
A Model-Integrated Program Synthesis Environment for

Parallel/Real-Time Image Processing

Michael S. Moorea, Janos Sztipanovitza, Gabor Karsaia, & Jim Nicholsa

a Vanderbilt University Measurement and Computing Systems Laboratory

400 24th Ave S. Nashville, TN 37235 USA

ABSTRACT

In this paper, it is shown that, through the use of Model-Integrated Program Synthesis (MIPS), parallel real-time

implementations of image processing data
ows can be synthesized from high level graphical speci�cations. The

complex details inherent to parallel and real-time software development become transparent to the programmer,

enabling the cost-e�ective exploitation of parallel hardware for building more
exible and powerful real-time imaging

systems.

The Model Integrated Real-Time Imagine Processing System (MIRTIS) is presented as an example. MIRTIS

employs the Multigraph Architecture (MGA), a framework and set of tools for building MIPS systems, to generate

parallel real-time image processing software which runs under the control of a parallel run-time kernel on a network

of Texas Instruments TMS320C40 DSPs (C40s). The MIRTIS models contain graphical declarations of the image

processing computations to be performed, the available hardware resources, and the timing constraints of the ap-

plication. The MIRTIS model interpreter performs the parallelization, scaling, and mapping of the computations to

the resources automatically or determines that the timing constraints cannot be met with the available resources.

MIRTIS is a clear example of how parallel real-time image processing systems can be built which are (1) cost-

e�ectively programmable, (2)
exible, (3) scalable, and (4) built from Commercial O�-The-Shelf (COTS) compo-

nents.

Keywords: image processing, real-time, parallel, parallel programming, parallel systems, model-based systems,

model-integrated program synthesis, Multigraph architecture, TMS320C40

1. INTRODUCTION

Digital imaging applications require huge computational performance due to the large data sets involved. Applications

such as robotics, military target tracking, autonomous vehicle control, and on{line video processing require sequences

of images to be processed in real{time. Image sequences of normal resolution (640 x 480 pixels) and standard frame

rate (30 frames

sec
) with 256{level gray scale (8 bits

pixel
) represent a data rate of 8.8 Megabytes per second. A color

sequence (24 bits
pixel

) at the same pixel resolution produces 26:4Megabytes

sec
. Typical applications require on the order of

hundreds or even thousands of operations per pixel in order to enhance, segment, and extract features from image

sequences,1 which translates into a demand for tens of Giga{operations per second. Even less computational intensive

applications, such as video enhancement, require hundreds of Mega{operations per second. Moreover, it has been

estimated that future applications, such as dynamic scene interpretation, may require on the order of hundreds of

Giga{operations per second.2 Hardware architectures consisting of a single general{purpose processor are incapable

of delivering these levels of computational performance.

Due to these high performance needs, most successful applications of real{time imaging have by necessity been

built from custom hardware designed to perform �xed sets of speci�c image processing algorithms. Although such

specialized hardware solutions have met computational requirements of some Real{Time Image Processing (RTIP)

applications, there are many drawbacks to this approach. Hardware implementations are expensive, and real{time

performance is achieved by sacri�cing end{user programmability and
exibility.

Further author information (Send correspondence to M.S.M):
M.S.M.: Email: msm@vuse.vanderbilt.edu; WWW: http://www.vuse.vanderbilt.edu/�msm; Phone: 615-343-8302; Fax: 615-343-6702

The need has been stated for research e�orts targeted toward producing real{time image processing support

for recent applications such as remote command and control, High De�nition Television (HDTV), virtual reality

modeling, military target tracking, and rapid image identi�cation.3 These applications require more
exible and

scalable real{time image processing solutions than are currently available. A more generalized and
exible approach

toward system development is needed in order to support such applications.

The most obvious direction to take is to parallelize the computations and map them to a scalable parallel hard-

ware architecture. Image processing algorithms have inherent concurrency which is relatively simple to exploit.4

This idea is certainly not new. Papers describing parallel architectures, algorithms, kernels, programming models,

compilers and software generators abound in the literature. However, even though there are many parallel hard-

ware architectures which boast incredible numerical benchmarks, and there have been instances in which parallel

implementations have been successfully deployed in real applications, the inherent di�culty of programming par-

allel machines has limited the number of cases in which programmers without parallel processing expertise have

successfully and cost{e�ectively exploited the technology in a real{world applications.

It has become clear that developing a general parallel image processing system involves much more than building

a high performance parallel hardware architecture or a parallel language. Some of the most di�cult problems lie at

the systems level, which includes the hardware, software, and their relationships. Without high{level programming

environments and tools designed for building parallel systems, exploiting parallelism in real world image processing

applications is, in most cases, not the most cost{e�ective or practical approach. An environment and framework for

building parallel RTIP systems is needed, and it is crucial that this framework be system{centric, simultaneously

treating parallel hardware, parallel software, and integration issues. The goal is a system with which non parallel

programming experts can generate real{time parallel software implementations using the available parallel hardware

architecture. The system must insulate the user from the underlying parallel implementation details, and retain

generality,
exibility, and ease of use of uni{processor software systems.

In this paper, an approach toward this goal is presented. The claim is made (and supported) that, by using MIPS

techniques and by taking advantage of the natural concurrency present in image processing computations, real{time

parallel image processing systems can be automatically synthesized from high{level system speci�cations. Since the

parallel part of the software is automatically generated, the complex details inherent to parallel software development

are e�ectively rendered transparent to the programmer. The MIPS approach promises to lead to the cost{e�ective

exploitation of parallel hardware architectures for building more
exible and powerful real{time imaging systems

than are currently available.

