
Institute for Software Integrated Systems
Vanderbilt University

Nashville Tennessee 37235

TECHNICAL REPORT

TR #: ISIS-01-202

Title: Design Representation Issues in Polymorphous Computing

Author: Sandeep Neema, James Davis, Brandon Eames, Akos Ledeczi

Copyright © Vanderbilt University, 2001

ISIS Tech Report: ISIS-01-202

 2/2

Abstract

This technical report discusses system representation issues in the Polymorphous Computing Architecture
(PCA) domain. We argue that in order to effectively address PCA-based embedded system development,
there exists a dual need for a high-level of abstraction and the representation of not only the computations,
but also the target hardware architecture, the available morphable middleware components, the system’s
environment and the complex relationships that exist. An Model Integrated Computing (MIC)-based
approach makes it possible to capture all facets of a PCA-based embedded system by employing high-
level, multiple-aspect system models and formal constraints. Automatic synthesis can then be used to
translate the models into the input languages of static and dynamic analysis tools, and to synthesize the
application.

In contrast to a single point solution, by representing the configurable hardware and middleware
components, the whole hardware design space is captured. We believe that the same approach needs to be
taken for the application, i.e. a full design space needs to be described by specifying implementation
alternatives for certain functionalities of the system. These alternatives may have different characteristics
in terms of timing, performance, energy consumption, accuracy, etc. The formal constraints capturing
non-functional requirements effectively constrain the application and hardware design space. They can
guide the search to a solution that satisfies all the constraints. If multiple solutions exists, simulation-
based optimization can identify the best design.

KEYWORDS
Model-Integrated Computing, Polymorphous Computing, Dynamic Architecture Description Languages,
Generative Modeling, Modeling, Metamodeling, Graphical Modeling Languages, MultiGraph
Architecture, Modeling Environments, Design-Space Representation, Constraint.

ACKNOWLEDGMENTS
This work was sponsored by the Defense Advanced Research Projects Agency, Information Technology
Office under contract #F30603-96-2-0227.

ISIS Tech Report: ISIS-01-202

 3/3

TABLE OF CONTENTS

Section Page
TABLE OF CONTENTS..3
Introduction ...4

Representation Issues ..5
Design Space Representation...6

Design Space Modeling with Alternatives...7
Generative Modeling...8
VHDL..9
Dynamic Architecture Description Languages...10
Software Variants ...11

Constraint Representation ...12
Design Space Exploration ..14

Hardware Architecture Representation ...15
Multi-granular Hardware Modeling..15
Dynamic Reconfiguration ..16
BRASS Hardware Modeling..16
Chameleon Hardware Modeling...17

Application Representation ...20
Models of Computation ...20
Signal Flow Modeling...20
SCORE Modeling...22
Other Application Representation Approaches ..24

Conclusions ...24
References ...25

ISIS Tech Report: ISIS-01-202

 4/4

INTRODUCTION

Arguably, one of the most expensive aspects of embedded system development is software design and
implementation. That makes the software one of the most important assets; its reusability is of paramount
importance. Yet, most software development is still done at a relatively low level: requirements are
analyzed and design documents are created that form the base for manual software implementation. The
end result of this process is source code in a conventional programming language containing implicit
assumptions about the target hardware, the system’s operating environment, timing constraints and other
requirements. This makes system evolution very difficult. Furthermore, porting to new hardware becomes
time-consuming and error-prone. Recently, high-level approaches to object-oriented design and
programming have been applied in the embedded systems arena with some success Error! Reference
source not found.. However, we believe that all these methods share the same limitation—they deal with
the software only.

One of the key characteristics of embedded systems is that they need to interact with their environment.
The main task of embedded software is to provide data processing between sensors and actuators.
Constraints enforced by the physical environment must be incorporated into the software design decisions
and into the system integration process. Currently, all of these interactions are managed by the designers
and programmers by hand, often without any kind of tool support. Polymorphous hardware architectures
only exacerbate this problem by introducing extra sources of complexity.

The goal of the PCA program is to span a broad dynamic application space by implementing a
polymorphous layer between an application program and novel malleable micro-architecture elements. In
other words, two system layers that are fixed in traditional embedded systems—the middleware and the
hardware—are configurable (even dynamically reconfigurable) in PCA systems. While they are hidden
from the application programmers by the Morphware Stable Interface, the system integrator (human
and/or tool) needs to configure them while optimizing the system to satisfy size, weight, energy,
performance and time (SWEPT) requirements. In order to be able to accomplish these goals, information
about the new malleable hardware components, the overall hardware architecture as well as the
middleware components needs to be explicitly captured.

We argue that in order to effectively address PCA-based embedded system development, there exists a
dual need for a high-level of abstraction and the representation of not only the computations, but also the
target hardware architecture, the available morphable middleware components, the system’s environment
and the complex relationships that exist. An Model Integrated Computing (MIC)-based approach [2]
makes it possible to capture all facets of a PCA-based embedded system by employing high-level,
multiple-aspect system models and formal constraints. Automatic synthesis can then be used to translate
the models into the input languages of static and dynamic analysis tools, and to synthesize the application.

In contrast to a single point solution, by representing the configurable hardware and middleware
components, the whole hardware design space is captured. We believe that the same approach needs to be
taken for the application, i.e. a full design space needs to be described by specifying implementation
alternatives for certain functionalities of the system. These alternatives may have different characteristics
in terms of timing, performance, energy consumption, accuracy, etc. The formal constraints capturing
non-functional requirements effectively constrain the application and hardware design space. They can
guide the search to a solution that satisfies all the constraints. If multiple solutions exists, simulation-
based optimization can identify the best design.

ISIS Tech Report: ISIS-01-202

 5/5

Figure 1 shows the model-integrated design flow for polymorphous embedded systems. The application
and hardware design spaces are captured by multiple-aspect, mixed graphical and textual models using
explicit design alternatives. The modeling paradigm is a domain-specific language designed specifically
for PCA-based embedded system modeling. Notice that the choice of the language and the models
themselves narrow down the space from the theoretically infinite number of possibilities, yet the size may
remain exponentially large. The overall system design space is further constrained by explicit constraints
representing SWEPT requirements, resource and other constraints.

AA … represent the app. design space?

BB … constrain the design space?

CC … guide the search to implementation?

DD … represent the HW design space?
PCA

X Y

Optimization Space

Im
pl

em
en

ta
tio

n
Sp

ac
e

HOW TO…
Constraints

Functional

B
ehavior

R
es

ou
rc

e

A & DA & DBB

- Domain-specific language
- Multiple aspects
- Design alternatives
- Generative models
- HW-SW coupling

- Explicit models
Automatic system synthesis -

Constraint-based pruning -
Simulation-based optimization -

CC
Models -

Explicit constraints -

Modeling language -

PCA

Target Application

PCA

PCA

PCA

PCA

PCA

Figure 1: MIC approach to Polymorphous Computing

Representation Issues
The objective of this report is to identify and understand the issues involved in representing
Polymorphous Computing Systems. As we advocated earlier, a complex heterogeneous embedded
system design requires a careful and formal representation of all the different aspects of a computational
embedded system. Specifically, representation issues for the following aspects are being explored:

1. Design spaces – Conventional system design involves representing a single solution/design. A
design space, on the other hand, captures multiple solutions for implementing the system
specification with different attributes. The design space must be explored to find the best
solution(s) for a given set of requirements and constraints. In this report, we evaluate the pros
and cons of representing design spaces for system design, and present an overview of candidate
approaches for representing such spaces.

