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Abstract.  Sensor-rich systems typically employ extensive signal processing techniques 
for fault detection and isolation tasks. Sensor-poor systems, on the other hand, require 
system models and analytical redundancy techniques to make diagnostic inferences. The 
increasing availability of inexpensive, batch-fabricated micro-controllers and MEMS 
sensors enables deployment of a multitude of sensors and microprocessors for control 
and diagnosis of embedded systems. We develop a diagnosis method that combines 
model-based diagnosis with signal processing techniques to address the challenges in 
diagnosing complex systems with hybrid discrete/continuous behaviors and to reduce the 
computational requirements by focusing the signal processing algorithms. We 
demonstrate the approach on problems in reprographic copier paper path diagnosis. 
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1. INTRODUCTION 
 
Embedded systems include supervisory control that 
switches system modes of operation by discrete 
control actions necessitating dynamic switching 
among multiple system models for monitoring, 
control, and fault isolation tasks. The hybrid nature of 
systems requires new forms of analysis. Discrete 
changes are not handled well by continuous 
algorithms, and abstracting system behavior to 
discrete models may result in loss of information 
critical for fault isolation and control. The use of a 
large number of cheap sensors allow extensive 
information gathering on the local functioning that 
can be used to identify system states and isolate faults. 
However, non-local interactions in complex systems 
make it difficult to predict system states. Therefore, 

hybrid system techniques that combine global and 
local analysis are needed for fault detection and 
isolation tasks. 
 
Signal processing techniques performing continuous 
waveform analysis are frequently used to diagnose 
faults in sensor rich systems where direct 
correspondence can be established between faults and 
sensor readings [Hung and Zhao, 1999]. These 
techniques incorporate classifiers that are designed by 
extensive analysis of fault data. Computational 
complexity may make it infeasible to apply all signal 
processing algorithms on all signals. Therefore, it is 
important to develop schemes that allow for selective 
context driven processing of a signal in an efficient 
manner. Model based diagnosis enables higher-level 
reasoning using a global view of the system. This can 



be used to perform selective signal processing on the 
available signals and results in a more effective and 
efficient diagnosis scheme. 
 
Current work in model-based diagnosis is primarily 
based on discrete event, and continuous approaches 
[Sampath et al., 1996; Lunze, 1999; Mosterman and 
Biswas, 1999b; Gertler, 1997]. Hybrid system 
diagnosis is performed by abstracting the system to 
discrete event form or approximating it as a 
continuous system with steep slopes. In a hybrid 
system the behavior evolves continuously until a 
discrete event causes it to move to a different 
continuously evolving region in the behavior space. 
Coming up with continuous representations of hybrid 
systems can result in very complex non-linear 
functional relations that are hard to analyze in real 
time. On the other hand, pure discrete event systems 
require a lot of simulation and can diagnose only 
qualitative faults. We propose a diagnosis 
methodology that uses hybrid models of the system 
and thereby performs hybrid diagnosis. A prototype 
system that we have implemented is presented in this 
paper. 
 

 
2. AN EXAMPLE SYSTEM 

 
We motivate the need for integrated hybrid model 
based diagnosis and signal processing by considering 
a paper moving system (Fig. 1), a sub system of 
reprographic machines. Such a system consists of a 
paper tray with sheets of paper, a paper path to a 
destination point, and rollers along the path to move 
the sheets forward. Motors drive the rollers through 
gear assemblies. Rollers may be stationary or mobile 
in the vertical direction. Typically, mobile rollers are 
placed above the paper stack, and are dropped onto 
the stack by energizing solenoids connected to them. 
Once in contact, the roller moves a sheet forward. 
When this sheet has moved forward to the next roller, 
the mobile roller is retracted (by de-energizing the 
corresponding solenoid) to prevent the next sheet 
from moving forward till its allocated time.  
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Sample system 
 
This system behavior contains discrete events like the 
switching on and off of motors, and the energizing 
and de-energizing of solenoids. The paper motion and 

the vibration behavior of the components are 
examples of continuous variables. A hybrid system 
model has been developed to simulate the nominal 
behavior of the system. 
 
The system configuration includes a paper presence 
sensor at a point along the paper path to detect the 
arrival of the leading and trailing edge (relative to 
leading edge) of the sheet. Accelerometers are 
strategically placed to pick up vibration signals from 
the motors and solenoids. These are the only sensors 
used in the test bed. Useful knowledge about the 
health of the components can be obtained by 
analyzing the high bandwidth continuous waveform 
data from the vibration sensors.  
 