The Model Integrated Real{Time Image Processing System (MIRTIS) is presented as a demonstration of this

concept. MIRTIS was developed for both the real{time processing of video and the high speed processing of very

large archived data sets.5{7 It employs the Multigraph Architecture (MGA), a framework and set of tools for building

MIPS systems, to generate image processing applications which run under the control of a parallel run{time kernel

on a network of Texas Instruments TMS320C40 DSPs (C40s). The run{time system is con�gured automatically

from graphical models declaring (1) the computations to be performed, (2) the C40 network con�guration, and

(3) the performance constraints of the target application. The con�guration is performed by the MIRTIS model
interpreter, which �rst analyzes the models to determine the feasibility of a real{time implementation, then (if

feasible) parallelizes, scales, and maps the given computations to the resources such that the real{time constraints

will be met. It also con�gures a graphical user interface with which the user can adjust processing parameters

dynamically as the system runs.

The following sections discuss the image processing problem domain, and how MIRTIS uses the Multigraph

framework to generate parallel real{time implementations of image processing computations. MIRTIS is evidence

that (1) architectures build up of Commercial O�{The{Shelf (COTS) components can support the performance

requirement of real{time imaging, (2) image processing algorithms are amenable to being parallelized and run on

such networks, (3) given an adequate set of information about the image processing computations, the hardware

architecture, and the run{time system, the processes of parallelizing and mapping image processing computations

onto the hardware architecture can be automated. The conclusion made is that, although the MIRTIS interpreter

was necessarily built around assumptions about the underlying run{time system, the MGA approach of specifying

applications in terms of models provides a level of architecture independence which will allow much of the system to

be re{used when the target hardware platform evolves with the availability of faster and cheaper hardware.

2. BACKGROUND

This section provides a brief description of image processing computations, the nature of real{time imaging applica-

tions, and the drawbacks of traditional hardware implemented real{time imaging systems.

2.1. Image processing computations

Image processing is related to the larger �eld of computer vision. Computer vision systems process data acquired

from image sensors, which detect visible, infrared, or even magnetic radiation, and attempt to construct some model

of the surroundings which may be used in formulating controls over the environment and/or presented for human

interpretation. The early vision steps are made up largely of algorithms which operate on image data and produce

images, transformations of images, or simple data structures describing images. These image processing algorithms
are sometimes referred to as low level vision8 because the role they play is to pre{process images for transformation

into symbolic data (edges, connected components, etc).

Because applications from the video processing domain have driven this e�ort, the emphasis has been placed

on image processing systems which are persistent. Persistent systems do not execute and terminate, but execute

continuously, computing sequences of result data structures from sequences of input images. This motivates the

extension of the genre of image processing algorithms to be considered from those which operate on images to those

which operate on image streams, or even volumes.

Next, the image processing algorithm model used in this work is de�ned. The model, which accommodates image

sequence computations concentrates not upon the mathematics of algorithms, but upon the way in general that data

is accessed in computing the individual elements of the results sequence.

2.1.1. General image processing algorithm model

Consider image processing algorithm F () which computes an output data structure sequence O(k) by accessing pixels

from N input image sequences I1(r; c; k):::IN (r; c; k) and past values of the output sequence O(k) (see �gure 1). Select

1I (
k)

I (
k)

N

R 1I
^

R NI
^

RO
^

R 1I
^ R NI

^ R̂O

F()

O(k)

Input Seq 1

Input Seq N

Output Seq

o(K) = F(,..., ,)

Figure 1. The image processing algorithm model

any particular element of the output data structure at time K, say o(K) 2 O(K). Note that if O(k) is an image

sequence, then this is a pixel in output frame K, and o(K) = O(R;C;K) for some particular row R and column

C. o(K) is computed from some set of data made up of pixels from the inputs sequences, and elements from past

values of the output data structure. These input data are represented by the grayed areas in the input and output

sequences in �gure 1. The corresponding pixels required from the nth input sequence, In, in order to calculate the

output element, o(K), necessarily lie in a �nite set of pixel locations which together form a region R̂In inside sequence

In.

R̂In =
n
~P = (r; c; k) j o(K) � In(r; c; k)

o
(1)

where ~P = (r; c; k) is the pixel location vector designating row r, column c, of frame k. The arrow pointing from the

input location to o(K) speci�es that the particular output element o(K) depends upon In(r; c; k), in the sense that

in order to compute o(K), the algorithm requires direct knowledge of the pixel value at location ~P in In.

The union of the required regions from the input sequences with the required region from the past values of the

output sequence O(k) forms the total data dependency set of output data element o(K), D̂o(K).

D̂o(K) =

(
N[
n=1

R̂In

)[
R̂O (2)

2.1.2. Image processing algorithm de�nition

For the purposes of this paper, a function F () operating onN input image sequences I1(r; c; k):::IN (r; c; k) to compute

output data structure sequence O(k) is an image processing algorithm if and only if

� F () is causal. For each output data element o(K) 2 O(K)

if ~P = (r; c; k) 2 D̂o(K) �! k � K

i.e. The data dependency set for a current output data element o(K), D̂o(K), contains only input data locations

from the current and past input images.

� For each output data element o(K) 2 O(K)

D̂o(K) \ O(K) = ;

i.e. The data dependency set for a current output data element o(K), D̂o(K), contains no data locations in the

current output structure O(K).

� For each output data element o(K) 2 O(K), the total data dependency set D̂o(K) required to compute o(K) is

�nite, and a bounding set can be determined a priori to the start of computation. The computations need not

be �xed, as long as both the amount of computations and the regions required to compute each output have

speci�able upper bounds.