2. Constraints – Constraints are central to all design activity, yet there are inadequate research
efforts towards formal representation of constraints. In this report we consider the nature of
constraints common to embedded system design, and present a constraint language developed at
the Institute for Software Integrated Systems (ISIS), Vanderbilt University, for constraint

ISIS Tech Report: ISIS-01-202

 6/6

specification. In a separate research effort at ISIS, constraints have been used to prune and guide
searches in a design space. An overview of this constraint-based design space exploration
approach is presented.

3. Hardware – Representation of hardware architecture is not so much an issue when the
architecture is static and the hardware evolution is not critical. All the hardware architecture-
specific dependencies can be considered when designing and implementing the system.
However, for PCA-based systems, representation of hardware architecture is crucial. The issues
central to hardware architecture representation are: the level of abstraction, the granularity of the
representation, the mathematical analyzability of the representation, etc. A common practice in
architecture representation involves capturing the “as-built” topology. This is adequate when the
sole concern is mapping the application onto the target architecture. However, additional
information must be captured in the representation for simulation of application execution, or
analytical evaluation of properties such as power consumption, heat dissipation, etc. In this
report, we examine these issues and evaluate the potential of an MIC-based approach in
addressing them.

4. Application – Application representation is primarily concerned with describing the
computation. Formalized representation of computation has been the focus of much embedded
systems research, and several representation methods have been developed. The Ptolemy project
[3] defines these different representation methods as models of computation. Different models of
computation are suited to different domains. Some common issues across these different models
of computation include level of abstraction, hiding implementation details, hierarchical
representation, etc. This report investigates some of these issues, and evaluates the potential of
MIC in addressing them.

The remainder of the report is organized as follows. The next section describes different approaches to
design space representation, followed by a section that deals with constraint representation and
approaches to constraint satisfaction. This is followed by exploring the details of hardware architecture
modeling. Two existing systems, BRASS and Chameleon, are used as examples. The last section
describes techniques for representing the application.

DESIGN SPACE REPRESENTATION

Conventional practices in embedded system design involve working with single-point designs. This, in
effect, implies elimination of component and system design alternatives in the early stages of the design
process. Such elimination, in the absence of adequate system-level contextual information, leads to sub-
optimal and inflexible system designs that are difficult to maintain and evolve as system requirements
change. However, flexibility and rapid adaptability are of paramount importance to PCA-based systems.
Moreover, the optimization decisions are much harder due to the complex inter-dependencies between the
malleable hardware, the middleware, and the application components. Therefore, retaining a large
number of potential solutions in the form of a design space and postponing the selection and optimization
decisions until the final stages of system synthesis is desirable for PCA-based systems design.

Despite the aforementioned advantages, there is a lack of formalized methods for representing design
spaces in embedded systems design research. In general, existing approaches can be grouped into two
categories:

1. Parametric – the design variations are abstracted into single or multiple parameters. The cross-
product of the domains of the configuration parameters forms a parameterized design space.

ISIS Tech Report: ISIS-01-202

 7/7

Physically different designs may be obtained from the parameterized design space by supplying
appropriate value for the configuration parameters.

2. Explicit Enumeration of Alternatives – different design alternatives are explicitly enumerated.
The design space is a combinatorial product of the design alternatives. Characteristically
different designs may be obtained by selecting different combinations of alternatives.

In the rest of this section, we present a review of some research and technologies where explicit
representation of design space is considered and enabled. The review is not restricted to a particular
domain. Instead, we consider a generalized notion of designs, where we take a design space to mean an
ensemble of candidate solutions that can implement a particular specification in any domain.

Design Space Modeling with Alternatives
In a DARPA sponsored effort at ISIS, a Model-Integrated Design Environment (MIDE) has been
developed for the design of Adaptive Computing Systems (ACS). Specifically, this environment targets
multi-modal structurally adaptive computing systems [4]. One of the key-features of this model-
integrated framework is its support for explicit representation of design spaces for embedded adaptive
systems. Representation of design spaces has special significance to multi-modal adaptive computing
systems. The diverse functionality desired in the different modes of operation makes optimization
decisions extremely difficult. Mode-level optimization does not imply system-level optimization as the
reconfiguration cost involved in transitioning from a mode to another may offset any efficiency attained
by a mode-optimized implementation. In order to address these challenges, a design flow has been
developed that involves constructing large design spaces for the targeted system and then using
constraints to guide the search through the large design space for system synthesis.

In this approach, an adaptive computing system is captured in multi-aspect models. The different modes
of operation and the operational behavior of an adaptive system are captured as a hierarchical parallel
finite state machine in a StateChart-like formalism [5]. The resources available for system execution are
captured as an architecture flow diagram. The computations to be performed in the different modes of
operations are captured as a hierarchical dataflow with alternatives. The basic dataflow model captures a
single solution for implementing a particular set of functional requirements. In this framework the basic
dataflow representation has been extended to enable representation of design alternatives. With this
extension a dataflow block may be decomposed in two different ways. The first type is hierarchical
decomposition in which a dataflow block can encapsulate a functionality described as a dataflow diagram.
The second type is an orthogonal decomposition, in which a dataflow block contains more than one
dataflow block as alternatives. In this case, the container block defines only the interface of the block and
is devoid of any implementation details. The dataflow blocks contained within the container define
different implementations of the interface specifications. With these extensions (i.e. hierarchy and
alternatives), a dataflow model can modularly capture a large number of different computational
structures together to form an exponentially large design space.

The alternatives in a dataflow may take many different forms. Alternatives may be technology
alternatives that are different technology implementations of a defined functionality—e.g. TI-DSP C40
(software) implementation vs. a TI-DSP C67 (software) implementation vs. a VIRTEX® FPGA
(hardware) implementation of a cross-correlation component. Technology alternatives minimize the
dependency of the system design on the underlying technology, thereby enabling technology evolution.
Alternatives may also be algorithmic alternatives that are different algorithms implementing a defined
functionality (e.g. spatial vs. spectral correlation of a 2D image). It is generally accepted that the best
performance can be obtained by matching the algorithm to the architecture or vice-versa. When different
algorithm alternatives are captured, it may be possible to optimize the system design for a range of
different architectures by choosing from different algorithm alternatives. Alternatives may also be

ISIS Tech Report: ISIS-01-202

 8/8

functional alternatives that are different (but related) functions obeying the same interface specifications
(e.g. a 3x3-kernel convolution vs. a 5x5-kernel convolution). Often in the design cycle of a system,
functional requirements change when the system is scaled up, or better precision implementations of a
function are desired due to improvements in sensor fidelity, availability of more compute power, etc.
Functional alternatives are valuable in accommodating a large range of functional requirements in a
design in such situations.

In summary, a design space composed by capturing alternatives can encapsulate a large number of
characteristically different solutions for an end-to-end system specification. While large design spaces
are valuable in improving design flexibility and optimization opportunities, determining the best solution
for a given set of performance requirements and hardware architecture can be a major challenge. A
constraint-based design space exploration method has been developed to address this challenge (described
later in this report).