If the paper sensor and predictions from models 
indicate that leading edge of the sheet arrived later 
than expected, this could be due to a variety of 
reasons such as motors running slow, solenoid 
energizing slowly, and motors not ramping up to 
speed as fast as expected. We can use the model to 
identify the possible causes of this deviation. We 
continue to observe the trailing edge of the sheet. If it 
is on time (after correcting for the delay caused by the 
late arrival of the leading edge), then we can eliminate 
the motor running slow hypothesis because the 
models would predict the trailing edge to be late if the 
motor is running slow. The level of detail in our 
models and the current set of sensor readings cannot 
distinguish between the two remaining fault 
hypotheses. Therefore, we switch to an analysis of the 
vibration signals recorded from the accelerometers. 
The presence or absence of certain signal 
characteristics tells us whether the energizing process 
was normal or abnormal. If it turns out to be normal, 
we can eliminate the solenoid and uniquely identify 
the fault.  
 

 
3. FRAMEWORK FOR HYBRID DIAGNOSIS 

 
A primary component of a diagnosis methodology 
(Fig. 2) is a hybrid observer that uses the hybrid 
model to track nominal continuous behavior within 
modes and discrete changes across modes. 
Discrepancies between predictions and actual 
measurements are attributed to faults in the system 
(fault detection). Faults trigger the qualitative fault 
isolation and quantitative parameter estimation tasks 
in parallel. The role of the qualitative analysis scheme 
is to narrow down the set of possible fault hypotheses, 
and focus the parameter estimation and signal 
processing tasks. Quick fault isolation and parameter 
estimation are critical to system analysis and correct 
tracking of system behavior through mode changes. 
Faults may change the expected mode sequence of the 
system, and this further complicates the fault isolation 
task [McIlraith et al., 2000]. Signal processing 
techniques can be used to further refine the candidate 
set. 
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Fig. 2. Overall diagnosis architecture 
 
In this work, we assume all faults of interest can be 
parameterized, and expressed as component 
parameters. We make the single fault assumption, and 
assume all control actions, which cause mode 
transitions are available to the observer and diagnosis 
modules. We restrict our attention to the class of 
problems where there are only a finite number of pre 
defined mode sequences and faults do not change the 
mode sequence of the system. This assumption holds 
for systems where the discrete events that cause mode 
transition are tightly coupled, and the initial state is 
known. Under this assumption we do not have to 
solve the difficult problem of mode identification 
under fault conditions. In the next three sections we 
discuss in more detail our modeling paradigm, the 
fault detection algorithm, and the fault isolation 
algorithm. 
 
 
3.1 Modeling for diagnosis  
 
Parsimonious and effective system models have to 
provide the information necessary to identify faults in 
the system. Our hybrid models support both 
qualitative and quantitative analysis. 
 
Hybrid constraint models. The analytic models that 
define hybrid behavior facilitate the building of 
nominal and fault observers and allow for fault 
parameter estimation. Compositional model building 
techniques are employed to construct appropriate 
system models by instantiating component models 
from a generic modeling library. We specify the 
hybrid models of individual components and the 
connections between them to synthesize the system 
model in the HCC (Hybrid concurrent constraint) 
[Carlson and Gupta, 1995] modeling language. It 
includes constructs that can be used to specify rules of 
transition and constraints on the variables, and 
provides tools for model building. It also includes a 
simulator to generate system behavior. 
 

Generic component models. Generic component 
models facilitate the building of a library of 
component models. This enables multiple 
instantiations of the component model in a system, 
and reuse across different models. Component model 
specifications require the (i) definition of modes, (ii) 
constraints in each mode, and (iii) transition functions 
between modes 

 
Modes are linked to operating regions of a 
component, e.g., a motor component model may have 
three modes: OFF, SPEEDING_UP or 
RUNNING_AT_MAX_SPEED. Behavior constraints 
and the system parameters are defined as ODE’s and 
algebraic constraints. In the RAMPING DOWN mode 
the torque steadily reduces to 0, which is achieved by 
setting the derivative of torque to a small negative 
constant. Hence the constraint is ∂ (torque) = -
K_rampdown. The transition function, that specifies 
the rules that trigger mode transitions, can be defined 
by external control signals that actuate components 
and autonomous jumps that occur when variables in 
the system reach certain landmark values. For 
example, in the RAMPING_DOWN mode, the 
transitions are triggered either by a MOTOR ON 
control signal (transitions to RAMPING UP mode) or 
the torque reaching 0 (transition to the OFF mode). 
Fig. 3 illustrates the HCC model of the RAMPING 
DOWN mode of the motor. 
 
