr Comment;

}

parts { }

}

DataDependencyAspect

{

attrs

{

attr Comment;

}

parts { }

}

ConstraintsAspect

{

attrs

{

attr Comment;

}

parts { }

}

ParameterIfAspect

{

attrs

{

attr Comment;

}

parts { }

}

}

atom NonImageSignal

{

attr NumControlTokens;

attr SignalType;

attr DataSize;

};

atom ImageSignal

{

attr NumControlTokens;

attr ImageDataType;

attr ImageRows;

attr ImageCols;

};

atom Parameter { };
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atoms

InputSignal "insig.icon" is_a ( NonImageSignal );

OutputSignal "outsig.icon" is_a ( NonImageSignal );

InputImage "inimseq.icon" is_a ( ImageSignal );

OutputImage "outimseq.icon" is_a ( ImageSignal );

IntermediateData "imdata.icon"

{

attr DataType;

attr DataSize;

};

FlagParameter "flagpar.icon" is_a ( Parameter )

{

OnCmd : page "On Cmd:" (1 64) "";

OffCmd : page "Off Cmd:" (1 64) "";

Def : toggle "Default State:" false;

};

ContinuousParameter "contpar.icon" is_a ( Parameter )

{

attr DataType;

Min : page "Minimum Value:" (1 64) "";

Max : page "Maximum Value:" (1 64) "";

Step : page "Step Value:" (1 64) "";

Def : page "Default Value:" (1 64) "";

CmdString : page "Command String:" (1 64) "";

};

SelectParameter "selpar.icon" is_a ( Parameter )

{

attr DataType;

Choices : page "Comma Separated Choice List:" (1 64) "";

CmdStrings : page "Comma Separated CmdStr List:" (1 64) "";

Def : field int "Index Of Default Choice:" "0";

};

StringParameter "strpar.icon" is_a ( Parameter )

{

CmdString : page "Command String:" (1 64) "";

Def : page "Default String:" (1 64) "";

};

ParameterIfMode "pifmode.icon"

{

CmdString : page "Command String:" (1 64) "";

Def : toggle "Default Mode:" false;

};

DataDependency "datadep.icon"

{

DependencySpec : page "Data Dependency String:" (1 64) "";

};

Benchmark "benchmrk.icon"
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{

FrameRate : field float "Measured Rate (frames/second):" "5.0";

FrameRows : field int "Frame Height (Rows):" "480";

FrameCols : field int "Frame Width (Cols):" "512";

attr ImageDataType;

NProcs : field int "Number Of Processors:" "1";

};

Requirement "require.icon" { };

models

Algorithm is_a ( Process ) primitive

{

StructureAspect "Structure"

{

icon rect

{

left : InputImages InputSignals;

right: OutputImages OutputSignals;

};

font 3;

color foreground;

attrs {

LibFunctionName : page "Library Function Name:"

(1 64) "functionname : pctnode.dwn";

PartialResultsComboMethod : menu "Combination Method:"

{

"Concatenate" ConcatenatePartialResults ;

};

}

parts

{

InputImages : InputImage link ;

OutputImages : OutputImage link ;

InputSignals : InputSignal link ;

OutputSignals : OutputSignal link ;

Intermediates : IntermediateData ;

}

}

DataDependencyAspect "Data Dependency"

{

font 3;

color foreground;

attrs { }

conns { }

conds { }

parts

{

InputImages : InputImage inherited;
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OutputImages : OutputImage inherited;

Intermediates : IntermediateData inherited;

DataDependencies : DataDependency ;

}

}

ConstraintsAspect "Computational Constraints" {

font 3;

color foreground;

attrs

{

MemoryConstraint : page "Memory Requirement (kbytes):"

(1 64) "256";

}

conds

{

BenchmarkToNodeAssociation Benchmarks :

{ } { NodeRefs };

AlgorithmRequirementToResourceAssociation Requirements :

{ } { NodeRefs NodeResourceRefs

HostNodeRefs HostNodeResourceRefs };

}

parts

{

Benchmarks : Benchmark ;

Requirements : Requirement;

NodeRefs -> { Hardware :

Node : HardwareAspect } ;

NodeResourceRefs -> { Hardware : Node

: HardwareAspect

: Resources } ;

HostNodeRefs -> { Hardware : HostNode

: HardwareAspect } ;

HostNodeResourceRefs -> { Hardware : HostNode

: HardwareAspect

: Resources } ;

}

}

ParameterIfAspect "Parameter Interface" {

font 3;

color foreground;

attrs { }

conds

{

ModeToParameterAssociation ParameterIfModes :

{ } { FlagParameters ContinuousParameters

SelectParameters StringParameters };

