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Abstract 
 

This technical report discusses system representation issues in the Polymorphous Computing Architecture 
(PCA) domain. We argue that in order to effectively address PCA-based embedded system development, 
there exists a dual need for a high-level of abstraction and the representation of not only the computations, 
but also the target hardware architecture, the available morphable middleware components, the system’s 
environment and the complex relationships that exist. An Model Integrated Computing (MIC)-based 
approach makes it possible to capture all facets of a PCA-based embedded system by employing high-
level, multiple-aspect system models and formal constraints. Automatic synthesis can then be used to 
translate the models into the input languages of static and dynamic analysis tools, and to synthesize the 
application. 
 
In contrast to a single point solution, by representing the configurable hardware and middleware 
components, the whole hardware design space is captured. We believe that the same approach needs to be 
taken for the application, i.e. a full design space needs to be described by specifying implementation 
alternatives for certain functionalities of the system. These alternatives may have different characteristics 
in terms of timing, performance, energy consumption, accuracy, etc. The formal constraints capturing 
non-functional requirements effectively constrain the application and hardware design space. They can 
guide the search to a solution that satisfies all the constraints. If multiple solutions exists, simulation-
based optimization can identify the best design. 
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INTRODUCTION 

Arguably, one of the most expensive aspects of embedded system development is software design and 
implementation. That makes the software one of the most important assets; its reusability is of paramount 
importance. Yet, most software development is still done at a relatively low level: requirements are 
analyzed and design documents are created that form the base for manual software implementation. The 
end result of this process is source code in a conventional programming language containing implicit 
assumptions about the target hardware, the system’s operating environment, timing constraints and other 
requirements. This makes system evolution very difficult. Furthermore, porting to new hardware becomes 
time-consuming and error-prone. Recently, high-level approaches to object-oriented design and 
programming have been applied in the embedded systems arena with some success Error! Reference 
source not found.. However, we believe that all these methods share the same limitation—they deal with 
the software only. 
 
One of the key characteristics of embedded systems is that they need to interact with their environment. 
The main task of embedded software is to provide data processing between sensors and actuators. 
Constraints enforced by the physical environment must be incorporated into the software design decisions 
and into the system integration process. Currently, all of these interactions are managed by the designers 
and programmers by hand, often without any kind of tool support. Polymorphous hardware architectures 
only exacerbate this problem by introducing extra sources of complexity. 
 
The goal of the PCA program is to span a broad dynamic application space by implementing a 
polymorphous layer between an application program and novel malleable micro-architecture elements. In 
other words, two system layers that are fixed in traditional embedded systems—the middleware and the 
hardware—are configurable (even dynamically reconfigurable) in PCA systems. While they are hidden 
from the application programmers by the Morphware Stable Interface, the system integrator (human 
and/or tool) needs to configure them while optimizing the system to satisfy size, weight, energy, 
performance and time (SWEPT) requirements. In order to be able to accomplish these goals, information 
about the new malleable hardware components, the overall hardware architecture as well as the 
middleware components needs to be explicitly captured. 
 
We argue that in order to effectively address PCA-based embedded system development, there exists a 
dual need for a high-level of abstraction and the representation of not only the computations, but also the 
target hardware architecture, the available morphable middleware components, the system’s environment 
and the complex relationships that exist. An Model Integrated Computing (MIC)-based approach [2] 
makes it possible to capture all facets of a PCA-based embedded system by employing high-level, 
multiple-aspect system models and formal constraints. Automatic synthesis can then be used to translate 
the models into the input languages of static and dynamic analysis tools, and to synthesize the application. 
 
In contrast to a single point solution, by representing the configurable hardware and middleware 
components, the whole hardware design space is captured. We believe that the same approach needs to be 
taken for the application, i.e. a full design space needs to be described by specifying implementation 
alternatives for certain functionalities of the system. These alternatives may have different characteristics 
in terms of timing, performance, energy consumption, accuracy, etc. The formal constraints capturing 
non-functional requirements effectively constrain the application and hardware design space. They can 
guide the search to a solution that satisfies all the constraints. If multiple solutions exists, simulation-
based optimization can identify the best design. 
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Figure 1 shows the model-integrated design flow for polymorphous embedded systems.  The application 
and hardware design spaces are captured by multiple-aspect, mixed graphical and textual models using 
explicit design alternatives. The modeling paradigm is a domain-specific language designed specifically 
for PCA-based embedded system modeling. Notice that the choice of the language and the models 
themselves narrow down the space from the theoretically infinite number of possibilities, yet the size may 
remain exponentially large.  The overall system design space is further constrained by explicit constraints 
representing SWEPT requirements, resource and other constraints. 
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Figure 1:  MIC approach to Polymorphous Computing 

Representation Issues  
The objective of this report is to identify and understand the issues involved in representing 
Polymorphous Computing Systems.  As we advocated earlier, a complex heterogeneous embedded 
system design requires a careful and formal representation of all the different aspects of a computational 
embedded system.  Specifically, representation issues for the following aspects are being explored: 

1. Design spaces – Conventional system design involves representing a single solution/design.  A 
design space, on the other hand, captures multiple solutions for implementing the system 
specification with different attributes.  The design space must be explored to find the best 
solution(s) for a given set of requirements and constraints.  In this report, we evaluate the pros 
and cons of representing design spaces for system design, and present an overview of candidate 
approaches for representing such spaces. 