 
 
 
 
 
 
 
 
 
Fig. 3. HCC model of RAMPING_DOWN mode of     
           Motor 
 
Composing system model from generic component 
models. The system model can be automatically 
synthesized by aligning the corresponding input and 
output connections of the components using 
connection boxe s. Connection boxes play the role of 
placeholders to transfer values between various 
components. The total number of modes in the system 
is a cross product of the number of modes of the 
individual components. The behavior constraints of 
the system are derived by composing the constraints 
from individual components. The transition function 
is the union of the individual component transition 
functions. The input /output interaction of the 
components may cause variable value changes in one 
component to affect variable value changes in other 
components, causing a sequence (more than one) of 
mode transitions at a point in time. Fig. 4 
demonstrates the composition of the system model for 
the example system described in Sec. 2. 
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 // RAMPING_DOWN mode 
Ramping_Down = ( ){ 
    do always torque' = k_ramp_down  
         watching (ON || torque = 0), 
    when (ON || torque = 0) do { 
       if ON then Ramping_Up( ), 
       if torque = 0 then unless ON then Off( ) 
    } 
} 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Composing system model in HCC 
 
Qualitative temporal causal graph models. Temporal 
Causal Graphs (TCG) are directed graphs that capture 
system dynamics in the form of algebraic and 
temporal constraints among the variables in the 
system [Mosterman and Biswas, 1999a]. The nodes in 
the graph represent the variables in the system and 
directed edges capture the cause effect relations 
between them. The label on the edge defines the 
nature of the relationship, algebraic or temporal, 
between the associated variables. Algebraic relations 
defined by proportionality and equalities imply 
instantaneous effects, and temporal relations defined 
by integrals, introduce time-delayed effects. Some 
edges are also labeled with component parameters. 
This indicates that the parameter participates in the 
functional relation between the two variables. If an 
edge between nodes A and B exists with the label 
parameter P and we see that B has deviated from 
normal, then it could either have been because A 
deviated or because P has deviated. For a hybrid 
system, each mode has a distinct causal graph. 
 
 
 
 
 
 
 
Fig. 5.1. TCG of motor and roller system  
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.2. TCG of paper path 
 

The TCG’s of the motor and roller, and the paper path 
are illustrated in Figs. 5.1 and 5.2, respectively. For 
example in Fig. 5.2, the edge between X_le and T_le 
indicates that X_le affects T_le and the –1 label on the 
edge indicates that it is an inverse relationship (i.e., if  
X_le is behind where it should be then T_le will be 
high, implying a late arrival at the sensor location). 
The relation between v_sheet and X_le is integral, i.e., 
there is a time delay in the effect of a change in 
v_sheet on X_le. The edge between X_le and X_te is 
governed by a parameter k_size. The k_size parameter 
is directly linked to the choice of paper tray that has 
been selected. A value of + (-) for k_size implies that 
the paper size selected is larger (smaller) than normal. 
When the roller comes in contact with the paper, the 
new TCG of the system is a combination of the two 
TCG’s, obtained by adding an edge from w_roller to 
v_sheet. 
 
 
3.2 Fault Detection 
 
The fault detection task identifies if the system 
behavior has deviated from the nominal behavior, and 
generates an initial set of fault hypotheses to explain 
the deviation. The fault  detection step uses an 
observer to attribute discrepancies in predictions and 
observations to (i) noise, (ii) mode change, or (iii) 
faults. For faults, an initial candidate fault set is 
identified and the prediction signatures are generated 
for each candidate in the fault set. 
 
Observer. The observer compares the predictions 
from the nominal simulation output with the actual 
observations from the system. We assume the 
presence of a simple median filter and use heuristics 
such as deviations must persist for a few time steps 
before being labeled a discrepancy [Manders et al., 
1999]. We assume that this rather simplistic technique 
is sufficient to mitigate noise effects and avoid false 
alarms. More sophisticated and complicated 
algorithms may also be used for discrepancy detection 
[Gertler, 1997]. If the discrepancy indicates a mode 
change then the simulator has to be informed of this 
change and appropriately restarted in the right mode 
with the correct initial conditions. For a fault 
condition, an initial candidate set is derived and the 
fault isolation task is initiated. 
 