This de�nition is quite non{restrictive, especially in light of the types of computations which are usually performed in

low{to{mid level vision. These computations are regular, and usually traverse the image in raster order, performing

fairly simple operations to produce each output pixel.4�

2.2. Image processing data
ows

A popular method of building up image processing applications is to combine several pre{coded algorithms together

to form a Large Grain Data Flow (LGDF). A LGDF is a directed graph in which the graph nodes represent processing

blocks and the arcs represent communication between the blocks. The LGDF style speci�cation is commonly used

in signal and image processing. One reason is that it's visual nature promotes the integration of high{level graphical

programming interfaces. For example, Khoros, a popular image processing development environment from the

University of New Mexico, provides a visual programming interface in which data
ow graphs are drawn to specify

image processing computations. Khoros performs the control
ow and transfer of data between the computation

blocks automatically as it executes the data
ow.9

�Note that the de�nition does not require that the computation traverse the image in raster order, or that the operations be simple.
The statement was made to drive home that fact that the de�nition encompasses at least those types of algorithms.

In keeping with this approach, the problems considered are LGDF computations made up of algorithms meeting

the de�nition in section 2.1.2.. The following restrictions are placed on the data
ow: (1) it must be a Synchronous

Data Flow (SDF), which means that for each computation block, the amount of data consumed and produced each

time the block runs is �xed,10 (2) it must have no cycles (loops in the data
ow graph that don't containing a

delay element), and (3) it must have no fan ins (connections cannot be merged together). Fan outs are allowed (a

connection can have multiple readers). Such computations will be referred to as synchronous image processing data

ows.

2.3. Real{time image processing

Real{Time systems interaction with their environments, and thus must produce outputs which are not only nu-

merically correct, but which also meet timing constraints necessary for these interactions. Such systems are said

to be embedded into their environments. The relevant environmental interactions for image processing systems are

receiving data from sensors or other systems, and outputting data to displays, plots, devices, or other systems, which

may apply controls to the surroundings directly (e.g. a vision system might generate controls for a robotic arm).

2.3.1. Relevant timing constraints

RTIP systems may be required to service the input devices as quickly as the data is produced, produce outputs at

a sustained rate, or produce an output from each particular input within a constrained amount of time. The two

relevant types of temporal constraints in real{time image processing systems are:

� throughput: the rate at which results are produced by the system, usually quanti�ed in frames

sec
.

� latency: the total time between the sensing of a particular image and the results of that image leaving the

system, usually quanti�ed in seconds, and sometimes in frames.

It is important to note here the di�erence between a high performance system and a real{time system. Real{

time image processing systems must not only support the large I/O data rates and computational power discussed

previously, but the performance must be predictable and controllable. It must be known a priori to run{time (1) if

a computation can be done within the timing constraints on the available hardware, and (2) if so, how to utilize

the hardware to achieve the required performance. Thus, predictive models of both throughput and latency are

necessary. Since it is generally di�cult to accurately characterize the performance behavior of a computation, the

models must be developed using knowledge of the algorithms and the underlying run{time system.

2.4. Specialized real{time hardware solutions

The approach traditionally taken in supporting real{time imaging has been to implement the most commonly used

computations in specialized real{time hardware. Hardware implementation has been the most practical and cost{

e�ective solution that could meet the performance requirements of RTIP. There are many commercially available

machines which perform various set of standard image processing computations at real{time rates (eg. Matrox,

Coreco, DataCube). Some are more general and
exible than others. However, no hardware solution provides all of

the following:

� Programmability: They are either not end{user programmable, or o�er limited programmability. Adding

functionality may require costly VLSI design. It is not practical for the user to invent and experiment with non{

standard algorithms. As systems such as Khoros9 have shown, the ability to rapid{prototype and experiment

with algorithms for the application at hand can greatly enhance the ability to generate e�ective solutions.

� Flexibility: The data paths are either hard{wired or have a �xed number of con�gurations, so the possible

ordering of the computations is often limited.

� Scalability: More computations or higher performance cannot always be achieved by adding more hardware.

� Ease of use: They are di�cult and expensive to use. Learning to use specialized hardware systems can require

months of training, even for experienced image processing experts. Training time and cost is a major factor in

the economics of computer solutions, since labor is traditionally more expensive than hardware.

� Cost{e�ectiveness of hardware: Since the systems do not use COTS parts, the hardware is expensive.

The use of specialized real{time image processing hardware has proven successful for some applications. However,

the inherent limitations have caused the real-time imaging industry to develop the mind-set of trying to �t problems

to the �xed capabilities of the available real{time hardware, instead of building integrated solutions to the problems

at hand. This has had the unfortunate e�ect of placing a barrier between the algorithm development community

and many real world embedded applications. Since it has not been feasible to create real{time implementations

of new, non{standard algorithms to use in embedded imaging systems, much of the theoretical image processing

developments have not been used in embedded applications.

2.5. Parallelizing image processing computations

Instead of using hardware implementations, a more
exible approach is to generate parallel software version of the

computations and map them to a distributed memory multi{computer.y Because the operations have characteristics

which make them particularly suitable for implementation on parallel computers, image processing has been the

most common area for the application of high performance parallel computing.4,11

The basic parallel computing constructs can be de�ned which best support these characteristics are data{

parallelism (spatial decomposition or temporal decomposition) and functional parallelism. These parallel processing

constructs and how they can be exploited in image processing are discussed next.