2. Constraints – Constraints are central to all design activity, yet there are inadequate research 
efforts towards formal representation of constraints.  In this report we consider the nature of 
constraints common to embedded system design, and present a constraint language developed at 
the Institute for Software Integrated Systems (ISIS), Vanderbilt University, for constraint 
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specification.  In a separate research effort at ISIS, constraints have been used to prune and guide 
searches in a design space.  An overview of this constraint-based design space exploration 
approach is presented. 

3. Hardware – Representation of hardware architecture is not so much an issue when the 
architecture is static and the hardware evolution is not critical.  All the hardware architecture-
specific dependencies can be considered when designing and implementing the system.  
However, for PCA-based systems, representation of hardware architecture is crucial.  The issues 
central to hardware architecture representation are: the level of abstraction, the granularity of the 
representation, the mathematical analyzability of the representation, etc.  A common practice in 
architecture representation involves capturing the “as-built” topology.  This is adequate when the 
sole concern is mapping the application onto the target architecture.  However, additional 
information must be captured in the representation for simulation of application execution, or 
analytical evaluation of properties such as power consumption, heat dissipation, etc.  In this 
report, we examine these issues and evaluate the potential of an MIC-based approach in 
addressing them. 

4. Application – Application representation is primarily concerned with describing the 
computation.  Formalized representation of computation has been the focus of much embedded 
systems research, and several representation methods have been developed.  The Ptolemy project 
[3] defines these different representation methods as models of computation.  Different models of 
computation are suited to different domains.  Some common issues across these different models 
of computation include level of abstraction, hiding implementation details, hierarchical 
representation, etc.  This report investigates some of these issues, and evaluates the potential of 
MIC in addressing them. 

 
The remainder of the report is organized as follows. The next section describes different approaches to 
design space representation, followed by a section that deals with constraint representation and 
approaches to constraint satisfaction. This is followed by exploring the details of hardware architecture 
modeling. Two existing systems, BRASS and Chameleon, are used as examples. The last section 
describes techniques for representing the application.  
 

DESIGN SPACE REPRESENTATION 

Conventional practices in embedded system design involve working with single-point designs.  This, in 
effect, implies elimination of component and system design alternatives in the early stages of the design 
process.  Such elimination, in the absence of adequate system-level contextual information, leads to sub-
optimal and inflexible system designs that are difficult to maintain and evolve as system requirements 
change.  However, flexibility and rapid adaptability are of paramount importance to PCA-based systems.  
Moreover, the optimization decisions are much harder due to the complex inter-dependencies between the 
malleable hardware, the middleware, and the application components.  Therefore, retaining a large 
number of potential solutions in the form of a design space and postponing the selection and optimization 
decisions until the final stages of system synthesis is desirable for PCA-based systems design. 
 
Despite the aforementioned advantages, there is a lack of formalized methods for representing design 
spaces in embedded systems design research.  In general, existing approaches can be grouped into two 
categories: 

1. Parametric – the design variations are abstracted into single or multiple parameters.  The cross-
product of the domains of the configuration parameters forms a parameterized design space.  
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Physically different designs may be obtained from the parameterized design space by supplying 
appropriate value for the configuration parameters.  

2. Explicit Enumeration of Alternatives – different design alternatives are explicitly enumerated.  
The design space is a combinatorial product of the design alternatives.  Characteristically 
different designs may be obtained by selecting different combinations of alternatives. 

In the rest of this section, we present a review of some research and technologies where explicit 
representation of design space is considered and enabled.  The review is not restricted to a particular 
domain.  Instead, we consider a generalized notion of designs, where we take a design space to mean an 
ensemble of candidate solutions that can implement a particular specification in any domain. 

Design Space Modeling with Alternatives 
In a DARPA sponsored effort at ISIS, a Model-Integrated Design Environment (MIDE) has been 
developed for the design of Adaptive Computing Systems (ACS).  Specifically, this environment targets 
multi-modal structurally adaptive computing systems [4].  One of the key-features of this model-
integrated framework is its support for explicit representation of design spaces for embedded adaptive 
systems.  Representation of design spaces has special significance to multi-modal adaptive computing 
systems.  The diverse functionality desired in the different modes of operation makes optimization 
decisions extremely difficult.  Mode-level optimization does not imply system-level optimization as the 
reconfiguration cost involved in transitioning from a mode to another may offset any efficiency attained 
by a mode-optimized implementation.  In order to address these challenges, a design flow has been 
developed that involves constructing large design spaces for the targeted system and then using 
constraints to guide the search through the large design space for system synthesis. 
 
