
tool allows algorithms to be quickly tweaked with-
out re{programming, re{compiling, or re{loading.

MIRTIS Performance

MIRTIS is capable of performing a pipeline of user
de�ned computations on 512x480, 8bit per pixel
frames at the target rate of 30 frames per sec-
ond, given that enough C40s are available in the
hardware architecture. The digitization resolu-
tion (width and height of the digitized frames),
the data depth (bits per pixel), and the frame
rate are adjustable. However, 512x480x30=7.0
Mbytes per second is the highest data rate yet
achieved due to hardware limitations (the ribbon
cables connecting the C40 communication ports
limit the communications performance). A large
system containing 51 nodes was benchmarked at
520Mops

sec
sustained (counting only useful computa-

tions) while performing a complex edge detection
on live video. However, systems as small as 4{
6 processors can be used for simpler applications.
This is one of the most powerful features of the
MIRTIS system: the exible, open architecture
provided by the model{based approach allows the
system to be scaled up or down or completely re{
con�gured for an application by simply manipu-
lating the models.

Conclusions

MIPS has proven to be useful for hiding the com-
plexities involved in implementing parallel image
processing applications on a network of DSPs.
The MIRTIS architecture allows the user to pro-
gram, con�gure, and control a large, complex DSP
network with simple, high{level interfaces. By
automatically data parallelizing image processing
algorithms and scaling the parallelism, real{time
performance can be achieved for user{de�ned com-
putational dataows.
In the future, we plan to increase the data rates

supported by the hardware by using a doubly{
linked pipeline topology. This should increase the
maximum data rate to 14Mbytes

sec
.

References

[1] M. S. Moore: \A Model Based Real Time
Image Processing System", Final report for
the 1994 USAF-RDL summer research pro-
gram, AFOSR Contract F49620-93-C-0063,
September 1994.

[2] P. A. Laplante, \Issues in Real-Time Image
Processing," Proceedings of the 1993 IEEE
Systems, Man, and Cybernetics Conference,
Le Touquet, France, October, 1993, pp. 323-
326.

[3] B. Abbott, T. Bapty, C. Biegl, G. Karsai, and
J. Sztipanovits: \Model{Based Software Syn-
thesis", IEEE Software, May 1993.

[4] G. Karsai: \A Con�gurable Visual Program-
ming Environment", IEEE Computer, March
1995.

[5] B. Abbott and A. Ledeczi: \TICK: TI
TMS320C40 Utility Program", Proceedings
of the International Conference on Signal
Processing Applications and Technology, Oct.
1994.



tems [4]. By using domain speci�c models and
interpreters, MGA allows the domain experts to
specify a system in familiar terms and provides
an insulation from the underlying implementation
details.

MIRTIS Architecture

We have applied the MGA to the real{time im-
age processing domain, creating a real{time im-
age processing system with high{level program-
ming and user interfaces. MIRTIS generates split{
and{merge PCT applications for a parallel C40
network by building the PCT schedules and DMA
programs automatically, The complexities of com-
munications (DMA programming), sub{task de-
composition, sub{task allocation, and scheduling
are hidden from the user. The components of the
MIRTIS system can be seen in �gure 2.

Modeling Environment

Model Database

Mirtis Model Interpreter

Pipeline Cut-Through
Computational Network

Library
PCT Run-Time

Application
Library

MIRTIS Graphical
User Interface

TI C40 Network

Video In Video Out

Figure 3: The MIRTIS Architecture

MIRTIS Modeling

The MIRTISmodeling paradigm includes three as-
pects, or views, of the system. (1) computation
models, (2) hardware models, and (3) performance
goal models. Computation models describe which

algorithms are to be performed, and in what order.
The computation model is represented graphically
in a graph dataow style: blocks represent compu-
tations and inter{connecting lines represent com-
munication. Hardware models describe the C40
network, including information about each node
(memory con�guration, etc.), and about the in-
terconnection topology. The hardware model is
acquired automatically using the TICK [5] net-
work detection tool. Performance goal models al-
low the speci�cation of the target throughput and
latency which is needed by the application. The
three aspect models are viewed and manipulated
in the modeling environment (see �gure 3). The
modeling environment is based on XVPE, a con-
�gurable visual programming environment devel-
oped at Vanderbilt University [4] which runs un-
der X and uses the obst object oriented database
package for model storage. XVPE has been ported
to linux, which makes a PC a convenient platform
for modeling.

Model Interpreter

The MIRTIS model interpreter transforms the as-
pect models into a PCT computational network
which will implement the application with the
given performance, assuming that enough proces-
sors are available in the C40 network.

Application and Run{Time Libraries

The image processing application library contains
the code which actually implements the algo-
rithms. Because of the simplicity of the split{and{
merge model, it is possible to utilize existing C40
image processing libraries.
The PCT run{time library provides a scheduler,

a connection/memory manager, and other run{
time facilities. The C40 network is loaded with
the TICK network loader, which also provides a
network debugger.