In our work, we assume that the control signals are 
available to the observer and our models can identify 
and execute autonomous jumps. Therefore, after 
accounting for noise, all observed dis crepancies are 
attributed to faults. 
 
Initial Fault hypotheses and generating signatures. 
TCG models are used to identify an initial set of fault 
candidates and generate their corresponding 
signatures. The discrepancy in qualitative form is 
back propagated through the TCG to identify the 
possible causes for this discrepancy. A candidate 
definition includes the faulty component parameter 
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w_roller = speed of roller,  
t_motor = torque of motor 
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le = leading edge, te = trailing edge 
X = position, T = time to reach sensor 
T_pullin_solenoid = pullin time of solenoid 
V_sheet = velocity of sheet  

T_pullin
_solenoid

Connection(Feed_motor_output_torque), 
Connection(Solenoid_out_position),  
Motor(FM,Power_to_feed_motor,Feed_motor_out_torque, 
            0,k_rup_time_fm,k_max_speed_fm,-5.21,5.21, 
            FM_ON,FM_OFF), 
  
Solenoid(AS,Power_to_solenoid,Solenoid_out_pos,  
                0,k_pullin_time_as1,-1,0.5,AS1_ON,AS1_OFF),
  
FixedRoller(FR,Feed_motor_out_torque, 
                    Feed_roll_out_speed,1), 
  
MovingRoller(AR,Feed_motor_out_torque, 
                        Solenoid_out_pos,Acq_roll_out_speed,  
                        Acq_roll_out_pos,1,1), 



name, it’s direction of change and the mode in which 
the fault is hypothesized to have occurred. The back 
propagation is performed across past mode transitions 
since a fault that occurred in an earlier mode may 
manifest in a later mode. Based on the assumption 
that faults do not change the mode sequence, the 
qualitative value of the discrepancy is back 
propagated through the causal graph going through 
the mode sequence in reverse to identify an initial 
candidate set. In back propagation we traverse the 
graph against the arrows and if an edge with a 
parameter label is traversed, that parameter is flagged 
as a candidate. 
 
For example, if we see that T_le is + (leading edge of 
paper reaches sensor late), we can propagate 
backwards in the current mode to indicate that 
(w_roller -) and (T_pullin_solenoid -) can be possible 
candidates (Fig. 3). We can then propagate back to the 
previous mode where w_roller could be - because 
t_motor was - or k_speed was -. Hence, k_speed - is 
an additional candidate. 
 
For each of the candidates in the candidate set, we can 
predict future qualitative behavior by forward 
propagating the effects of that fault (deviated 
parameter) through the temporal causal graph to get 
the signature of the fault. Here again we propagate 
across modes. This is possible only under the 
assumption that the faults do not change the mode 
sequences. Otherwise the mode changes under faulty 
conditions have to be identified using quantitative 
analysis and forward propagation is performed 
accordingly. The signatures are in the form of above, 
same as or below nominal behavior values for 
magnitude and higher order derivatives for the 
variables in the system.  
 
For example, if k_speed – is a candidate, we can 
forward propagate the effects to w_roller – and so on 
to x_le –  in the next mode(Fig. 3). We can further 
propagate to X_te – and T_te + (trailing edge of paper 
arrives at sensor late relative to the arrival time of the 
leading edge). So our prediction would be that the 
trailing edge should also be late in getting to the 
sensor. For more details about the back propagation 
and forward propagation algorithms see [Mosterman 
and Biswas, 1999b]. 
 
 
3.3 Fault Isolation 
 
There are three ways in which we can refine the 
candidate set. These steps are often applied in parallel 
to enable quick fault hypotheses refinement.   
 
Qualitative analysis by progressive monitoring. We 
compare the qualitative signatures (predictions) of 
each candidate in the fault set against qualitative 
sensor readings, eliminating candidates with 
inconsistent predictions. This comparison is carried 
out over time and is based on the principle of 

progressive monitoring, where we try to reconcile 
observations with the signatures by moving higher 
order predictions down as time progresses. For more 
details on progressive monitoring refer to [Mosterman 
and Biswas, 1999b]. 
 