Generative Modeling
Modeling design alternatives explicitly provides much more flexibility than capturing a single point
solution. However, it still requires the user to pre-design all the components and their possible
interconnection topologies. The user (or an automatic tool) can pick and choose which alternative to
select from a fixed set. A complementary approach, called generative modeling, is a combination of
parametric and algorithmic modeling Error! Reference source not found.. With this technique, the
elementary components are modeled as before, but their number and interconnection topology are
specified algorithmically in the form of a generator script. Generator scripts can refer to the values of
architectural (numerical) parameters contained in the models. This approach is very similar to the VHDL
generate statement; they both support the concise modeling of repetitive structures.

Generative modeling inherently supports dynamic reconfiguration. The generator scripts can be compiled
as part of the runtime system. Runtime events can change the values of architectural parameters triggering
the generator scripts. Note, however, that an extra level of indirection is needed here; the generators
should not reconfigure the runtime system directly. Instead they should reconfigure a representation of the
running system, a form of embedded models.

The main reason for this is the need to verify the system. With pre-enumerated designs, it is possible to
pre-verify all the possible configurations in design-time. However, generative modeling captures
infinitely large design spaces where pre-verification is impossible. If the generator language is Turing
complete, which is highly desirable for the expressive power, verifying the generator script is a very hard
problem. In fact, only methods that apply proof by construction seem to be applicable [7][8][9][10].
These have limited appeal due to usability issues. Furthermore, the fact that the generator is provably
correct does not necessarily imply that the generated system itself is correct.

Another possible approach is to constrain the values of architectural parameters and verify the restricted
(now finite) design space. This would diminish the advantages of generative modeling itself—the
flexibility and the infinite design space. The only alternative that seems to strike a good compromise
between flexibility and verification is having the generators produce an intermediate runtime
representation and verify that instead. In other words, rather than verify the generative models, i.e. the
whole design space they capture, we advocate verifying an instance of the generative models that
corresponds to a particular instantiation of the architectural parameter set. This problem is the same as the
verification of a single point design. However, it needs to be done at runtime meeting possibly stringent
timing constraints. Furthermore, the new configuration will usually be a result of optimization, i.e. a
search in the parameter space. Verifying every candidate would be computationally very expensive.

ISIS Tech Report: ISIS-01-202

 9/9

Constraint-based design space pruning – discussed later in the document – will help in runtime
reconfiguration as well. With this approach, only the candidates that meet all the constraints will need to
be verified.

VHDL
VHDL (Very-high-speed-integrated-circuit Hardware Description Language) [11] is a hardware
description language. VHDL enables the creation of design spaces for digital circuit design, either
parametrically or by explicit enumeration of design alternatives. Parametric design is enabled in VHDL
by providing constructs for creating parameterized modules. The configuration parameters of the module
are exposed along with the module interface description. In the module interface, the configuration
parameters are declared as generic, a VHDL keyword. In the module implementation, a generate
construct may be used for creating configurable modules. The generate statement accepts a numerical
parameter as an input, and can create and connect multiple copies of a module based on the parameter
value. Following is an example of a configurable bit-serial multiplier design in VHDL.

entity Ser_Mult is
 generic(N : integer := 16);
 port(C, clr, sin, en : in std_logic;
 D : in std_logic_vector (N-1 downto 0);
 Q : out std_logic);
end Ser_Mult;

architecture behav of Ser_Mult is
 component Ser_Add
 port(A, B, clk, clr, en : in std_logic;
 S : out std_logic);
 end component;
 signal cy : std_logic_vector (N downto 0);
 signal p : std_logic_vector (N-1 downto 0);

begin
 --Generate and connect serial adders
 A : for I in p'RANGE generate
 ser_add_i : ser_add port map(A => p(I), B => cy(I+1),
 clk => c, S => cy(I), clr => clr, en => en);
 end generate A;

 --Generate AND gates to perform multiply operation
 Q_generate : for I in p'RANGE generate
 p(I) <= D(I) and sin;
 end generate Q_generate;

 cy(cy'LEFT) <= '0';
 Q <= cy(cy'RIGHT);
end behav;

The configuration parameter N in this example configures the size of the multiplier. An appropriate
parameter value is supplied when the module is instantiated. Explicit representation of alternatives is
supported in VHDL by separating the interface specification of a component from its implementation.
Component interface is defined in an entity construct. Entities are described in terms of input and output
ports. Implementation of a component is defined in an architecture construct. Multiple architectures can
be supplied for an entity. For instantiation, a specific architecture has to be bound to the entity. The

ISIS Tech Report: ISIS-01-202

 10/10

binding can be accomplished in the instantiation construct itself, or can be separately specified in a
Configuration script. Following is an example of an Even-Parity component with multiple architecture
definitions, and a configuration script that performs the binding.

entity Even_Parity is
 port
 (Bvec : in Bit_Vector(7 downto 0);
 Parity: out Bit);
end Even_Parity;

-- an architecture for the even_parity entity
architecture Tree of Even_Parity is
 signal Int1, Int2, Int3, Int4, Int5, Int6 : Bit;
begin Int1 <= Bvec(0) xor Bvec(1);
 Int2 <= Bvec(2) xor Bvec(3);
 Int3 <= Bvec(4) xor Bvec(5);
 Int4 <= Bvec(6) xor Bvec(7);
 Int5 <= Int1 xor Int2;
 Int6 <= Int3 xor Int4;
 Parity <= Int5 xor Int6;
end Tree;

-- another architecture for even_parity entity
architecture Cascade of Even_Parity is
 signal Int1, Int2, Int3, Int4, Int5, Int6 : Bit;
begin Int1 <= Bvec(0) xor Bvec(1);
 Int2 <= Int1 xor Bvec(2);
 Int3 <= Int2 xor Bvec(3);
 Int4 <= Int3 xor Bvec(4);
 Int5 <= Int4 xor Bvec(5);
 Int6 <= Int5 xor Bvec(6);
 Parity <= Int6 xor Bvec(7);
end Cascade;

-- configuration script binding one architecture to entity
configuration a_Config of a_system is
 for an_Instance : Even_Parity
 use entity Work.Even_Parity(Tree);
 end for;
end a_Config;

Thus, VHDL supports the creation of design spaces for hardware designs in an elegant manner by
enabling parametric design, as well as by allowing representation of design alternatives. The primary
limitations of VHDL however are the inability to specify performance metrics along with the alternative
description in order to trade-off and compare alternatives, and the primitive form of configuration
mechanism available in the language. There are no tools that can provide automatic configuration of
VHDL designs based on system constraints, and there is no mechanism to validate the consistency of the
instantiated configuration. Furthermore, VHDL, being primarily a hardware design language, is not
suited for designing heterogeneous systems that consist of interacting hardware and software components.