Mirtis GUI

The MIRTIS Graphical User Interface is used for
loading and interacting with the C40 network.
The GUI has a dynamic command interface to the
PCT network which allows the user to adjust pa-
rameters of the running computations using slider
bars, and other interactive graphical widgets. For
example, a user can interactively adjust a convo-
lution kernel while viewing the output of the run-
ning system. The changes in the computations are
apparent in the output almost immediately. This



technique which is applicable to image process-
ing is the split{and{merge programmingmodel. In
this technique, the input data is split intoN pieces,
which are distributed to several worker processors
and processed concurrently. The results are then
merged to form the output. See �gure 1. Since
each worker computes 1

N
th of the result, there is

a computational speedup of at most N .

P1

P2

P3

PN

Access
Shared Data

Input Piece(1)

Input Piece(2)

Input Piece(3)

Input Piece(N)

Output Piece(1)

Output Piece(2)

Output Piece(3)

Output Piece(N)

N Processing Nodes
(Workers)

Merging StageSplitting Stage

Input Image Output Image

Figure 1: The Split{and{Merge Paradigm

Pipeline Cut{Through

PCT is a communications technique which im-
plements the communications necessary for split{
and{merge processing on a pipeline connected net-
work of C40s. PCT programs the autonomous Di-
rect Memory Access (DMA) co{processors of the
C40 to automatically split and merge the data
stream without CPU intervention, leaving the
40Mop CPUs free to perform the image process-
ing calculations. The communication and compu-
tation processes are synchronized once per image
through DMA interrupts, but otherwise run inde-
pendently.
The reason that the split{and{merge communi-

cation can be done with very little overhead on a
pipeline hardware topology is that the C40 DMAs
can be programmed to transfer from a communi-
cation port to memory, from memory to a port,
or directly from a port to another port. The port
to port communication makes the C40 a virtual
wire connecting its two neighbors. Keeping in
mind that the DMAs operate independently of the
CPU, it is possible then for the data stream to cut
through one or more C40s in the pipeline, poten-
tially allowing any two processors in the network
to communicate. Since the DMAs can re{program
themselves upon completion of a transfer, com-
munication state table can be implemented which
cause pipeline connected C40s to split and merge
an image sequence datastream.
In �gure 2, a group of 3 C40s is shown which

are programmed to split images into 3 groups of
rows and merge the sub{image outputs into the
output datastream. Note that in each state one
of the C40s is e�ectively reading from the input
stream and writing to the output stream by cut-
ting through the other 2 processors. The input
and output streams ow un{interrupted as long
as each worker processor is �nished computing its
piece of the image before its turn to communicate
again. In �gure 2 the horizontal arrows between
memory segments indicate computation. Note
that in the given example, the processor communi-
cating is not computing, which causes the speedup
to be at most N � 1 = 2 instead of N = 3. This is
easily alleviated by double bu�ering, but for sim-
plicity, the double bu�ered case was not shown.

P1 P3P2

M1 M2 M3Input Output

State2

P1 P3P2

M1 M2 M3Input Output

State1

P1 P3P2

M1 M2 M3Input Output

State3

Figure 2: The PCT Communications Scheme

The way that the PCT DMAs are programmed
depends upon the size of the data, the way that the
data is to be split, the number of processors to be
used, and the way that the algorithm accesses the
data. Building these programs by hand for each
application is not feasible, so a way of automati-
cally generating the DMA programs is needed.

Model Integrated Synthesis

Model Integrated Program Synthesis (MIPS) is
a method of managing complexity in large scale
engineering systems [3]. Applications are gener-
ated from models, which specify the system in
terms of a paradigm, or language. The Multi-
graph Architecture (MGA) is a MIPS architecture
developed at Vanderbilt which provides a frame{
work and tools for building domain speci�c models
and transforming the models into executable sys-



this system.

Real{Time Image Processing

Image processing is the mathematical manipula-
tion of digital images by computers. It may be
used to enhance the quality of or extract informa-
tion from the visual data. Examples of image pro-
cessing algorithms are look{up table operations,
2{D convolution, and morphological �ltering. Im-
age processing algorithms are particularly com-
pute intensive due to the fact that images are very
large datasets. Image sequences (digitized video)
are even larger data sets, so processing video re-
quires a huge number of computations. For exam-
ple, a common video camera produces 30 frames

sec
,

and each framemay be digitized into 512x480x8bit
pixels. The data{size resulting from digitizing 1
second of video at this resolution is 7:0Mbytes.
Since a 5x5 convolution operation requires 25 mul-
tiplies and 25 adds for each pixel, �ltering this 1
second of video using a 5x5 convolution will take
370 Million mathematical operations.

A real{time system is one which must produce
outputs which are not only numerically correct,
but that also meet meet timing constraints. A
real{time image processing system obtains dig-
itized video data from sensors and computes
the correct response in compliance with speci�ed
temporal constraints. The relevant constraints
for image processing are throughput and latency.
Throughput is the rate at which outputs are pro-
duced, and latency is the time required to compute
one entire frame. Either or both types of tem-
poral constraints may be needed for a particular
real{time imaging application, so a general system
must have methods of controlling throughput and
latency. For example, in real{time video enhance-
ment the throughput is most important, since it is
critical that all of the data be processed with no
down{sampling. However, in robotics latency is
most important. The determination of the robot's
action must be made as soon as possible after the
visual sensing, and the next sensing cannot occur
before the action has been made.