2.5.1. Spatial decomposition

Because of their properties, many image processing algorithms are easily data parallelizable by decomposition of the

data in the image plane. A simple data parallel programming technique which is applicable to image processing is

the split{and{merge model.4 In this technique, each input data structure is split into N pieces, which can be blocks

P2Input(kN+1) Output(kN+1)

P3Input(kN+2) Output(kN+2)

Sequence
Input Image Output Image

Sequence
N Processing Nodes

(Workers)

P1

PN

Output Communication
Stage

Input Communication
Stage

Input(kN) Output(kN)

Input((k+1)N-1) Out((k+1)N-1)

P1

P2

P3

PN

Access
Shared Data

Input Piece(1)

Input Piece(2)

Input Piece(3)

Input Piece(N)

Output Piece(1)

Output Piece(2)

Output Piece(3)

Output Piece(N)

N Processing Nodes
(Workers)

Merging StageSplitting Stage

Input Image Output Image

Spatial data parallelism (split-and-merge)Temporal data parallelism (sequence splitting)

Figure 2. Data parallel decomposition (spatial and temporal)

of rows, blocks of columns, panels, overlapping regions, etc. The pieces are distributed across the memories of the N

worker processors, each which performs the same algorithm on its sub{section of the data. The partial results are

then merged to form the output. In �gure 2, a split{and{merge computation is shown in which the data is split into

blocks of rows, and the �nal result is formed by concatenating the partial results.

Since each of the workers computes 1
N th

of the result concurrently, the per image computation time is reduced

by a factor of at most N . This has the potential of both reducing latency and increasing throughput when executing

yWe assert that distributed memory multi{computer hardware architectures are appropriate for the RTIP application domain.7

on image sequences. However, the acceleration actually achieved depends upon the overheads introduced by the

decomposition.

Referring to �gure 2, sources of overhead in the split{and{merge processing model are (1) splitting inputs: dis-

tributing the image pieces to the processors, (2) merging outputs: communicating the partial results to be combined,z

and (3) sharing data: communicating shared data and partial results between worker processors.

How the data is to be split, shared, and merged depends upon the algorithm's data access patterns. Referring

back to the general image processing algorithm model de�ned in section 2.1.2. , note that the total data dependency
set required by the algorithm in computing output pixel o(K) =O(R;C;K) is su�cient information to determine

which pixels of the input data must be available locally to the processor computing that data element.

2.5.2. Temporal decomposition

Algorithms which either cannot be split in this fashion, or for which the resulting gains of spatial decomposition

would minimal, can still be successfully data parallelized when operating on image sequences by taking advantage

of the sequence structure. Image sequences can be decomposed temporally instead of spatially (split the data along

the time domain, instead of the spatial domain). Instead of distributing pieces of an image to worker processors, as

shown in �gure 2, the pieces of the image sequence (entire images) can be distributed as shown in �gure 2. Input(i)

is distributed to processor (i mod N) + 1, where N is the number of processors, and i 2 f0; 1; : : :g.

Each worker processes an entire image, so there is no decrease in the time it takes for any one image to be processed

(latency). However, images are being processed concurrently, so there is a potential increase in throughput.

2.5.3. Functional parallelism

Functional parallelism takes advantage of the natural concurrency of a computation. The computation is broken

down into semi{independent sub{computations, which interact by passing data.

Sequential Computation �! fSC1; SC2; : : : ; SCNg

The sub{computations along with the data passed between them form an implicit data
ow computation graph.

The application of functional decomposition to parallelized LGDF computation is straight{forward. The N sub{

computations can be executed concurrently on N processing elements, with data being transferred between the

computations via inter{processor communication. The allocation of processes to processors is given by

SCk �! Nodemap(k) (k = 1 : : :N)

where map(k) is the mapping function.

The performance gains of functional parallelism are achieved through allowing the sub{computations to execute

concurrently, and are controlled by the structure of the data
ow. The speedup is bounded above by N , and the

e�ciency, speedup

N
, is a�ected greatly by the relative complexities of the sub{computations as well as the communi-

cations overhead. Unless the sub{computations are of similar complexity, the system will not be load balanced. Non
load balanced systems have performance bottlenecks that result in the ine�cient use of the parallel resources and

poor performance gains.

2.5.4. Hybrid parallel constructs

It is reasonable to combine these approaches and form a hybrid parallel construct which uses two levels of parallel

decomposition, the top data
ow level being functionally parallel, and the underlying sub{computations being data

parallel. Scaling and load balancing to the target throughput can be achieved by scaling the data parallelism of the

sub{computations independently until each achieves the target throughput. This type of hybrid parallel construct

can be applied automatically to data
ow computations if methods of automatically data parallelizing and scaling

the sub{computations are developed.

zIn some cases extra computations are required to combine the partial results to form the form the output.

3. APPROACH

The approach taken in this work has been to use MIPS techniques, speci�cally the Multigraph Architecture, to

generate parallel software versions of synchronous image processing data
ows made up of existing sequentially

coded algorithms, and automatically scale and map the resulting decomposition to a parallel hardware architecture.

This section provides an overview of the approach taken toward this automatic decomposition, scaling, and mapping.

Then it introduces MIPS and the MGA, and how it can be used in automating the parallelization decisions.

3.1. Data
ow decomposition and allocation to hardware

The data
ows are decomposed using the two level hybrid parallel construct discussed in the previous section. As is

shown in �gure 3, the �rst step is to partition the data
ow into computation blocks. Each block is then decomposed

using either spatial data parallelism, temporal data parallelism, or no parallelism. Scaling is performed by assigning a

number of processing nodes to each block. Referring to �gure 3, note that Block2 has been decomposed using spatial

data parallelism, and assigned a scaling factor N = 6. The data parallelism has been implemented by making 6

replicas of the computation in Block2, which have been allocated to 6 processing nodes in the hardware architecture.

