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Emerging applications for embedded systems impose strict demands on system implementation technology.
High performance requires application-specific architectures, but flexibility and system agility require a
programmable approach. Reconfigurable hardware offers a potential solution, allowing efficient, hard-
wired designs to be implemented in FPGA’s, while permitting dynamic reprogramming to achieve system
agility with multiple operational modes.

While FPGA’s have proven to allow efficient processing of some algorithms, others tasks, such as floating
point arithmetic, are not easily implemented on current architectures.  For this reason, a heterogeneous
approach results in a more effective design. The target technologies must include software-centric
components (DSP, RISC), application specific processors (FFT/Vector Chips), and fixed-function ASICs
where performance is paramount. In addition, designs must be able evolve with advancing technology. For
effective design across this wide span of technologies, especially considering the dynamic nature of the
target applications, significant design tools are required.

Real-time operating systems, such as VxWorks, have enabled the development of software-based real-time
systems. While sufficient for a limited number of RISC/DSP processors, these software-only kernels are of
limited utility for heterogeneous, dynamically reconfigurable designs.  This paper describes a runtime
environment that supports programmable hardware as well as the software-programmable components.

The target systems are built on a heterogeneous computing platform including configurable hardware,
ASIC and general-purpose processors, and DSP’s. An underlying execution environment supports system
execution with a common virtual environment.  The same virtual execution environment exists across all
programmable components, both software and hardware.  The runtime supports the execution of a
Dataflow specified computation, where the computational elements are distributed over the heterogeneous
architecture.  Computational elements are designed independently, to operate on input data streams and to
generate output data streams.  Communications is supplied by the runtime environment, in the form of
asynchronous queues.  On-device communications occur with efficient pointer-transfer operations (no extra
memory copies). Cross-device communications are handled by the runtime environment, and are
transparent to the computational nodes.  Likewise, communication between dissimilar implementation
technologies (software-to-FPGA, FPGA-to-ASIC, etc) are transparent, with required handshaking and data
translation operations.

The runtime environment enables seamless integration of the different implementation technologies.  Since
each component can talk to any other implementation technology, the designer can rapidly mix-and-match
components and implementations to achieve desired performance.  This also contributes to ease of
technology migration.  Adding a new type of DSP or FPGA requires only a port of the runtime system and
access to software libraries or FPGA IP components.  The rest of the system remains unchanged.

The runtime environment also manages the dynamic system reconfiguration, including software
reconfiguration for the parallel DSP’s and hardware reconfiguration for the FPGA’s in the system.
Dynamic reconfiguration is managed such that all communications and memory management remains
consistent during reconfiguration.  Project goals require timeline guarantees to be supported for a
reconfiguration event.

The low-level runtime environment is not sufficient, by itself, to design reconfigurable architectures.  A
companion paper describes aa model-integrated approach that is used in the design capture and synthesis of
these systems. The Model-Integrated approach defines a domain-specific graphical system design
environment, customized to the needs of the reconfigurable systems designer.  The tools capture system
requirements, algorithm design information and alternatives, and the resources available for system



implementation. This information is represented as a set of Multi-Aspect Models.  A model interpretation
process uses these models to create a fully functional system.  This process generates hardware/software
architecture specifications, executable/synthesizable code, and a run-time Configuration Manger allowing
dynamic adaptation to changing environments while the synthesized system is on-line. The synthesis
process optimizes hardware/software architectures for user-definable cost functions such as weight, power,
algorithmic accuracy and flexibility
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