Quantitative simulation using constraint models. If 
the candidate set is sufficiently small, we can make a 
quantitative estimate of the deviated parameter values 
using techniques described in [Manders et al., 2000]. 
These estimated parameters can be used to predict 
future system behavior (fault observers) eliminating 
candidates whose predictions are inconsistent with 
observations. For example, if we can measure the 
velocity of the sheet and the speed of the roller, we 
can easily estimate the parameter k using the relation 
between these two measured variables.  
 
Unobservable parameters, lack of accuracy and detail 
in models, and noise in sensor readings make the 
parameter estimation task difficult. Moreover, if the 
model is complex and non linear, online estimation by 
numerical methods is difficult because of stiffness and 
convergence problems. Therefore, signal processing 
techniques play an important role in diagnosis. 
 
Signal processing for diagnosis. Depending on the 
make up of the candidate set we run specific signal 
processing algorithms (after choosing relevant time 
windows) and based on the results of the test we can 
make decisions on whether to drop a candidate or not. 
For example, we can run a principal component 
analysis on the vibration signal when the solenoid is 
being energized to check if the process is  normal or 
abnormal. 
 
Signal processing techniques for fault diagnosis 
employ test data to learn a classifier, and actual data is 
then through the classifier to identify a health index. 
The health index indicates whether a particular 
actuator is performing a specific operation normally 
or if it is in a fault mode. In our work, we use simple 
ranges of values of the health index to identify the 
mode but a more complicated function of the health 
index can also be used.  
 
We have developed a set of adaptive signature 
analysis algorithms for analyzing distributed vibration 
data and have demonstrated the algorithms on a 
reprographic copier paper drive plate test bed 
comprising multiple motors and solenoids [Hung and 
Zhao, 1999]. Our approach has three main 
components, (i) signal processing using Wavelet and 
STFT techniques to extract signal features indicative 
of component degradation and faults, (ii) compressing 
high-bandwidth data by Principal Component 
Analysis, and (iii) fusing multiple sensor data streams 
using Bayesian decision analysis in a composite 
feature space. The algorithm has been successfully 
applied to classifying motor and solenoid faults on the 
copier test bed. Because the algorithm attains its 
adaptivity through online training on lifetime test 



data, we believe it also applies to many other 
applications that require distributed sensor data 
analysis. 
 

 
4. SAMPLE RUN 

 
We present below an example of how the integrated 
system is employed to derive the true fault associated 
with the system. LE (TE) indicates the arrival time of 
the Leading Edge (Trailing Edge) of the sheet at the 
paper sensor position (Fig. 1). Hence LE 0 (+,-) 
indicates that the leading edge was on time (early, 
late). Vib_pullin indicates the result of applying the 
principal component analysis on the vibration signal 
form the plate when the solenoid was pulling in. 
Vib_pullin 0 (1) indicates that pull in was normal 
(abnormal). 
 
Observation 1: LE + 
Faults consistent with Observation 1 

• Solenoid pull in time high 
• Motor ramping up time high 
• Motor nominal speed not reached 
 

Observation 2: TE 0 
Faults consistent with observations 1 and 2 

• Solenoid pull in time high 
• Motor ramping up time high 
 

Observation 3: Vib_pullin 0 
Faults consistent with Observations 1,2 and 3 
 • Motor ramping up time high 
 
 

5. DISCUSSION AND FUTURE WORK 
 
We have developed a hybrid system diagnosis 
methodology that combines a model-based approach 
with signal processing in an efficient way. The 
hybrid-modeling scheme is compositional and 
scalable. We have implemented a prototype system 
for a reprographic device that supports a set of the 
functionalities presented above. 
 
This work bridges the gap between purely discrete 
event and continuous system diagnosis. We do not 
need the extensive simulation (for pre compilation) 
required by some of the discrete event systems 
[Lunze, 1999; Sampath et al., 1996]. On the other 
hand, we reduce some of the computational 
complexity of continuous systems by eliminating 
candidates based on qualitative information only. We 
also provide a framework for integrating model-based 
diagnosis that performs global analysis and signal 
processing that performs localized analysis. 
 
Future work would involve building observers that 
can perform mode identification based only on 
measurements, under nominal and faulty conditions. 
Robust online parameter estimation techniques need 

to be developed. The methodology needs to be tested 
on other systems. 
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