P8P9

P1

P12

P2 P3

P5

P4

P6P7P10P11

Allocation of
Decomposition to HW

Selection of Decomposition

Alternatives and Scaling

To Meet Constraints

Allocation of

Sub-Computations

To Processors

Spatial

N=6

Spatial

N=4
Temporal

N=2

Decomposed and

Scaled Data Flow

Parallel HW

Architecture

Data Flow

Computation

Partitioned

Data Flow

Block1
Block2

Block3

Partitioning

Figure 3. Mapping data
ows to parallel hardware architectures

3.2. Di�culties

Nothing has been said yet of how the implementation, including the control
ow and communication, is supported.

Moreover, the decision making processes for selecting the types of parallelism, the scaling factors, and the allocation

of the decomposed data
ow to the processing nodes have yet to be discussed. At this point is where the concept of

developing a system becomes most important.

The di�culty of the problem lies in that fact that the tasks of decomposing the algorithms, supporting the inter{

process communication, providing control
ow (synchronization and scheduling), �guring out to how many and to

which processors the computations should be allocated, and determining how to route the communications through

the communications network are inter{related. Some of these problems are di�cult to solve even when considered

alone. For instance, the general assignment problem is NP{complete.12

The following inter{related problems must be solved simultaneously (assuming the partitioning has been done):

� Decomposition of blocks: select a parallelization method for each block of the partition.

� Scaling blocks: select the number of processor for each block to load balanced and meet timing constraints.

� Allocation: assign the decomposed, sub{computations of the scaled data
ow to the available processors.

� Communications routing: determine the path along which the communications will
ow. For instance, each of

the lines representing communication in �gure 3 must be routed somewhere through the hardware network.

� Formation of performance models: determine accurately the performance that will result from a particular

decomposition and mapping of a computation to the available resources.

� Support of parallel execution: provide the scheduling, communication, and synchronization to support execution

of the data
ow.

A major obstruction to automating the decomposition, scaling, and mapping processes is that these tasks are

inherently inter{dependent. Note that the construction of performance models, which are used in making the

parallelization decisions, requires knowledge of both the run{time system and the allocation of computations and

hardware nodes. However, as �gure 3 shows, the allocation is done after the parallelization decisions have been made.

Performance models can not be built without taking into account the allocation, and vice versa.

Because of these inter{dependencies, the general problem of mapping image processing synchronous data
ows to

arbitrary multi{computer networks while simultaneously guaranteeing that throughput and latency constraints are

met has no closed{form solution. Moreover, performing an exhaustive search of all decompositions and allocations

until the constraints are met is not a practical alternative because the search space is too large.

The approach toward automatically mapping the computations to the resources must be to reduce the size of

the search space by developing simpli�ed decomposition procedures and allocation techniques which exploit the

capabilities of the target hardware architecture and favor the properties of the majority of the applications. The

is the approach taken in the MIRTIS system, as will be discussed in the next section. First, however, a short

introduction to model{integrated program synthesis and the Multigraph architecture is in order.

3.3. Model{integrated program synthesis overview

MIPS is a method of synthesizing software systems from high-level models. MIPS is related to code generation

performed by compilers, but the goal of MIPS is not the generation of machine code. MIPS systems generate instead

either code to be executed on a virtual machine, or a con�guration of existing computations. Common to all the

various existing MIPS approaches is a component called the model interpreter, which actually performs the program

synthesis. The model interpreter transforms high{level system models, speci�ed in terms of a paradigm, or language,

into the system program.13

3.4. The Multigraph architecture

The MGA is a MIPS architecture developed at Vanderbilt University which provides a frame{work and tools for

(1) building graphical domain speci�c models and (2) transforming the graphical models into executable applica-

tions.14 By using domain speci�c models and interpreters, MGA allows the domain experts to specify a system in

familiar terms without dealing with the underlying software engineering details. The MGA consists of the following

components: (1) A graphical model builder (GMB). This is a graphical environment in which domain speci�c models

are built and manipulated. The current MGA model builder is called XVPE. (2) A model database in which the

models are stored. The current implementation uses a public domain Object{Oriented DataBase (OODB) called

obst. (3) Domain speci�c model interpreters, which translate the system models into the various components of the

target system. (4) Integrated applications make up the target software system. (5) The run{time kernel, application
libraries, and/or operating system platform together form the run{time environment.

For more detailed information about the MGA, refer to 14.

3.5. MGA models

The models are built and manipulated via the XVPE graphical model building environment. XVPE is con�gured

with a domain speci�c modeling paradigm which contains the concepts particular to the application. The modeling

concepts available in the MGA system include attributes, parts, hierarchy, connection, association, reference, and

multiple aspects. This set of modeling concepts has been shown to be rich enough to support the needs of a large

and diverse set of problem domains.15{19

4. MIRTIS

4.1. Overview

MIRTIS is an MGA{based realization of the ideas which have been developed in the previous sections. It uses a

combination of automatic program translation and meta{level driven software synthesis to automatically parallelize

image processing data
ows made up of sequentially coded algorithms. The parallelization decisions (types of

parallelism and scaling factors) and the allocation of the decomposed data
ow to the parallel architecture are

performed automatically. The decision are driven by the real{time constraints, which are modeled explicitly.