Dynamic Architecture Description Languages
Many architecture description languages have been developed for software architecture specification,
design and analysis [12][13][14][15]. Recently some of these languages have been extended with

ISIS Tech Report: ISIS-01-202

 11/11

constructs to enable capture and analysis of dynamic software architectures. The dynamic behavior refers
to the variability in composition of interacting components during the course of a single computation.
Allen [14] argues the separation of dynamic re-configuration behavior of architecture from its non-
reconfiguration functionality, and recommends extensions to Wright [16], an ADL designed for steady-
state architectures, to handle dynamic software architectures. Medvidovic has presented similar ideas in
his work on dynamic software architecture representation using C2-style [13].

Wright represents architectural structure as graph of components and connectors. Components represent
architecturally-relevant units of computation and data storage, while connectors represent the interaction
between components. In Wright, components and connectors are typed. Thus to define a system, one
first declares a set of component and connector types, termed as a style. Then one declares a set of
instances of these types and the way in which they are assembled, termed a configuration. Components
in Wright have interfaces called ports. A port defines a logically separable point of interaction with its
environment. Connectors also have interfaces called roles. The roles of a connector identify the logical
participants in the interaction represented by the connector, and specify the expected behavior of each
participant in the interaction.

Dynamic topologies can be described in Wright by extending the concept of a configuration. Steady-state
software architectures consist of a unique configuration that represents the fixed topology of the software
architecture. Allen proposes a Configuror, to manage the changes in the architectural topology. The
Style describes all components that are available for use in the architecture. A Configuror script defines
the behavior of the Configuror. The behavior is defined similar to a finite state machine. Appropriate
events in the states trigger reconfiguration of the architecture. The architectural changes are defined by a
sequence of reconnection and dynamic instantiation/deletion of components.

Dynamic architecture description languages provide the capability of creating a design space for software
architecture design. In the Style description, different Components implementing the same interface may
be specified. However, the dynamic ADLs suffer from the same limitations as VHDL. The language
does not support attributing the components with performance metrics, neither is there any tool support
for design space exploration or automatic configuration. In addition, ADLs are targeted towards software
architecture description and are not particularly suitable for describing embedded heterogeneous systems.

Software Variants
Software alternatives or variants are used to create and maintain software product families. Software
variants have been the subject of attention in recent research into software configuration management. It
is understood that versatile management of software variants can help the software development process
by distributing the development cost over many separate customized products in a product family adapted
from the same base product. In the absence of a proper variant management facility, emerging needs to
maintain a complex system with an ever-increasing number of variants can easily become intractable.

There is not a single, general and widely agreed definition of software variants in the software
configuration management community. A broad definition explains a variant as a relation linking two
software source objects indistinguishable under a given abstraction. Another definition explains variants
as alternative implementations of the same specification, implying thereby that variants may be objects
with interface as the invariant part and different implementations as the variant part. This definition is
argued to be too restrictive, as it rules out different implementations of interfaces that differ in irrelevant
details.

ISIS Tech Report: ISIS-01-202

 12/12

Variant representation and management is one of the most cumbersome tasks in software configuration
management. There are two basic choices for the representation of variant components in software
configuration management tools: 1) Maintaining a separate copy of the component for each variant
(variant segregation); and 2) Maintaining a single source object for all variants that are extracted as
needed (single source variants). Variant segregation stores variants separately in a source repository. The
primary disadvantage of variant segregation is the introduction of redundancy into the product’s source
library. Software variants are typically modified copies of other source objects. Often the modifications
are small compared to the common data. This leads to maintenance difficulties, as multiple copies of the
same data need to be maintained separately. Another disadvantage is in the representation of variance of
a single component in multiple dimensions. An example is different operating system variants of a
component and different user-interface variants of the same component. Owing to these difficulties,
variant segregation is better suited for representing variants that have no or small source text in common
with their siblings and vary only within a single dimension. Single source variant representation on the
other hand stores all the variants in a single source file. Meta-constructs guide the selection and
extraction of different variants from the same source file. Single source variant representation is a
promising variation scheme in programming languages that offers conditional compilation. The main
advantage of single source representation is that redundancy between different variants of a given
component can be entirely eliminated or minimized. A disadvantage of single source variant
representation is in the obfuscation of the source code by the meta-constructs that control the instantiation
of the different variants. Additionally, it is difficult to guarantee the consistency of an instantiation.

Thus, software variants are typically source code variations and are commonly used in creation of
software product families. In that respect, variants are analogous to design alternatives. The research in
software variants brings forth some interesting issues regarding variant management, and consistent
instantiation of software products created with software variants. Consistency issues have been addressed
in some research by providing a configuration utility that helps in instantiating consistent products.

CONSTRAINT REPRESENTATION

Constraints are integral to any design activity. Typically, in an embedded system design constraints
express SWEPT requirements. Additionally, they may also express relations, complex interactions and
dependencies between different elements of an embedded system viz. hardware, middleware, and
application components. Ideally, a correct design must satisfy all the system constraints. In practice,
however, not all constraints are considered critical. Often trade-offs have to be made and some
constraints have to be relaxed in favor of others. Constraint management is a cumbersome task that has
been inadequately emphasized in embedded systems research. Most embedded system design practices
place very little emphasis on constraints and treat them on an ad-hoc basis, which means either testing
after the implementation is complete, or an over-design with respect to critical parameters. We argue that
both of these situations can be avoided by elevating constraints to a higher level in the design process.
Two important steps in that direction are a) formal representation of constraints; and b) verification/pre-
verification of the system design with respect to the specified constraints. In this section we consider the
types of constraints that are common to embedded systems, briefly present a constraint language that has
been developed in an earlier effort at ISIS, and finally present an overview of a constraint-based design
space exploration method. The constraint-based design space pruning is like a pre-verification step that
filters out those designs out of design space that do not satisfy the constraints that have been expressed.

ISIS Tech Report: ISIS-01-202

 13/13

Principally, four basic types of design constraints are common to embedded systems: (a) performance
constraints, (b) resource constraints, (c) compositional constraints, and (d) operational constraints. More
complex constraints are typically combinations of one or more of these basic types joined by first order
logic connectives.

Performance constraints – Performance constraints express non-functional requirements that a
synthesized system must obey. These may be in the form of size, weight, energy, latency, throughput,
frequency, jitter, noise, response-time, real-time deadlines, etc. When an embedded computational
system is expressed in a dataflow description, these constraints express bounds over the composite
properties of the computational structure. Following are some common examples:

• Timing – expresses end-to-end latency constraints, specified over the entire system, or may be
specified over a subsystem e.g. (latency < 20).

• Area – expresses bound over the area of a system or a subsystem (area < 105). The area is
defined for a hardware component to be the logic block count and for a software component to be
the code size.

• Power – expresses bound over the maximum power consumption of a system or a subsystem e.g.
(power < 100).

Resource constraints – Resource constraints are commonly present in embedded systems in the form of
dependencies of computational components over specific hardware components. These constraints may
be imperative in that they may express a direct assignment directive, or they may be conditionalized with
other computational components. Following is an example of a resource constraint in plain English:

• Imperative – component FFT must be assigned to resource FPGA-1
• Conditional – if component FFT is assigned to resource FPGA-1 then

component IFFT must be assigned to resource FPGA-2

Compositional constraints – Compositional constraints are logic expressions that restrict the composition
of alternative computational blocks. They express relationships between alternative implementations of
different components. These are essentially compatibility directives and are similar to the type
equivalence specifications of a type system. Therefore, compositional constraints are also referred to as
typing constraints. For example, the constraint below expresses a compatibility directive between two
computational blocks FFT and IFFT that have multiple alternate implementations: {if component
FFT is implemented by component FFT-HW then implement component IFFT with
component IFFT-HW}.