Example Applications

In addition to the video enhancement application
which motivated this e�ort, there are several con-
temporary, specialized applications which require
real{time image processing, as discussed by La-
plante in [2]. These include remote command and

control, broadcast and multi{media communica-
tions, high speed modeling, rapid image identi�-
cation, medical imaging, and robotics.

Hardware Approaches

Traditionally, real{time image processing has been
done using hardware specially designed to imple-
ment the operations. For instance, a common con-
�guration is to put one or several boards into a
PC or workstation host, each which has certain
real{time capabilities built in. By changing the
inter{connections between the boards, and setting
hardware registers, a sequence of operations can
be performed on live video. These types of sys-
tems are a cost e�ective solution for some applica-
tions, and many di�erent such systems are on the
market. For example, AEDC has used a Quantex
QX{7 system for video enhancement for several
years.

Limitations of Specialized Hardware

There are several limitations to using specialized
hardware for real{time image processing.

� The largest limitation is that the systems are
not end{user programmable, in the sense that
user{de�ned functionality cannot be added
to the system. (Some systems are pro-
grammable, but the performance may su�er
dramaticallywhen user de�ned operations are
used.)

� Specialized hardware solutions are expensive,
both in hardware and training costs.

� The systems are not extensible, or scalable, in
that the amount of computations which can
be performed cannot always be increased by
adding more hardware.

At AEDC, a system without the limitations of
specialized hardware is needed. We determined
that by taking advantage of the natural data par-
allelism of images and high performance parallel
DSP hardware, such as the C40, a real{time image
processing machine could be built which is pro-
grammable, scalable, and cost{e�ective.

Split{and{Merge Parallelism

Because image processing algorithms usually per-
form the same, relatively simple computations for
each pixel in the image, they are easily data par-
allelizable. A simple data parallel programming



A DSP{BASED REAL{TIME IMAGE PROCESSING SYSTEM
�

Michael S. Moore
Measurement and Computing Systems Laboratory
Department of Electrical & Computer Engineering

Vanderbilt University
msm@vuse.vanderbilt.edu

Abstract

A real{time image processing system has been
developed which is based on the Texas Instru-
ments TMS320C40 DSP (C40). The system em-
ploys model{integrated program synthesis to au-
tomatically data parallelize image processing al-
gorithms, scale the parallelism to meet the perfor-
mance speci�cations of the application, and realize
the parallel implementation on a network of C40s.
The underlying parallelism is transparent, so the
user is insulated from the complexities normally
involved in programming parallel machines. This
makes parallel DSP hardware a feasible platform
for real time{image processing.

Introduction

Because of the huge data rates and the com-
putational power required to process digital im-
ages, real{time image processing systems have
traditionally been based on specialized hardware.
These systems, though useful, have had the draw-
back of being limited in programmability and scal-
ability. The types of computations they can do are
�xed. Due to the recent gains in VLSI and paral-
lel processing technology, however, the means are
now available to build much more programmable
and scalable image processing machines. By ex-
ploiting the natural parallelism of image process-
ing algorithms, and using networks of high perfor-
mance DSPs, very powerful real{time image pro-
cessing solutions can now be built.
A real{time parallel image processing system

is being developed through a joint e�ort be-
tween Vanderbilt University and Arnold Engineer-
ing Development Center (AEDC). The goal of

�This work was supported by the AFOSR/AFMC,
United States Air Force, contract number F49620-94-C-
0076.

the project, which began during the 1994 AFOSR
Summer Research Program [1], is to create a ma-
chine and development environment to be used
for processing video sequences on{line (in real{
time) during turbine engine tests, reducing video
data o�{line, and for interactively experimenting
with image processing algorithms. Three major
requirements of the application domain are

� A�ordable programmability. To reduce
programming expense, the system must be
programmable by the end users, which may
have no knowledge of parallel programming
or real{time systems. A high{level parallel
programming interface is necessary.

� Real{time performance. User de�ned
computations must be performed in live video
sequences at rates up to 30 frames per second
(512x480x8bit frames).

� Scalability/Flexibility. The system must
be easily scaled up, scaled down, or com-
pletely recon�gured to meet the requirements
of a particular application.

This paper presents the Model{Integrated Real{
Time Imaging System (MIRTIS). MIRTIS em-
ploys model{based techniques [2][3] to transpar-
ently and automatically parallelize image process-
ing computations, which it executes on a paral-
lel DSP hardware platform. System models are
used to manage the complexity of the underlying
implementation, mask the underlying parallelism,
and simplify the system's use. The MIRTIS hard-
ware platform is a network of Texas Instruments
TMS320C40 DSPs (C40s). Real{time execution
is achieved by scaling the data parallelism in the
computational dataow to the appropriate level to
reach the target throughput. The scaling is done
with virtually no overhead via a communications
scheme called Pipeline Cut{Through (PCT). Fol-
lowing is a description of our on{going work on