It was determined that the decomposition and allocation algorithms should be simpli�ed in order to decrease the

search space of data
ow to network mappings, and to make the automatic mapping of processes to processors a

practical endeavor. The simpli�cation in the mapping algorithm was made possible by adding complexity to the run{

time system. Speci�cally, a special routing technique was implemented for the C40 which enables all communication

to be routed along a hardware pipeline.

The run{time system was kept semi{architecture independent by implementing the communication components

as a separate layer which can be re{implemented for new hardware architectures, thus allowing the re{use of a large

part of the implementation. Both a prototype C40 run{time system and the resulting mapping algorithm have

been designed and implemented for this work. The special communications routing support in the run{time system

reduced the complexity of the mapping algorithm signi�cantly, making the interpretation process more feasible.

4.2. The MIRTIS architecture

The MIRTIS architecture, shown in �gure 4, follows the MGA framework, and consists of the following: (1) the

IPDL model building environment, (2) a model database, (3) the MIRTIS model interpreter, (4) an image processing

application library, (5) the PCT{C40 run{time system, (6) the MIRTIS graphical user interface, and (7) a network

of C40s. The most important aspects of these elements are discussed next.

Model Database

Pipeline Cut-Through

Image Processing Data Flow
Decomposed & Scaled

MIRTIS Model Interpreter

TI C40 Network

Video In Video Out

XVPE.IPDL
Model Editor

MIRTIS Graphical
User Interface

Configuration
Configuration
PCT Network

Files

Image Processing
Application Library

MIRTIS Graphical
User Interface

PCT Run-Time
System

Figure 4. The MIRTIS architecture

4.3. The IPDL modeling paradigm

The MIRTIS modeling paradigm, called Image Processing Description Language (IPDL), was designed speci�cally

for real{time image processing. The concepts were developed by extracting the set of information required to support

The IPDL Paradigm

Paradigms Models Model Aspects

SignalFlow

Algorithm Structure
Constraints
DataDependency
ParameterInterface

Application Structure

Hardware

Node Hardware

HostNode Hardware

Network Hardware

Constraints RealTimeConstraints Goals

Table 1. Concepts in the IPDL modeling paradigm

the automatic decomposition and mapping approach outlined in the previously. This section will brie
y describe the

paradigm, putting emphasis on the novel concepts.

As is shown in table 1, IPDL contains three types of models, Signal Flow, Hardware, and Constraints, which
represent the data
ow computation to be performed, the hardware resources available for the solution, and the

timing constraints required by the solution, respectively. The combination of a Signal Flow Application model, a

Hardware Network model, and a Constraints RealTimeConstraints model together form a the speci�cations for a

real{time image processing system.

4.3.1. Signal
ow models

Signal
ow models specify the image processing computations to be performed. The two types of signal
ow models

are applications, and algorithms. Applications are simply data
ow graphs made up of algorithm models, each which

declares pertinent information about an algorithm in the image processing library. Only the most important parts

of the algorithm model are discussed here. For a detailed description, along with examples, see 7.

Algorithm data dependency speci�cation: When implementing temporal or spatial decomposition, the inter-

preter must be able to determine how the input data is to be split and allocated to the worker processors so it can

(1) con�gure the communication system correctly, and (2) accurately model the communication overheads.

For modeling the data dependency behavior of the algorithms, a mathematical dependency speci�cation format

was devised that is unique to this development. The idea is to show an algebraic relationship between an output pixel

location and a region in an input image sequence. The data dependency speci�cation is contained in an attribute of

each algorithm model, the format of which is given by:

Out[rvar; cvar; tvar] 00
 �

00 In[rowrange; colrange; timerange]

range = begin() [00: : :00 end()]
�� 00 : 00

where Out and In are names of two of the algorithm's image signals, and rowrange, colrange, and timerange,

following the range format. In the range speci�cation, begin() and end() are algebraic formulas specifying the �rst

and last indices of the range, and a ":" speci�es the entire gamut of valid indices.

A data dependency parser was implemented which parses and evaluates the data dependency speci�cations.

During interpretation, the speci�cation is parsed to determine the data access patterns for each algorithm in the data

ow. For a particular decomposition method, this information is used in characterizing communications overheads

in the performance models and in con�guring the PCT communications engines.

Algorithm benchmarks: The approach taken in modeling each algorithm's execution time as a function of data

size was to rely upon empirically gathered benchmarks. Using measured execution times instead of other approaches

is both more accurate and straight{forward.

Each algorithm model contains a set of benchmark parts, each having an attribute specifying the dimensions

of the algorithm's input images for that measurement. By providing execution time benchmarks for various data

sizes (on a single node of the target architecture), an execution time versus data size curve can be constructed. The

method of estimating the execution time of an algorithm for a particular data size is to use linear interpolation on the

benchmarked data sizes, including an implicit benchmark of zero seconds for zero data size. This unique benchmark{

based interpolative approach to approximating execution time has proven to provide very accurate results in testing.

4.3.2. Hardware models

The types of hardware models are Node models, HostNode models, and Network models. Network models are inter{

connected hierarchies containing nodes, hostnodes, and other networks. Node models represent the processing nodes

which perform the image processing computations on the data stream. In the case of the prototype, these are C40s.

Each node model has attributes describing the node type and con�guration, the ports, and any special resources,

such as frame digitization hardware. HostNode models represent the PCs or workstations, which provide services

such as network loading and disk I/O. They contain various attributes and parts, notably host interface card parts,

which are boards in the host bus that provide communication links to the C40 network through which loading and

run{time communication occur.