Operational constraints – These constraints are common to reconfigurable embedded systems, where
they express conditions relating design configurations to operational modes. Mode-specific design
requirements, composition preferences and allocation restrictions can be specified with these constraints.
For example, {when the system is in terminal tracking mode the latency of the
system must be less than 10 ms and the power consumption should be less than
15 mw}.

The Object Constraint Language (OCL), a part of the Universal Modeling Language (UML) [17] suite,
forms a good basis for expressing the type of constraints shown above. OCL is a declarative language,
typically used in object modeling to specify invariance over objects and object properties, pre- and post-
conditions on operations, and as a navigation language. A subset of OCL has been extended to develop a
constraint specification language to express the type of constraints specified above. The constraints are
specified in the context of an object. A constraint expression can refer to the context object and to other
objects associated with the context object and their properties. The OCL keyword self refers to the

ISIS Tech Report: ISIS-01-202

 14/14

context object. Role names are used to navigate and access associated objects. For example, the
expression self.parent evaluates to the parent object of the context object, similarly
self.children evaluates to a set of children object of the context object. The following associations
are enabled for navigation in the constraint language:

• parent – evaluates to the parent of the context object in the containment hierarchy.
• children – evaluates to a set of children objects of the context object in the object hierarchy.

When invoked with the name of a child as an argument the expression evaluates to a specific
child object e.g. self.children(“childX”) evaluates to an object with the name childX
contained in the context object. Enforcing unique names for objects in a single context is left to
the modeling environment.

• project – evaluates to a project object that is the root container of all the objects in the system
model.

• resources – evaluates to a set of resource objects contained in the system model.
• modes – evaluates to a set of the operational modes of the system.
• processes – evaluates to a set of the processing objects of the system

A constraint expression can either express direct relation between the objects by using relational or
logical operators, or express performance constraints by specifying bounds over object properties. Object
properties can be referred to in a manner similar to associations. The following property constructs are
enabled in the derived constraint language for expression of constraints:

• latency – evaluates to the latency attribute of a processing object
• area – evaluates to the area attribute of a processing object
• power – evaluates to the power consumption of a processing object
• implementedBy – evaluates to an alternative of a template processing object selected for

implementation
• assignedTo – evaluates to the resource that a processing object is assigned or mapped to.

Design Space Exploration
Given the flexibility in defining design alternatives, the design spaces for embedded systems can be
extremely large (moderately sized examples have defined a space of 1024). A designer cannot explore
such a large space without sufficient tools. The space must be evaluated to find a set of designs that
satisfy all the constraints and best satisfy the design criteria. The analysis tools must allow efficient
exploration, navigation, and pruning of this space to select feasible hardware/software architectures for
user-definable cost functions such as weight, power, algorithmic accuracy and flexibility. Given the size
of the design space, and the complexity of the analysis, a powerful, scalable analytical method has been
developed.

In the symbolic representation, sets/spaces are represented as Boolean expressions over the members of
the set. The members of the set are encoded as binary variables under a binary encoding scheme. The
principal benefit of the approach is that it does not require enumeration of the set/space to perform
operations. The symbolic method is based on Ordered Binary Decision Diagrams (OBDD) [18], a
technique for representing Boolean functions symbolically. OBDDs represent Boolean functions as
directed acyclic graphs in a memory efficient format. The operations over the Boolean functions are
implemented as graph algorithms, thereby rendering “manipulation” of the space fast and efficient.

With this symbolic formalism, the application of logical constraints is relatively straightforward. The
user-defined logical constraints can be represented as a Boolean expression over the components of the

ISIS Tech Report: ISIS-01-202

 15/15

design space. Constraint application is a conjunction of the constraint Boolean expression with the
Boolean expression that represents the design space. The resultant Boolean expression represents the
“constrained” design space. Application of the integer arithmetic constraints such as timing and power
constraints requires further analysis (see [19] for details), however the basic approach remains the same.

While the approach scales well, in very large design spaces with many constraints applied an exponential
explosion of the OBDD can occur. To address this problem, hierarchical constraint processing has been
supported. The constraint processing is done hierarchically with constraints scoped to a particular level;
i.e. constraints are applied to sub-spaces first, pruning them to the extent possible and then progressing
upwards in the hierarchy. This technique is very effective when there are a large number of constraints
with a limited scope. The technique is not effective when there are many globally scoped constraints in a
large design space.

The constraints “prune” the design space by enforcing the requirements specified in the constraint. These
constraints can be iteratively applied to the design space, with the goal of reducing the “1024” to a more
manageable, 10-1000 design alternatives. The approach described above has been implemented in a
design space exploration tool. Design engineers can iteratively apply constraints and visualize the
sensitivity of the design space to the constraint. If a constraint is extremely tight, its application can
eliminate the design space altogether. In this case, the constraint can be released and other constraints
applied instead. The outcome of this symbolic constraint satisfaction step is a subset of the design space
much smaller than the original, containing only the designs that satisfy all the specified constraints.

HARDWARE ARCHITECTURE REPRESENTATION

This section discusses many of the issues that arise when modeling representative PCA hardware
platforms. Two case studies of representing PCA hardware using MIC technology are discussed. They
illustrate many of the potential problems that must be addressed when representing PCA hardware
systems. The studies are based on representing the Chameleon processor and the BRASS hardware.
Disadvantages and advantages of using MIC for PCA hardware representation are examined later.

Multi-granular Hardware Modeling
One of the primary issues faced in representing PCA hardware systems is to determine the level of
representation granularity that is required to capture necessary information. Unfortunately, depending on
the application, different levels of hardware modeling may be required. At one extreme lies the network-
centric approach that can be used to model networks of processors and support components (such as
FPGAs). This modeling approach was used in the ISIS ACS project [4]. The other extreme is to provide
modeling down to the gate level for all system components. This approach requires the system modeler
to always specify their hardware system in greatest detail. This is the equivalent to providing VHDL code
for all components to be used in the final system. Depending on the specific application requirements,
different representation levels may be required.

Different modeling approaches have been examined to try to determine the appropriate level of
representation. Ideally, the user shall have the flexibility to represent their system at their choice of
granularity. For first attempts, the system modeler can use the high-level network modeling to determine
the overall parameters of their system. If additional system information or fidelity of information is
required, the modeler can refine the representation of key components to a higher degree of fidelity. In

ISIS Tech Report: ISIS-01-202

 16/16

most cases, the correct granularity lies between a network level and a gate level model. However, it
should be the designer’s choice as to what level of granularity is appropriate.

Dynamic Reconfiguration
A key feature of PCA hardware systems is the ability to reconfigure the hardware to more efficient
configurations while the system is in use. In order to represent dynamic reconfiguration, the system
modeler must be able to represent not only the starting and ending hardware configurations, but also any
intermediate hardware settings. In addition, the effects of reconfiguring the hardware system must be
taken into account in the application modeling. The application models must be able to represent the
“handling” of the transients that may be generated during reconfiguration. In the case of systems that can
be stopped, reconfigured, and restarted, this problem becomes manageable. However, many systems can
not be stopped for reconfiguration. Again, somehow the reconfiguration process and handling of transient
application results must be captured in the models. Dynamic reconfiguration support should be included
in any PCA design tool, as the ability to reconfigure an existing system is a key feature of PCA systems.

