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Abstract.  Model based approaches to diagnosis for dynamic systems have been based on continuous and discrete event 
models. Systems that combine continuous and discrete behaviors, i.e., hybrid systems have been typically abstracted into 
discrete event models or approximated by continuous models with steep slopes so that existing algorithms can be applied for 
fault isolation tasks. This approach runs into problems when both discrete events and continuous behaviors provide vital di-
agnostic information. We propose a diagnostic methodology that uses hybrid models of the system to perform diagnosis.  
 

1. Introduction 
 
Modern systems are complex in nature. They can include 
supervisory control that switches modes of behavior of the 
system to optimize system performance. In other words, 
discrete control actions change the operating region of be-
havior. The implication of this is that multiple models of the 
system have to be employed and model switching has to be 
performed at run time to execute monitoring, fault isolation, 
and control tasks. The hybrid nature of systems requires 
new forms of analysis because discrete changes are not han-
dled well by continuous algorithms, and abstracting system 
behavior to discrete models may result in loss of informa-
tion critical for fault isolation and control. 
 
Model based diagnosis provides a framework for analyzing 
the global behavior of the system. Given that we have a lim-
ited number of sensors, model-based analytic redundancy 
methods have to be applied to derive non-local interaction 
between the faults and observations. Current model based 
diagnosis is based on discrete event and continuous tech-
niques [SSLSD96; L99; MB99; G98]. Hybrid system diag-
nosis is performed by abstracting the system models to con-
tinuous or discrete event form. This approach is not suffi-
cient when both continuous behavior and discrete events 
together are required to generate the necessary diagnostic 
information. In a hybrid system, the behavior evolves con-
tinuously until a discrete event causes it to move to a differ-
ent continuously evolving region in the behavior space. 
Coming up with continuous representations of hybrid sys-
tems can result in very complex non-linear functional rela-
tions that are hard to analyze in real time. On the other hand, 
pure discrete event systems require a lot of simulation and 
can diagnose only qualitative faults. We propose a diagnosis 
methodology that uses hybrid models of the system and 
thereby performs hybrid diagnosis. 
 

We motivate the need for hybrid model based diagnosis 
with an example. Consider the three-tank system illustrated 
in Fig. 1. The system consists of tanks, flow sources, outlet 
pipes, and connecting pipes.  Some pipes contain valves that 
can be opened or closed by an external controller. Two 
types of discrete events may occur in the system. External 
control actions change the configuration of the system by 
opening and closing valves. Autonomous jumps are also 
possible in the system. For example, when the fluid level in 
tank 1 is higher than pipe R3, there exists a flow in pipe R3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
System behavior, i.e., the flows in the pipes and the levels 
of fluid in the tanks are all governed by continuous differen-
tial equations. These equations change as the valve configu-
rations change. For example, when all the valves are open 
and the fluid level in the tanks are higher than pipe R3 and 
R5, the state equations of the system are given by, 
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Figure 1: Three-tank system 



 
where h1, h2, and h3 correspond to the heights in the three 
tanks, and f1 is the flow into tank 1. A specific valve con-
figuration and the existence or non-existence of flow in 
pipes R3 and R5 determine the mode of the system. Since 
there are 4 valves and two pipes where autonomous jumps 
may occur, there are 64 (26) total modes of the system. Each 
mode is governed by a different set of equations. Some of 
the faults that may occur in the system are leaks in the pipes 
and change in tank capacities.  
 
Continuous system diagnosis methods break down across 
mode changes. To apply discrete event diagnosis tech-
niques, we would have to enumerate all modes, perform 
simulation in each mode, and derive relations between faults 
and their manifestation in a discrete framework. It is clear 
that even for a small system like this, this approach becomes 
impractical. Hence there is a need to approach the diagnosis 
problem in a hybrid framework.  
 
We propose a diagnosis methodology that uses hybrid mod-
els. This approach can overcome some of the problems as-
sociated with continuous system diagnosis or discrete event 
diagnosis. We suggest a combination of qualitative and 
quantitative strategies to efficiently identify a candidate 
fault set and refine this set. We will focus on the three-tank 
example described above to explain our methodology.  
 