}
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parts

{

FlagParameters : FlagParameter;

ContinuousParameters : ContinuousParameter;

SelectParameters : SelectParameter;

StringParameters : StringParameter;

ParameterIfModes : ParameterIfMode ;

}

}

}

Application is_a ( Process ) compound

{

StructureAspect "Structure"

{

icon rect { };

font 3;

color foreground;

attrs { }

conns

{

SignalFlow { 1 solid line arrow } :

{ Algorithms OutputSignals -> Algorithms InputSignals };

ImageFlow { 1 solid line arrow } :

{ Algorithms OutputImages -> Algorithms InputImages };

}

parts

{

Algorithms : Algorithm hierarchy;

}

}

}

}

paradigm Hardware

{

classes

model HW

{

HardwareAspect

{

attrs

{

attr Comment;

}

}

}

atom HWConnector { };
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atoms

CommPort "port.icon" is_a ( HWConnector )

{

PortType : menu "Port Type:"

{

"Bi-Directional" BidirectionalType ;

"Input" InputType;

"Output" OutputType;

};

attr PortSpeed;

PortIndex : field int "Port Index:" "0";

};

Connector "connect.icon" is_a ( HWConnector );

Resource "resource.icon"

{

ResourceType : menu "Resource Type:"

{

"A/D (Grabber Module)" GrabberHW ;

"D/A (Display Module)" DisplayHW ;

"Other" OtherHW ;

};

};

HostInterface "hostif.icon" is_a ( HWConnector )

{

InterfaceType : menu "Network Interface Type"

{

"EISA C40 Host Interface Card" TDMB409HostInterfaceCard ;

"Coreco F64 C40 Card" CorecoF64C40Card ;

};

HardwareAddress : field int "HW Address Of Host IF Card:"

"0x200";

attr PortSpeed;

};

models

Node is_a ( HW ) primitive

{

HardwareAspect "Hardware"

{

icon rect;

font 3;

color foreground;

attrs

{

CPUType : menu "Node Type"

{

"C40" C40NodeType ;

"C44" C44NodeType ;

177



};

CPUPerf : field int "CPU Performance in MFlops:" "40";

MemType : menu "Memory Type"

{

"2 wait-state DRAM" TWS_DRAM;

"1 wait-state DRAM" OWS_DRAM;

"0 wait-state SRAM" ZWS_SRAM;

};

MemSize : page "Memory Configuration (Mbytes x Mbytes):"

(1 64) "2x2";

}

parts

{

CommPorts : CommPort link;

Resources : Resource;

}

}

}

HostNode is_a ( HW ) primitive

{

HardwareAspect "Hardware"

{

icon rect

{

right: HostInterfaces;

};

font 3;

color foreground;

attrs

{

HostSpeed: field int "CPU Clock Speed In MHz:" "66";

HostType : menu "Host Type"

{

"468 Based PC" PC486Host;

"386 Based PC" PC386Host;

"Pentium Based PC" PCPentiumHost;

"Sun Workstation" SunPWHost;

};

}

parts

{

HostInterfaces : HostInterface link;

Resources : Resource ;

}

}

}

Network is_a ( HW ) compound

178



{

HardwareAspect "Hardware"

{

icon rect;

font 3;

color foreground;

conns

{

HWConn { 1 solid line butt } :

{ Connectors -> SubNetworks Connectors }

{ Connectors -> Nodes CommPorts }

{ SubNetworks Connectors -> SubNetworks Connectors }

{ SubNetworks Connectors -> Connectors }

{ SubNetworks Connectors -> Nodes CommPorts }

{ SubNetworks Connectors -> HostNodes HostInterfaces }

{ Nodes CommPorts -> SubNetworks Connectors }

{ Nodes CommPorts -> Nodes CommPorts }

{ Nodes CommPorts -> Connectors }

{ HostNodes HostInterfaces -> Nodes CommPorts }

{ HostNodes HostInterfaces -> SubNetworks Connectors };

}

parts

{

Nodes : Node hierarchy ;

SubNetworks : Network hierarchy ;

HostNodes : HostNode hierarchy ;

Connectors : Connector link;

}

}

}

}

paradigm Constraints {

atoms

ThroughputConstraint "thruput.icon"

{

attr FrameRate;

attr Hardness;

};

LatencyConstraint "latency.icon"

{

attr Latency;

attr Hardness;

};

models

RealTimeConstraints primitive {

GoalsAspect "Real Time Constraints" {
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icon oval;

font 3;

color foreground;

attrs {

FailureMode : menu "Failure Mode:" {

"Best Effort" BestEffortMode;