The run-time issues associated with dynamic reconfiguration need to be solved before a suitable design
representation can be formalized. Modeling reconfiguration does not solve problems such as how to deal
with transient data spikes. Issues such as transients and application reconfiguration must be dealt with at
a lower level, before system modeling. Representing dynamic reconfiguration would only detail how the
system should handle the reconfiguration process – actual reconfiguration must be performed by the run-
time system. Dynamic system reconfiguration is one of the many issues the PCA program should deal
with during its lifetime. In the modeling approaches depicted in this report, dynamic reconfiguration is
not considered, as it has not yet been addressed at a low level.

BRASS Hardware Modeling
The BRASS hardware architecture [21] has been modeled using GME 2000. A specific BRASS modeling
paradigm was developed to allow the construction of graphical BRASS models. The paradigm allows the
modeler to represent BRASS type hardware systems using a structured, hierarchical, graphical approach.
The graphical model could then be used to provide a configuration file for a hardware simulator or as a
target for mapping the application model (modeled as with SCORE [22]) onto the hardware platform.
Figure 2 shows the metamodel for the BRASS modeling paradigm.

In BRASS, the key components are compute pages (CP) and configurable memory blocks (CMB). The
BRASS hardware configuration is composed of direct interconnections between CPs and CMBs. Each
block of CPs and CMBs can then be interconnected through a higher bandwidth connection. In the GME
paradigm, CP and CMB components can be connected directly. They are contained in components
known as Blocks. Each Block can contain a Junction, which allows interconnection of Blocks. Each
Junction has an attribute to illustrate the relative bandwidth of the interconnect. CP and CMB
components can also be directly connected to a Junction. Blocks are hierarchical in nature; therefore,
Junctions must be able to be connected. This allows the user to build a hierarchical representation of their
hardware while maintaining details such as interconnect bandwidth and leaf block configuration.

Using this modeling paradigm, example BRASS hardware configurations have been composed.
Connections contain key attributes used to represent physical interconnection parameters (e.g. data bus
width). This modeling approach allows complete hardware systems to be captured graphically. Using

ISIS Tech Report: ISIS-01-202

 17/17

this paradigm along with an application modeling paradigm (two examples will be discussed later), the
user can capture the complete system design in one set of models.

Figure 2: BRASS MetaModel

Chameleon Hardware Modeling
A modeling paradigm has been developed to represent the hardware architecture of the CS2000 family of
reconfigurable communications processors from Chameleon Systems Inc. [23]. Architecture models
captured using this paradigm could be used in conjunction with application models as inputs to system
synthesis and analysis tools. Further, the modeling paradigm can be used to represent extended
Chameleon-based architectures

Figure 3 depicts the metamodel for the modeling paradigm. The paradigm is fairly complex, involving
several models, atoms, and connections. Each of the CS2000 series processors offers an embedded 32-bit
ARC processor core, as well as on-chip PCI and Memory controllers. The processors also offer a
configuration subsystem and a DMA subsystem for configuring and communicating with the
Reconfigurable Processing Fabric (RPF). Each subsystem is connected to the 128-bit RoadRunner bus,
allowing fast communication between components. The RPF is of specific interest with respect to PCA,
in that it provides processor reconfiguration.

The paradigm provides a processor model at the highest level. This model can contain the following
components: Controller, ARC processor, Cache, IO, Configuration subsystem, DMA Subsystem, and
RPF. Each of these components is allowed to be connected to a bus component. The RPF component is
captured as a model, allowing further decomposition, while the other top-level components are
represented as simple icons. These components can be used to capture a CS2000-family processor at a
high level. Figure 4 shows a top-level model of a processor created using the Chameleon modeling
paradigm.

ISIS Tech Report: ISIS-01-202

 18/18

Figure 3: Metamodel of the Chameleon modeling paradigm

Figure 4: Top-level model of a Chameleon CS2000 family processor

ISIS Tech Report: ISIS-01-202

 19/19

The graphical description of the RPF may be further refined using the modeling paradigm. As provided
by the architecture, the RPF is divided into slices, and each slice into tiles. Data exchanges through tiles
and slices occur through a routing network called the Dynamic Interconnect. The timing for data
transfers within a slice differs from those between slices. However, the Dynamic Interconnect offers full
routing capabilities between tiles and slices. The RPF model can contain Slice models, and a slice model
can contain Tile models. The paradigm represents the routing network as a Routing icon. Components
which route data through the Dynamic Interconnect can be connected to the Routing icon, meaning that a
connection may be configured to send data from any component to any other component connected to the
icon. A BusPort component facilitates the depiction of inter-tile and inter-slice data routing through
different levels of hierarchy. The BusPort does not exist physically in the Chameleon architecture, but
allows the simplification of the diagrams through hierarchical decomposition.

Figure 5 shows a model of a tile constructed using the Chameleon modeling paradigm. As each tile
contains four Local Store memories, two 16x24 multipliers, seven Datapath units, and one Control Logic
Unit, the paradigm provides icon representations for each of these components. The Dynamic
Interconnect is represented as a compass, and each component inside the tile can be connected to it. The
CLU can contain several Datapath Unit configurations which can be loaded to the various Datapath units
at runtime, thus allowing dynamic reconfiguration. An instruction routing icon was placed in the tile to
represent the path by which instructions are routed from the CLU to the various Datapath units. Exactly
what each instruction is, and what governs when it is issued to the Datapath unit, is an application-
specific detail that is not captured in these architecture models. However, this modeling paradigm could
be extended with state-transition diagrams to capture the behavior of an application. These application
models could then be used to more precisely capture and analyze the runtime behavior of a Chameleon
system.

Figure 5: Model of a single Chameleon processor tile

As mentioned earlier, the Chameleon modeling paradigm allows the developer to capture the architecture
of the CS2000 family of reconfigurable communications processors. The modeling paradigm could be
used to capture future revisions of CS2000 chips, perhaps with more tiles per slice, or different
configurations of components inside a tile. Further, with models of a particular application to be executed
on the Chameleon processor, one could completely capture the runtime behavior of the architecture,
allowing system analysis and even synthesis to occur.

ISIS Tech Report: ISIS-01-202

 20/20

The Chameleon processor architecture provides a platform where generative modeling is particularly
applicable. At the lowest architectural level represented in modeling paradigm, a processor consists of a
set of tiles, where each tile consists of basically the same components. Each of these components can be
configured to perform a different function, and the tiles can be interconnected in different ways, but the
tile itself is architecturally static. Through generative modeling, a representation of a single tile could be
captured, as well as rules for how tiles can interconnect. A generator script would be responsible for
instantiating tiles properly, as governed by the application, as well as generating interconnections between
each tile. It is not required to redundantly capture a complete configuration for each architecturally static
tile.