2. Hybrid system diagnosis architecture 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
We make the following assumptions in our work. 

• Only single faults occur. 

• Each fault is associated with a parameter in the sys-
tem model. A fault causes an abrupt change in the 
parameter value. 

Our diagnosis methodology illustrated in Fig. 2 consists of 
three mains steps, (i) using a hybrid observer to track system 
behavior, (ii) detecting a fault occurrence, and (iii) isolating 
the fault in the system. 
 
The hybrid observer uses the models of the system to track 
system behavior. We use switched bond graphs [MB98] as 
the primary modeling language for building hybrid system 
models. The observer uses the state equations models for 
tracking continuous behavior in a mode, and a hybrid auto-
mata for detecting and making mode transitions as system 
behavior evolves. Detection of mode changes requires ac-
cess to controller signals for controlled jumps, and predic-
tions of state variable values for autonomous jumps. If a 
mode change occurs in the system, the observer switches the 
tracking model (different set of state space equations), ini-
tializes the state variables in the new mode, and continues 
tracking system behavior with the new model. The fault 
detector compares the observations from the system and the 
predictions from the observer to look for significant devia-
tions in the observed signals. We use a simple decision 
scheme that signals a fault, if the discrepancy between an 
observation and prediction exceeds a pre-specified threshold 
for a few time steps, or if an abrupt change is detected in a 
signal value that cannot be explained by a mode change 
[MMB99].  
 
Once the fault has been detected, qualitative and quantita-
tive techniques are used to isolate the fault in the system. 
We use temporal causal graphs derived from switched bond 
graphs for the qualitative analysis, and state equations de-
rived from bond graphs for the quantitative analysis.  In the 
qualitative analysis, we first identify an initial candidate set 
to explain the discrepancy in the observations and predic-
tions. This is achieved by back propagating the qualitative 
value of the discrepancy (-, 0 or +) through the temporal 
causal graph of the system. The back propagation may have 
to be continued in previous modes to identify all possible 
candidates [MB99]. We can qualitatively predict future be-
havior of the system under each of the hypothesized fault 
conditions by forward propagating through the causal graph. 
These predictions include magnitude and higher order de-
rivatives of the variables of the system. The predictions can 
be compared against the qualitative value of the observa-
tions to refine the candidate set. We use a technique called 
progressive monitoring [MB99] to achieve this. 
 
For the quantitative analysis, we estimate the deviated pa-
rameter values for each of the remaining fault candidates. 
To do this, we rewrite the state space equations in terms of 
the parameter associated with the fault candidate and use 
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Figure 2: Hybrid diagnosis methodology 



system identification techniques to estimate the parameter 
value [MNBM00]. These estimated parameter values could 
be used to quantitatively predict future behavior of the sys-
tem, which can be compared to the observations from the 
system to eliminate some candidates. 
 
In this paper we focus on developing the hybrid models and 
building the hybrid observer. The fault detection and fault 
isolation tasks are still work in progress and will not be dis-
cussed in this paper. In the next section we describe our 
modeling paradigms namely, hybrid automata, switched 
bond graphs, temporal causal graphs and state space equa-
tions. In the subsequent section we show how these models 
can be used to build a hybrid observer for the system. 
 
 
3. Modeling for diagnosis 
 
Earlier attempts at modeling tried to abstract hybrid systems 
as either discrete event systems or continuous systems. Tra-
ditionally discrete event systems have been modeled by fi-
nite state automata, Petri nets, and directed graphs, whereas 
continuous systems are typically represented by differential 
equation models, circuit diagrams, and block diagrams. Al-
though it is true that most hybrid systems are continuous 
systems at the lowest level of detail, building hybrid models 
proves useful in analyzing the system at a level of detail that 
is useful for diagnosis.  
 