4.3.3. Constraints models

Constraints models contain explicit declarations of the target latency and throughput required for an application.

Throughput models have a numerical attribute specifying frame rate in frames

sec
, and latency models have attributes

specifying latency in frames. Both throughput and latency models have attributes specifying whether it is a hard or
soft constraint. As will be seen, this attribute is used in the interpretation procedure in the case that the constraints

cannot be met exactly. It speci�es whether that constraint can be relaxed to allow a best e�ort implementation on

the available hardware.

4.4. The PCT{C40 run{time system

A real{time image processing kernel called PCT{C40 has been implemented which provides run{time support for

spatial and temporal data parallel execution of image processing synchronous data
ows on pipeline{connected C40

networks. The kernel runs on each C40 node and performs the scheduling, communication, and synchronization

necessary for data parallel computations.

The scheduler on each node runs a Periodic Admissible Sequential Schedule (PASS)10 which implements the

synchronous data
ow local to that node. The kernel con�gures and starts the PCT communication engine, which, in

cooperation with the neighboring nodes, distributes the input data appropriately across the processors and combines

the local results to form the output data. Since the computation and communication schedules are static, the

scheduler introduces minimal run{time overhead. This also has the e�ect of simplifying the kernel by pushing the

work of generating computation and communication schedules into the model interpretation process.

4.4.1. Pipeline cut{through overview

Pipeline Cut{Through (PCT) is a communication technique which allows synchronous data
ows parallelized with the

spatial or temporal data parallel constructs to be mapped to a group of C40s connected in a pipeline (a PCT group).

PCT achieves this by routing all communications, including the distribution (splitting) of input data and collection

(merging) the partial results, along the C40 pipeline. PCT also provides coordination between the communication and

computation processes. Since PCT implements the parallel facilities automatically, the data parallelism is absolutely

transparent to the programmer.

Each node of a PCT group performs the same computations on a di�erent section of the image data. The incoming

stream is split and spread across the memory banks of the group nodes, and after the local data
ow computation

has produced the partial results, they are combined (merged) to form the output data stream. As well as splitting

and merging the data stream, the communication engine also supports the sharing of pixels from the input sequences

between two or more nodes in a PCT group. For more information about PCT, see Refs. 5{7.

4.5. The image processing library

The actual image processing functionality is provided by a library of image processing algorithms written in C and

compiled with the standard Texas Instruments C40 compiler. This library is the simplest component of the system,

since the image processing functions can be written as if they were to be used in a normal uni{processor system.x It

was decided to take this approach instead of generating the image processing speci�c code directly from the most so

that image processing libraries optimized for the target architecture could be re{used, which saves time and results

in better resource utilization.

4.6. The MIRTIS interpreter

The model interpreter is the heart of any MGA system, and requires the largest implementation e�ort. The job of

the MIRTIS model interpreter is to translate the IPDL models into a scaled decomposition of the data
ow, map

the decomposition to the underlying hardware architecture, and construct network communication and computation

schedules which con�gure the real{time image processing kernel and realize the parallel real{time data
ow. Referring

to �gure 4, the products of the interpretation are (1) PCT network con�guration �les, and (2) a GUI con�guration �le.

These �les are used in (1) booting the network, (2) con�guring the network communication engines and schedulers,

and (3) con�guring the dynamic parameter graphical user interface.

4.6.1. Relationship between performance models and allocation

Performance models are needed for determining (1) if a particular computation can meet the speci�ed performance

goals using the available hardware, (2) a decomposition method and granularity of parallelism (scale) for each block,

and (3) a mapping of the decomposed computations to the hardware that will meet the constraints.

In general, performance models are dependent upon the properties of the particular computations, the paral-

lelization technique, and the allocation to the hardware network. This forces the processes of decomposing the data

ow and allocating it to the hardware to somehow occur simultaneously. It is preferable to decouple these processes

to make the mapping more practical to automate.

Due to the properties of the PCT communication technique and the support provided by the PCT run{time

system, the allocation scheme and hardware topology can be simpli�ed enough that the throughput and latency

models can be built in a separate step before allocation. This e�ectively decouples the decomposition and allocation

processes, making the automation of mapping data
ows to hardware tractable. The emphasis in developing perfor-

mance models can thus be placed on the properties of the computations. See 7 for a complete development of the

performance models.

4.6.2. The interpretation procedure

Because the decomposition and allocation processes have been e�ectively decoupled by the assumption that the PCT

run{time system will be used, the search for an appropriate mapping between the image processing data
ow and

the hardware pipeline can be reduced to �nding an appropriate partition, and choosing a decomposition alternative
(a supported type of parallel decomposition) and a scaling factor for each PCT Block.

Judging the success of a particular decomposition involves building throughput and latency models and comparing

them to the throughput and latency goals speci�ed in the system's RealTimeConstraints model, then making sure

that the hardware architecture can support the decomposition. Enough of the right kind of processors must be

available, and they must be connected in an appropriate topology.

xThe functions must follow a loose format and set of rules. For instance, there is a programming API through which must be used in
obtaining the input and output bu�ers.5

Figure 5. The interpretation procedure

The procedure followed by the interpreter is to �rst partition the synchronous image processing data
ow such

that it is compliant with the PCT run{time system (see Refs. 5{7). Then a search is performed for a combination

of block decomposition alternatives and scaling factors that will meet the performance constraints and that the

hardware architecture can support.