APPLICATION REPRESENTATION

This section examines the issues that appear when modeling applications for implementation on PCA
hardware platforms. Application modeling does not have to be restricted to PCA applications, but some
methods are more appropriate for representing embedded applications. Two case studies that use MIC
technology for application representation are discussed. Both application modeling approaches are
appropriate formalisms for PCA type applications. Disadvantages and advantages of using MIC for
application representation will be examined later.

Models of Computation
Models of computation (MOC) can be defined as natural methods to represent systems, their syntax, and
their semantics. MOC have well defined semantics that govern how the MOC models can be evaluated.
Different classes of problems require different models of computation. For example, a problem that can
be efficiently stated as a data flow problem may not necessarily be efficiently represented by a set of
differential equations. Embedded systems could have many different representation methods, where
some are more natural for a given problem domain than others. Among the models of computation that
should be considered are: finite state machines, data flow, differential equations, and discrete event
systems. Note that this is not a complete list of models of computation that need to be explored with
respect to modeling PCA applications.

The Ptolemy project [24][3] focuses on embedded system modeling, simulation, and design. As part of
their work, research on differing models of computation has emerged. Ptolemy has identified an
extensive set of models of computation.

A key feature of using MIC for representing different models of computation is the flexibility MIC
provides. As new models of computation are identified, the MIC modeling paradigm can be extended to
support the new modeling approach. Older models can be “migrated” to the new paradigm, thus allowing
the user to keep existing models. The model interpreter would require modification, but only on how to
apply the defined semantics to the new representation method. It should be noted that model migration is
not a trivial task, but it does eliminate the task of “reconstructing” existing models in the updated
paradigm.

Signal Flow Modeling

The signal flow application models are used to describe the processing algorithm structure and operation.
The basic application is described in terms of computational components and data interactions. To
manage system complexity, the concept of hierarchy is used to structure application definitions. The

ISIS Tech Report: ISIS-01-202

 21/21

logical composition of systems using component subsystems has proven effective for designing very
large, complex applications.

In this modeling approach, application models are constructed as signal flow models. These models
break a system into distinct components with well-defined interfaces. The “ports” that form these
interfaces allow for data to be exchanged between components. The signal flow defines the order of
processing for an application. Each component in the signal flow graph receives data from other
components, performs some transformation on the data, and then outputs new data to other system
components. This modeling formalism is widely used in modeling of embedded systems.

The application is modeled as a signal flow structure with the following classes of objects: compounds,
primitives, and alternatives. The metamodel for this modeling paradigm is shown in Figure 6. A primitive
is a basic element representing the lowest level of processing that can be modeled. A primitive maps
directly to a processing object that will be implemented as either a hardware function or a software
function. Primitive objects are annotated with attributes. These attributes capture measured performance,
resource (memory) requirements, and other user-defined properties.

A compound is an aggregation object that may contain primitives, other compounds, and/or alternatives.
The component objects can be connected within the compound to define the signal flow. Compounds
provide the hierarchy in the application description that is necessary for managing the complexity of large
designs. Figure 7 shows an example data flow model. This is the high level model of an automatic
target recognition system. Each block in the model is a data flow compound that can be broken down into
other data flow nodes. The leaf nodes in the system (primitives) have an implementation specification
given. This implementation can be a section of C code, a FPGA specification, or a Matlab specification,
for example.

Figure 6: Data flow metamodel

A design alternative object is used in the modeling process to allow the specification of multiple
application architecture choices for a given task. The alternative object is used to capture design
alternatives. This object represents a choice between multiple design architectures. These design
alternatives can be either primitives or compounds, allowing hierarchies of design alternatives. When
alternatives are used, the application models can describe a very large number of potential design
implementations. The large design space gives the environment the freedom to search for and select an
implementation that meets the specified requirements and fits within available resources. See the section
on Design Space Representation for more detail.

ISIS Tech Report: ISIS-01-202

 22/22

Another use of alternatives is to model multiple physical technology implementation alternatives, i.e.
different ways a processing function may be implemented in the architecture. For example, a convolution
can be computed in software running on a DSP, in software running on a network of multiple DSP’s, in a
hardware function in a FPGA, or in a dedicated ASIC solution. The selection of the desired
implementation technology is determined in the synthesis process, driven by power consumption,
throughput, latency, specific part availability, and other architectural interactions.

Figure 7: Data flow example model

SCORE Modeling
Another approach to modeling PCA applications utilizes the SCORE [22] modeling formalism. SCORE
is the application modeling approach associated with the BRASS hardware representation from the
DARPA Adaptive Computing Systems program. Currently, SCORE programs are constructed in a
textual language known as TDF, an intermediate register transfer language based on C. One of the stated
advantages of SCORE is the ability to virtualize reconfigurable computing resources.

SCORE programs are similar to Hoare’s Communicating Sequential Processes (CSP). All SCORE
applications are defined by a graph. Each graph may contain two types of nodes, either FSM (denoted
SFSM) nodes or turing complete nodes (denoted STM). A STM node has the ability to perform stream
operations, to create SCORE graph nodes and edges (within the current SCORE graph), and to lock
regions of memory. A SFSM node is modeled as a set of states the node can be in with state transition
logic specified. SCORE allows applications to be multi-tasked onto corresponding BRASS hardware,
allowing applications to make use of smaller sets of available hardware [22].

A graphical modeling approach is applied that can support construction of SCORE models. A model
interpreter can then be utilized to produce compliant TDF code that follows from the graphical model
specification. This TDF code can then be used to configure an application on the BRASS hardware.
Figure 8 illustrates the metamodel for the GME SCORE modeling paradigm.

In the modeling paradigm, Graph models can contain interconnections of SFSM and STM nodes. An
SFSM node contains states, their connections, and connections from other nodes in the graph. STM

ISIS Tech Report: ISIS-01-202

 23/23

nodes can contain other STM or SFSM nodes and their interconnections, along with special atoms to
represent memory locking. Several classes of connections exist to represent the different interconnections
allowed in a SCORE specification. Ports are used to illustrate the interconnection of nodes in the graph.

SCORE application models can be constructed from the components described above. Figure 9 illustrates
an example SCORE application model. Each block in the graph represents a SFSM node. Each of these
nodes has a FSM representation that describes the detailed operation of each node in the graph. Some
details are given through the use of attributes, which are not shown in the graphical model. This example
comes from [22].

Figure 8: SCORE metamodel

Preliminary results on writing a model interpreter for the SCORE paradigm shows that enough
information is captured using the above constructs to automatically produce TDF specifications from the
models. Design alternatives can only be captured using the SCORE supported constructs. Additional
features that may prove useful include extending the FSM notation to include hierarchy and parallelism
[5] and adding explicit design alternative modeling capabilities to the paradigm. These features would
enable better abstraction of complex problems and better design space representation. This would also
allow for more flexible system representation using the basic SCORE modeling formalism.

Figure 9: Example SCORE Model

ISIS Tech Report: ISIS-01-202

 24/24

Other Application Representation Approaches
While this work has focused on explicitly enumerated alternatives, other application representation
approaches should be examined. Specifically, generative modeling appears to be an appropriate
approach. Other approaches, such as using software variants, should also be examined. Other models of
computation should be examined for applicability to certain embedded system applications. Questions
that must be answered include what is a complete-enough set of models of computation to allow most
embedded applications to be represented and how to semantically interface them. A clear understanding
of how differing models of computation may be made to interact is necessary. Some approaches, such as
explicit source code representations, are not promising approaches, as they require system representation
at a low-level of detail.