3.1 Hybrid automata 
 
Our approach to hybrid modeling involves building hybrid 
automata that combines finite state automata (FSA) with 
continuous representations [A93]. The FSA, whose states 
correspond to the modes of operation of the system, cap-
tures the possible mode transitions in the system. The FSA 
representation is enhanced by including a continuous system 
model in each state that governs behavior evolution for that 
state. The number of modes of a system may be large 
enough to make it infeasibile to exhaustively generate the 
complete hybrid automata. We avoid this computational 
problem by enumerating states of the hybrid automata 
(which correspond to the modes) dynamically as system 
behavior evolves. When the system is any given mode, we 
compute all possible transitions from the current state and 
enumerate only those transitions and corresponding destina-
tion states. This step involves computing three things 

• Destination state and model 
• Conditions for transition to the destination state 
• Reset conditions  (i.e., the state vector value) in the 

new state 
 
The conditions for transition can be specified in terms of the 
occurrence of control signals and the state variables of the 
system reaching certain boundary conditions. The reset con-

ditions initialize the values of variables of the system model 
in the destination state. 
We look at the example of the three-tank system presented 
earlier. We represent the mode of the system as a 6-tuple 
corresponding to whether there is a nonzero flow through 
pipes R1 to R6. For pipes R1, R2, R4 and R6 this corre-
sponds to the valve on the pipe being open or not (con-
trolled jumps). For pipes R3 and R5, this corresponds the 
level of fluid in the tanks exceeding a predefined value so as 
to cause a flow in the pipes (autonomous jumps). If in the 
current mode (state) all pipes are closed then Fig. 3.1 illus-
trates the relevant part of the FSA where only neighboring 
states are enumerated under the assumption that only one 
switch is activated at a time.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.2 shows the transition conditions and reset conditions 
for each of the six transitions in Fig. 3.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.2 Continuous models 
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Figure 3.1: Finite State Automata 

1 : OPEN Valve R1 
      reset = none 
2 : OPEN Valve R2 
      reset = none 
3 : h1 >= Position_R3 or h2 >= Position_R3 
      reset = none 
4 : OPEN Valve R4 
      reset = none 
5 : h2 >= Position_R5 or h3 >= Position_R5 
      reset = none 
6 : OPEN Valve R6 
      reset = none 
h1, h2, h3 – height of fluid in tanks 1,2 and 3 respectively 
reset = none implies there is no discontinuous change in state  
vector across mode transitions 
 

Figure 3.2: Transition and reset conditions 
 



  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As mentioned before, our models for continuous behavior in 
a given mode are bond graphs [RK83].  Bond graphs are 
energy-based models of the system in terms of the effort and 
flow variables of the system. Bonds specify interconnec-
tions between elements that exchange energy, which is 
given by the rate of flow of energy, power = effort x flow. 
Bond graphs represent a generic modeling language that can 
be applied to a multitude of physical systems, such as elec-
trical, fluid, mechanical, and thermal systems. There exist 
standard techniques to build bond graph models of systems 
based on physical principles. State equations can be system-
atically derived from the bond graph representation of the 
system. In addition, we can also systematically derive tem-
poral causal graphs from bond graphs. This is very impor-
tant since state equations can be used to simulate system 
behavior and state equations and temporal causal graphs 
constitute our diagnosis models.  
 
We use an enhanced form of bond graphs through the use of 
switched junctions that facilitate the modeling of discrete 
mode transitions in system behavior [MB98]. In general, the 
number of modes and possible transitions in a system model 
can be quite large. Instead of pre-enumerating the bond 
graph for each mode to build a complete hybrid automata, 
the complete system model is developed as a switched bond 
graph, where individual junctions model local mode transi-
tions. The switching 0- and 1- junctions represent idealized 
discrete switching element that can turn the corresponding 
energy connection on and off.  
 
The physical on/off state for each of these switched junc-
tions is determined by external control signals and continu-
ous variables crossing pre-specified thresholds. These can 
be specified as finite state sequential automata.  
 
Fig. 4.1 represents the switched bond graph model of the 
three-tank system. Fig. 4.2 shows the sequential automata  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
for the switched junctions 11 (externally controlled) and 13 
(autonomously controlled) in Fig. 4.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As mentioned before we enumerate states of the hybrid 
automata dynamically as system behavior evolves. In the 
bond graph framework, this can be achieved in the follow-
ing fashion. For any given state we identify all its neighbor-
ing states by changing the status of each switch in the 
switched bond graph one at a time. We can determine the 
transition and reset conditions for these transitions from the 
local sequential automata of the corresponding switched 
junction. This approach is illustrated in Figs. 3.1 and 3.2  
 