The interpretation algorithm, shown in �gure 5, performs an exhaustive search of all decomposition alternative

combinations until either the constraints have been met, or the valid alternative sets have been exhausted. Alter-

native combinations which meet the hard real{time constraint(s), but may not meet the other(s), are stored in the

possibilities set during the search. The end result of a successful search is a partition, and a set of decomposition

alternatives and scale factors for the partition blocks which can be allocated to the hardware pipeline to achieve the

target throughput and latency. If no solution was found during the search, an attempt is made to relax the through-

put and/or latency constraints. If both constraints are hard constraints, then no concessions are made. Otherwise,

the alternative sets which were stored in the possibilities set are examined, and the one which most nearly matches

the constraints is chosen. The decision of which of these most nearly matches the constraints is made by putting

priority on throughput by choosing the set which produces the highest frame rate. This decision was made primarily

because the system was designed with real{time video in mind, and in video applications throughput is most often

the more important constraint.

The allocation occurs only after a scaled decomposition has been chosen for the solution. This decoupling of the

decomposition and allocation was made possible by �rst partitioning the data
ow and using the PCT run{time

system. Without this simpli�cation, the performance models would be inextricably dependent upon the allocation,

and thus a much more complicated procedure would be required.

5. CONCLUSIONS

This work has begun to address the problems which must be solved to support the image processing and vision

applications that will become prevalent in the future. Some vision applications may require on the order of hundreds

of billions of operations per second. The work has taken a novel approach toward parallel programming by generating

parallel real{time implementations of image processing data
ows from high{level speci�cations.

The implemented system includes a graphical environment with which the user builds visual models of the

data
ow computation, the hardware resources available to solve the problem, and real{time speci�cations of an

application. A model interpreter automatically transforms these models into a con�guration of a real{time system

which executes the modeled computation. The interpreter performs the data
ow decomposition, performance

modeling, scaling, load balancing, and scheduling automatically, then allocates the decomposed, scaled computation

to a network of DSPs. A parallel image processing run{time kernel provides communication, routing, scheduling,

and synchronization for the implementation.

Although the MIRTIS interpreter was necessarily built around assumptions about the underlying PCT{C40

run{time system, the MGA approach of specifying applications in terms of models provides a level of architecture

independence which is expected to allow much of the system to be re{used when the target hardware platform evolves

with the availability of faster and cheaper hardware.

ACKNOWLEDGEMENTS

This work was partially supported by the AFOSR/AFMC, US Air Force, contract number F49620-94-C-0076.

REFERENCES

1. C. Weems et al., \The darpa image understanding benchmark for parallel computers," Journal of Parallel and
Distributed Computing 11, pp. 1{24, 1991.

2. C. Weems et al., \Ui parallel processing benchmark," IEEE Journal of Parallel and Distributed Computing ,

pp. 673{688, 1988.

3. P. A. Laplante, \Issues in real-time image processing," Proceedings of the 1993 IEEE Systems, Man, and
Cybernetics Conference , pp. 323{326, (Le Touquet, France), October, 1993.

4. J. A. Webb, \Steps toward architecture-independent image processing," IEEE Computer , pp. 21{31, February,
1992.

5. M. S. Moore, \A dsp-based real-time image processing system," Proceedings of the 6th International Conference
on Signal Processing Applications and Technology (ICSPAT) , (Boston, MA), October, 1995.

6. M. S. Moore and J. Nichols, \Model-based synthesis of a real-time image processing system," Proceedings
of the First IEEE International Conference on Engineering of Complex Computer Systems (ICECCS) , (Ft.

Lauderdale, FL), November, 1995.

7. M. S. Moore, Model-Integrated Program Syntheis for Real-Time Image Processing. PhD thesis, Vanderbilt

University, Nashville, TN, May, 1997.

8. A. Choudhary and S. Ranka, \Parallel processing for computer vision and image understanding," IEEE Com-
puter , pp. 7{10, February, 1992.

9. J. Rasure et al., \Visual language and software development environment for image processing," International
Journal of Imaging Systems and Technology , pp. 183{199, August, 1990.

10. E. A. Lee et al., \Static scheduling of synchronous data
ow programs for digital signal processing," IEEE
Transactions on Computers 36(1), pp. 24{35, January, 1987.

11. J. A. Webb, \High performance computing in image processing and computer vision," Proceedings of the Inter-
national Conference on Pattern Recognition , (Jerusalem), October, 1994.

12. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theorey of NP-Completeness,
W.H. Freeman and Company, New York, NY, 1979.

13. B. Abbott et al., \Model-based software synthesis," IEEE Software , pp. 42{52, May, 1993.

14. G. Karsai, \A con�gurable visual programming environment," IEEE Computer , pp. 36{44, March, 1995.

15. T. Bapty et al., \Synthesis of large-scale real-time instrumentation systems using model-based techniques,"

Proceedings of the Software Engineering Research Forum , (Boca Raton, FL), 1995.

16. R. Carnes et al., \Integrated modeling for planning, simulation and diagnosis," Proc. of the IEEE Conference
on AI Simulation & Planning in High Autonomy Systems , (Cocoa Beach, FL), April, 1991.

17. A. Misra et al., \A model-integrated information system for increasing throughput in discrete manufacturing,"

International Conference on Engineering of Computer Based Systems (ICBS) , (Monterey, CA), March 1997.

18. G. Karsai et al., \Model-based intelligent process control for cogenerator plants," Journal of Parallel and Dis-
tributed Computing 15, no. 6, pp. 90{102, 1992.

19. S. Padalkar et al., \Real-time fault diagnostics with multiple-aspect models," Proc. of the IEEE International
Conference on Robotics and Automation , pp. 803{808, (Sacramento, CA), April, 1991.