CONCLUSIONS

This report has detailed areas of interest with respect to representing PCA hardware architectures and
PCA applications. In no way is this intended to completely address or identify all issues related to PCA
system design and development. The two technologies that are most important to PCA system design that
have been discussed are design space representation and design space exploration through constraint
satisfaction. Additionally, this report has detailed several example PCA modeling approaches based on
Model Integrated Computing (MIC).

MIC offers several advantages when applied to modeling PCA hardware systems. One of them is the
quick prototyping capability allowing many different modeling approaches to be examined before
choosing the desired modeling formalism. MIC also allows for the use of domain-specific modeling
paradigms. The modeling approaches can be tailored to a representation understood by, and natural to,
the system user. MIC also allows flexible modeling—existing modeling techniques can be combined to
create a unified modeling environment. Lastly, MIC is an extensible technology. Modeling paradigms
can be extended with new features and modeling formalisms as needed (e.g. as new PCA hardware
becomes available). Extending a modeling paradigm should require minimal modifications to existing
components. One of the goals of using MIC is to make “the amount of effort related to the size of the
change instead of the size of the system.” For more information, please see [2][25].

MIC also has some disadvantages associated with its usage. First, complex and evolving modeling
paradigms can still allow inconsistencies in the models that are beyond the ability of the tools to detect.
Some aspects of PCA-type systems is hard to capture, fro example, the problem of dealing with dynamic
reconfiguration is not currently handled by any GME paradigm. Additionally integrating existing
modeling paradigms is not a trivial task. While research is being undertaken to aid in extending MIC
systems [20], currently integrating differing paradigms is a manual process. In many cases, migrating
models across paradigm changes is not a trivial task. In the worst case, the models must be manually
reconstructed in the updated paradigm. Model migration would eliminate the possibility of manual errors
by automating the process of “migrating” a set of models to an updated paradigm. Research currebtly
being undertaken in our DARPA/ITO MoBIES project will address these issues.

Another problem is in the representation of certain system attributes. In the Chameleon modeling
paradigm, for example, the Control Logic Unit does not have its behavior specified. However, the CLU
provides some of the key advantages of the Chameleon architecture. Representing the CLU in a MIC
modeling paradigm can be done; however it may result in a cumbersome, unnatural representation.

ISIS Tech Report: ISIS-01-202

 25/25

REFERENCES

[1] Douglas, Bruce Powel, Real-Time UML: Developing Efficient Objects for Embedded
Systems, 2nd Edition, Addison-Wesley

[2] J. Sztipanovits, G. Karsai, “Model-Integrated Computing,” IEEE Computer, pp. 110-112, April,

1997.

[3] Davis, J., et. at.: “Overview of the Ptolemy Project”, available from
http://ptolemy.eecs.berkeley.edu/.

[4] Bapty T., Neema S., Scott J., Sztipanovits J., Asaad S.: “Model-Integrated Tools for the Design of

Dynamically Reconfigurable Systems”, ISIS Technical Report/Vanderbilt University, 2000.

[5] Harel, D., “Statecharts: A Visual Formalism for Complex Systems”, Science of Computer

Programming 8, 1987, pp.231-274.

[6] Sztipanovits J., Karsai G., “Self-Adaptive Software for Signal Processing,” CACM, 41, 5,

pp. 55-65, 1998

[7] Clarke, E., Grumberg, O., Long, D., “Verification tools for finite-state concurrent systems”, In: A

Decade of concurrency--Reflections and Perspectives. Lecture Notes in Computer Science, 803,
1994.

[8] McMillian, K., Symbolic Model Checking, Kluwer Academic Publishers, 1993.

[9] Owre, S., et. al., “Formal verification for fault-tolerant architectures: Prolegomena to the design of

PVS”, IEEE Transactions on Software Engineering, 21(2):107-125, February 1995.

[10] Hooman, J., “Correctness of Real Time Systems by Construction”, Formal Techniques in Real-Time
and Fault-Tolerant Systems, pp. 19-40. Springer-Verlag, LNCS 863, September 1994.

[11] Sjoholm S., and Lindh L., VHDL For Designers, Prentice Hall, 1997.

[12] Luckham D., et al, “Specification and Analysis of System Architecture using Rapide,” IEEE
Transactions on Software Engineering, pp. 336-354, vol. 21, no. 4, April 1995.

[13] Medvidovic N., “ADLs and Dynamic Architecture Changes,” Proceedings of the 2nd International

Software Architecture Workshop, pp 24-27, October, 1996.

[14] Allen R., et al, “Specifying and Analyzing Dynamic Software Architectures,” Proceedings of the
Conference on Fundamental Approaches to Software Engineering, Lisbon, Portugal, 1998.

[15] Garlan D., et al, “Acme: An Architecture Description Interchange Language,”, Proceedings of

CASCON’97, November, 1997.

[16] Allen R. and Garlan D., “A Formal Basis for Architectural Connection,” ACM Transactions on
Software Engineering and Methodology, July 1997.

ISIS Tech Report: ISIS-01-202

 26/26

[17] Object Constraint Language Specification, Version 1.1, Object Management Group, September
1997.

[18] Bryant R., “Graph-Based Algorithms for Boolean Function Manipulation,” IEEE Transactions on

Computers, pp. 677-691, vol. C-35, no. 8, August 1986.

[19] Neema S., “Constraint based System Synthesis,” Technical Report, ISIS, Vanderbilt University,
1999.

[20] Ledeczi, A., et. al.: “MILAN: a Model Integrated Simulation Framework”, ISIS Technical Report

ISIS-01-0125, Vanderbilt University, 2000.

[21] Tsu, W., et. al.: “HSRA: High-Speed Hierarchical Synchronous Reconfigurable Array”,
Proceedings of the 1999 ACM/SIGDA Seventh International Symposium on Field
Programmable Gate Arrays, February 21-23, 1999.

[22] Caspi, E., et. al.: “Stream Computations Organized for Reconfigurable Execution (SCORE):

Extended Abstract”, Conference on Field Programmable Logic and Applications, August 28-
30, 2000.

[23] “CS2000: Reconfigurable Communications Processor Family Product Brief”, available from

http://www.chameleonsystems.com.

[24] Lee, E., Sangiovanni-Vincentelli, A.: “A Framework for Comparing Models of Computation”,
IEEE Transactions on CAD, Vol. 17, No. 12, December 1998.

[25] Abbott, B., Bapty, T., Biegl, C., Karsai, G., Sztipanovits, J.: “Model-Based Approach for Software

Synthesis,” IEEE Software, pp. 42-53, May, 1993.

[26] Bapty T., Scott J., Neema S., Sztipanovits J.: “Uniform Execution Environment for Dynamic
Reconfiguration”, Proceedings of the IEEE Conference and Workshop on Engineering of Computer
Based Systems, pp.181-187, Nashville, TN, March, 1999.

[27] GME 2000 User’s Manual, available from http://www.isis.vanderbilt.edu.