"Hard Real-Time (Fail)" HardRealTimeMode;

};

}

parts

{

ThroughputConstraints : ThroughputConstraint ;

LatencyConstraints : LatencyConstraint ;

}

}

}

}
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Appendix D

THE IMAGE PROCESSING LIBRARY FUNCTION \CONV.C"

/*

* conv.h

*/

#include <pct.h>

#define FNMBASE conv

typedef struct {

int inited;

int type;

int kernel_size;

float scale;

float offset;

float *float_input;

float *float_output;

float *kern;

} CNTX_STRUCT;

#define inited ((*cntx)->inited)

#define type ((*cntx)->type)

#define kernel_size ((*cntx)->kernel_size)

#define scale ((*cntx)->scale)

#define offset ((*cntx)->offset)

#define float_input ((*cntx)->float_input)

#define float_output ((*cntx)->float_output)

#define kern ((*cntx)->kern)

#define LAPLACIAN3x3 0

#define LOG 1

#define AVE 2

#define TEST 3

#define USER_DEFINED 4

#define CNTX_DEFAULTS {0,LAPLACIAN3x3,3,1.0,0.0,NULL,NULL,NULL}

typedef struct {

unsigned long *input_img;

unsigned long input_img_cid;

} INPUT_STRUCT;
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typedef struct {

unsigned long *output_img;

unsigned long output_img_cid;

} OUTPUT_STRUCT;

#define input_img (inputs->input_img)

#define output_img (outputs->output_img)

#define input_img_cid (inputs->input_img_cid)

#define output_img_cid (outputs->output_img_cid)

extern void aconv3x3(float *,float *,float *,float,unsigned long,unsigned long);

extern void aconv5x5(float *,float *,float *,float,unsigned long,unsigned long);

extern void pb2f(unsigned long *,float *,unsigned long);

extern void f2pb(float *,unsigned long *,unsigned long);

extern void trunf_and_pack2pb(float *,unsigned long *,unsigned long);

extern void trunabsf_and_pack2pb(float *,unsigned long *,unsigned long);

/*

* conv.c

*/

#include "pct.h"

#include "conv.h"

#include "pctiplib.h"

static CNTX_STRUCT default_cntx=CNTX_DEFAULTS;

float lap_kernel[3*3] = { 0.0, 1.0, 0.0 ,

1.0,-4.0, 1.0 ,

0.0, 1.0, 0.0 };

float user_defined_kernel[25] = {0,0,0,0,0,

0,0,0,0,0,

0,0,1,0,0,

0,0,0,0,0,

0,0,0,0,0};

#define LOG3x3_EPSILON 1.85

#define LOG5x5_EPSILON 0.60

static void make_log(int width,int height, float *buff,CNTX_STRUCT **cntx) {

int i,j,iorg,jorg;

float sigma,thing,epsilon= (kernel_size==3 ? LOG3x3_EPSILON :

((kernel_size==5) ? LOG5x5_EPSILON : -1));

float ee=2.718281828,pi=3.141592654;

iorg = (height-1)/2;
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jorg = (width-1)/2;

sigma = ((float)width+(float)height)/12.0; /* average of w,h/6 */

for(i=0;i<height;i++) {

for(j=0;j<width;j++) {

thing = ((i-iorg)*(i-iorg) + (j-jorg)*(j-jorg))/(sigma*sigma);

buff[i*width+j] = (1.0/epsilon)*(thing-2.0)*

pow(ee,-thing/2.0)/(2.0*pi*sigma*sigma*sigma*sigma);

}

}

}

static void make_ave(int width,int height, float *buff) {

int i,j;

for(i=0;i<height;i++) {

for(j=0;j<width;j++) {

buff[i*width+j] = 1.0/((float)width*height);

}

}

}

void SETUP(int argc, char* argv[])

{

int i,j,v;

TRACE();

CNTX_INIT();

type=LAPLACIAN3x3;

kernel_size=3;

scale=1.0;

offset=0.0;

for(i = 0; i < argc; i++) {

if((argv[i][0] == '-')&&(argv[i][1] == '-'))

switch(argv[i][2]) {

case 'L':

type=LOG;

if(argv[i][3]!='d') {

v=atoi(&(argv[i][3]));

if((v==3)||(v==5)) kernel_size=v;

else kernel_size=3;

}

break;

case 'l':

type=LAPLACIAN3x3;

kernel_size=3;

break;

case 's':

scale=atof(&(argv[i][3]));

break;
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case 'o':

offset=atof(&(argv[i][3]));

break;

case 'a':

type=AVE;

if(argv[i][3]!='d') {

v=atoi(&(argv[i][3]));

if((v==3)||(v==5)) kernel_size=v;

else kernel_size=3;