4. Hybrid Observer 
 
The hybrid observer tracks the system behavior across dif-
ferent modes of operation. This involves two main steps, 
 

• Simulating continuous system behavior in individ-
ual modes of operation 

• Identifying and executing all mode changes includ-
ing controlled and autonomous jumps. 
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Figure 4.1: Switched bond graph of three-tank system 
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As described before, our models for continuous behavior in 
a mode are bond graphs. These bond graphs can be used to 
derive the state equations of the system in the current oper-
ating mode. Once initial conditions are specified or derived, 
these equations provide the model for tracking system be-
havior. We assume that we have access to the controller 
commands and hence controlled jumps can be identified. 
We rewrite all autonomous jump conditions in terms of state 
variables of the systems. Since we can estimate the values of 
the state variables from the state space equations, autono-
mous jumps can also be identified. When a mode change 
occurs, the hybrid observer needs to switch models and ini-
tialize the new model accordingly. For this purpose, we use 
the hybrid automata model of the system that tells us the 
destination state (model) and the reset conditions for any 
specific transition. Assuming that we know all nominal pa-
rameter values and the initial conditions when the observer 
is started we can track the system behavior by following the 
hybrid automata as mode changes are determined and 
switching models with appropriate reset conditions when 
doing so. Fig. 5 illustrates our approach to building a hybrid 
observer. 
 
Since the input and output of the system may be affected by 
noise and our state space models may not be accurate we 
use a Kalman filter [G79] to track system behavior in a sin-
gle mode of operation. For a given state space equation 
model a Kalman gain matrix, K, can be computed if we 
know the covariance of the noise that affects the input and 
output. The difference in the actual observations and pre-
dicted observations (y – ��LV�PXOWLSOLHG�E\�WKLV�JDLQ�PDWUL[�

and used to estimate the state variables of the system. The  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
enhanced state space equations using a Kalman filter is 
given by,  
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where A, B, and C are the system matrices, Q is the input 
noise covariance, R is the output noise covariance, P is the 
error covariance, and K is the Kalman gain matrix. 
 
Fig. 6 illustrates a sample run of our hybrid observer as it 
tracks the three-tank system through three modes. In the 
first mode (10 seconds), there is an inflow to tank 1 and R2 
and R4 are open (filling up tanks). In the second mode (10 
seconds), there is no inflow to tank 1 and R1, R2, R4 and 
R6 are all open (draining tanks). In the third mode (10 sec-
onds), there is no inflow to tank1, and only R2 is open (iso-
lating tank 3). We assume that the input noise and output 
noise covariance is 0.001. In the figure, we see the heights 
in the three tanks over time. It is interesting to note that the 
Kalman filters in modes 1 and 2 have no trouble in accu-
rately tracking system behavior, but in mode 3, where there 
is an abrupt change in flow value, the predicted level values 
for tanks 1 and 2 are initially inaccurate, but the system 
slowly converges to its true value. This implies that mode 
transitions with abrupt changes can cause problems initial 
problems in tracking system behavior. This can become a 
problem in systems with quick autonomous transitions, be-
cause the hybrid observer may make errors in predicting 
mode changes in the system behavior.  
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Figure 5: Hybrid observer 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
5. Conclusions  
 
Our research goals are to build a diagnosis methodology that 
applies to hybrid systems. In this paper, we have presented a 
hybrid modeling paradigm that is used to construct observ-
ers for tracking hybrid behaviors in complex systems. This 
work bridges the gap between purely discrete event and 
continuous system modeling. We do not need the extensive 
simulation (for pre compilation) required by some of the 
discrete event systems [L99; SSLSD96]. On the other hand, 
we reduce some of the computational complexity of con-
tinuous system model by breaking it up into different modes 
of continuous operations.  
 
Future work would involve building observers that can per-
form mode identification based only on measurements, un-
der nominal and faulty conditions. Robust online parameter 
estimation techniques need to be developed. The observer 
will then be integrated with our qualitative and quantitative 
diagnosis algorithms for fault detection and isolation in hy-
brid systems, and also for fault-adaptive control of complex 
systems. 
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Figure 6: Sample run of hybrid observer 