}

break;

case 'K':

type=USER_DEFINED;

v=atoi(&(argv[i][3]));

if((v==3)||(v==5)) kernel_size=v;

else kernel_size=3;

j=0;

while(j<kernel_size*kernel_size) {

user_defined_kernel[j++] = atof(argv[++i]);

}

break;

case 't':

default:

type=TEST;

kernel_size=3;

break;

}

}

_pct_set_overlap((kernel_size-1)/2,(kernel_size-1)/2);

TRACE();

if(kern) _pct_free(kern);

kern=(float *)_pct_ocbuf_alloc(kernel_size*kernel_size*sizeof(float));

if(!kern) _pct_error(__LINE__);

if(type==LAPLACIAN3x3) {

TRACE();

memcpy(kern,lap_kernel,9*sizeof(float));

}

if(type==USER_DEFINED) {

TRACE();

memcpy(kern,user_defined_kernel,kernel_size*kernel_size*sizeof(float));

}

if(type==LOG) {

TRACE();

make_log(kernel_size,kernel_size,kern,cntx);

}

if(type==AVE) {
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TRACE();

make_ave(kernel_size,kernel_size,kern);

}

for(i=0;i<kernel_size*kernel_size;i++) {

kern[i]*=scale;

}

TRACE();

}

void COMPUTE()

{

long rows=_pct_get_equal_imrows();

long cols=_pct_get_imcols();

CNTX_INIT();

if(!inited) {

float_input=(float *)_pct_buf_alloc(rows*cols,GLOBAL_BUS,LOCAL_BUS,ONCHIP_BUS);

if(!float_input) _pct_error(__LINE__);

float_output=(float *)_pct_buf_alloc(rows*cols,LOCAL_BUS,GLOBAL_BUS,ONCHIP_BUS);

if(!float_output) _pct_error(__LINE__);

inited=1;

}

if(output_img==NULL) {

output_img=(image)_pct_alloc_connection(output_img_cid,_pct_get_local_ims());

if(output_img==NULL) _pct_error(__LINE__);

}

TRACE();

pb2f(input_img,float_input,rows*cols);

TRACE();

switch(kernel_size) {

case(3):

TRACE();

/*

* call the assembly 3x3 convolution routine

*/

aconv3x3(float_input,float_output,kern,offset,rows,cols);

TRACE();

break;

case(5):

TRACE();

/*

* call the assembly 5x5 convolution routine

*/

aconv5x5(float_input,float_output,kern,offset,rows,cols);

TRACE();

break;

case(5):

TRACE();
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/*

* call the assembly 7x7 convolution routine

*/

aconv7x7(float_input,float_output,kern,offset,rows,cols);

TRACE();

break;

case(5):

TRACE();

/*

* call the assembly 9x9 convolution routine

*/

aconv9x9(float_input,float_output,kern,offset,rows,cols);

TRACE();

break;

default:

_pct_error(__LINE__);

}

TRACE();

/*

* truncate the float buffer at 0 and 256 and pack bytes

*/

trunf_and_pack2pb(float_output,output_img,rows*cols);

TRACE();

}
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Appendix E

EXAMPLE PCT CONFIGURATION FILES

The following shows the con�guration �les generated by running the interpreter

using the application Demo1, the nine processor network DemoNet, and the con-

straints LowLatencyVideo. These �les are used to boot the network and con�gure the

PCT scheduler and communication engines.

An Example Boot File
;

; <<< PCT boot file for application model "Demo1" >>>

;

; <<< Warning: This was Generated by the MIRTIS model interpreter >>>

; <<< Pipeline Cut-Through C40 boot file: >>>

; <<< Application model = "Demo1" >>>

; <<< Network model = "DemoNet" >>>

; <<< System Throughput = 4.69 frames/sec >>>

; <<< System Latency = 3 frames >>>

; <<< Warning: This was Generated by the MIRTIS model interpreter >>>

0 1 0 \mirtis\iplib\grab.dwn -n0 -N1 -g0 -M -i3 -o4 -G0 -L4096

1 2 4 \mirtis\iplib\pctnode.dwn -n0 -N1 -g2 -S -M -i1 -o0 -G2048 -L2048

2 3 0 \mirtis\iplib\pctnode.dwn -n0 -N6 -g1 -S -M -i3 -o0 -G2048 -L2048

3 4 0 \mirtis\iplib\pctnode.dwn -n1 -N6 -g1 -S -M -i3 -o0 -G2048 -L2048

4 5 0 \mirtis\iplib\pctnode.dwn -n2 -N6 -g1 -S -M -i3 -o4 -G2048 -L2048

5 6 4 \mirtis\iplib\pctnode.dwn -n3 -N6 -g1 -S -M -i1 -o2 -G2048 -L2048

6 7 2 \mirtis\iplib\pctnode.dwn -n4 -N6 -g1 -S -M -i5 -o2 -G2048 -L2048

7 8 2 \mirtis\iplib\pctnode.dwn -n5 -N6 -g1 -S -M -i5 -o2 -G2048 -L2048

8 9 2 \mirtis\iplib\pctnode.dwn -n0 -N1 -g3 -S -M -i5 -o1 -G2048 -L2048

9 10 1 \mirtis\iplib\disp.dwn -n0 -N1 -g4 -M -i4 -G0 -L4096

An Example Schedule File

; PCT scedule file for application model "Demo1"

; <<< This File Was Automatically Generated >>>
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SGRP 0 ; block id #0

-1 ; no input connection

0 ; output connection id #0

0 ; 0 local connections

1 ; number of functions = 1

SFUN 2 ; function id #2 ("Grab")

grab

1 ; 0 connected input[s]

1 0 ; 1 connected output[s]

; initialization string

EFUN

EGRP

SGRP 2 ; block id #2

0 ; input connection id #0

1 ; output connection id #1

0 ; 0 local connections

1 ; number of functions = 1

SFUN 3 ; function id #3 ("LUT")

lut

1 0 ; 1 connected input[s]

1 1 ; 1 connected output[s]

--g0.590000 ; initialization string

EFUN

EGRP

SGRP 1 ; block id #1

1 ; input connection id #1

2 ; output connection id #2

0 ; 0 local connections

1 ; number of functions = 1

SFUN 0 ; function id #0 ("5x5 Conv")

conv

1 1 ; 1 connected input[s]

1 2 ; 1 connected output[s]

--L5 --s1.500000 --o128 ; initialization string

EFUN

EGRP

SGRP 3 ; block id #3

2 ; input connection id #2

3 ; output connection id #3

0 ; 0 local connections

1 ; number of functions = 1

SFUN 4 ; function id #4 ("Threshold")

lut

1 2 ; 1 connected input[s]

1 3 ; 1 connected output[s]

--tl100 --tu256 ; initialization string

EFUN

188



EGRP

SGRP 4 ; block id #4

3 ; input connection id #3

-1 ; no output connection

0 ; 0 local connections

1 ; number of functions = 1

SFUN 1 ; function id #1 ("Disp")

disp

1 3 ; 1 connected input[s]

1 ; 0 connected output[s]

; initialization string

EFUN

EGRP
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Real{time imaging applications, such as robotics, military target tracking, au-

tonomous vehicle control, and on{line video processing, require huge computational

performance due to the large datasets involved. For this reason, real{time imaging

systems have traditionally been built from custom hardware designed to perform spe-

ci�c algorithms. However, custom hardware implementations are expensive, and the

real{time performance is achieved at the cost of end{user programmability and ex-

ibility. A more generalized and exible approach is to parallelize the computations

by taking advantage of their inherent concurrency and to utilize a scalable parallel

hardware architecture.

It is clear that developing a general real{time parallel image processing system

involves much more than building a high performance parallel hardware architecture.

Without high{level programming environments and tools designed speci�cally for

building parallel imaging software, parallel architectures are di�cult to program, and

thus not cost{e�ective solutions.



The goal of this dissertation has been to create a exible and easy to use image

processing programming environment for generating real{time parallel software im-

plementations. I show that, through the use of Model{Integrated Program Synthesis

(MIPS), parallel implementations of image processing data ows can be synthesized

from high{level graphical speci�cations. The complex details inherent to parallel

software development become transparent, enabling the cost{e�ective exploitation of

parallel hardware for building more exible and powerful real{time imaging systems.

As proof of concept, I present MIRTIS (Model Integrated Real{Time Image Pro-

cessing System). MIRTIS employs the Multigraph Architecture (MGA), a framework

and set of tools for building MIPS systems, to generate parallel real{time image

processing software which runs under the control of a parallel run{time kernel on a

network of Texas Instruments TMS320C40 Digital Signal Processors. The MIRTIS

system provides a graphical model builder for declaring (1) the computations to be

performed, (2) the available hardware resources, and (3) the performance constraints

of the application. A model interpreter automatically decomposes, scales, and allo-

cates the computations to the available resources, then generates a real{time parallel

C40 implementation.

MIRTIS is a clear example of how the MGA can be used to synthesize parallel

real{time image processing systems which are cost{e�ective to program, con�gure,

and scale.
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