In this approach, an adaptive computing system is captured in multi-aspect models.  The different modes 
of operation and the operational behavior of an adaptive system are captured as a hierarchical parallel 
finite state machine in a StateChart-like formalism [5].  The resources available for system execution are 
captured as an architecture flow diagram.  The computations to be performed in the different modes of 
operations are captured as a hierarchical dataflow with alternatives.  The basic dataflow model captures a 
single solution for implementing a particular set of functional requirements.  In this framework the basic 
dataflow representation has been extended to enable representation of design alternatives.  With this 
extension a dataflow block may be decomposed in two different ways.  The first type is hierarchical 
decomposition in which a dataflow block can encapsulate a functionality described as a dataflow diagram.  
The second type is an orthogonal decomposition, in which a dataflow block contains more than one 
dataflow block as alternatives.  In this case, the container block defines only the interface of the block and 
is devoid of any implementation details.  The dataflow blocks contained within the container define 
different implementations of the interface specifications.  With these extensions (i.e. hierarchy and 
alternatives), a dataflow model can modularly capture a large number of different computational 
structures together to form an exponentially large design space. 
 
The alternatives in a dataflow may take many different forms.  Alternatives may be technology 
alternatives that are different technology implementations of a defined functionality—e.g. TI-DSP C40 
(software) implementation vs. a TI-DSP C67 (software) implementation vs. a VIRTEX® FPGA 
(hardware) implementation of a cross-correlation component.  Technology alternatives minimize the 
dependency of the system design on the underlying technology, thereby enabling technology evolution.  
Alternatives may also be algorithmic alternatives that are different algorithms implementing a defined 
functionality (e.g. spatial vs. spectral correlation of a 2D image).  It is generally accepted that the best 
performance can be obtained by matching the algorithm to the architecture or vice-versa.  When different 
algorithm alternatives are captured, it may be possible to optimize the system design for a range of 
different architectures by choosing from different algorithm alternatives.  Alternatives may also be 
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functional alternatives that are different (but related) functions obeying the same interface specifications 
(e.g. a 3x3-kernel convolution vs. a 5x5-kernel convolution).  Often in the design cycle of a system, 
functional requirements change when the system is scaled up, or better precision implementations of a 
function are desired due to improvements in sensor fidelity, availability of more compute power, etc.  
Functional alternatives are valuable in accommodating a large range of functional requirements in a 
design in such situations. 
 
In summary, a design space composed by capturing alternatives can encapsulate a large number of 
characteristically different solutions for an end-to-end system specification.  While large design spaces 
are valuable in improving design flexibility and optimization opportunities, determining the best solution 
for a given set of performance requirements and hardware architecture can be a major challenge.  A 
constraint-based design space exploration method has been developed to address this challenge (described 
later in this report). 

Generative Modeling 
Modeling design alternatives explicitly provides much more flexibility than capturing a single point 
solution. However, it still requires the user to pre-design all the components and their possible 
interconnection topologies. The user (or an automatic tool) can pick and choose which alternative to 
select from a fixed set. A complementary approach, called generative modeling, is a combination of 
parametric and algorithmic modeling Error! Reference source not found.. With this technique, the 
elementary components are modeled as before, but their number and interconnection topology are 
specified algorithmically in the form of a generator script. Generator scripts can refer to the values of 
architectural (numerical) parameters contained in the models. This approach is very similar to the VHDL 
generate statement; they both support the concise modeling of repetitive structures. 
 
Generative modeling inherently supports dynamic reconfiguration. The generator scripts can be compiled 
as part of the runtime system. Runtime events can change the values of architectural parameters triggering 
the generator scripts. Note, however, that an extra level of indirection is needed here; the generators 
should not reconfigure the runtime system directly. Instead they should reconfigure a representation of the 
running system, a form of embedded models.  
 
The main reason for this is the need to verify the system. With pre-enumerated designs, it is possible to 
pre-verify all the possible configurations in design-time. However, generative modeling captures 
infinitely large design spaces where pre-verification is impossible. If the generator language is Turing 
complete, which is highly desirable for the expressive power, verifying the generator script is a very hard 
problem. In fact, only methods that apply proof by construction seem to be applicable [7][8][9][10]. 
These have limited appeal due to usability issues. Furthermore, the fact that the generator is provably 
correct does not necessarily imply that the generated system itself is correct. 
 
Another possible approach is to constrain the values of architectural parameters and verify the restricted 
(now finite) design space. This would diminish the advantages of generative modeling itself—the 
flexibility and the infinite design space. The only alternative that seems to strike a good compromise 
between flexibility and verification is having the generators produce an intermediate runtime 
representation and verify that instead. In other words, rather than verify the generative models, i.e. the 
whole design space they capture, we advocate verifying an instance of the generative models that 
corresponds to a particular instantiation of the architectural parameter set. This problem is the same as the 
verification of a single point design. However, it needs to be done at runtime meeting possibly stringent 
timing constraints. Furthermore, the new configuration will usually be a result of optimization, i.e. a 
search in the parameter space. Verifying every candidate would be computationally very expensive. 
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Constraint-based design space pruning – discussed later in the document – will help in runtime 
reconfiguration as well. With this approach, only the candidates that meet all the constraints will need to 
be verified. 

VHDL 
VHDL (Very-high-speed-integrated-circuit Hardware Description Language) [11] is a hardware 
description language.  VHDL enables the creation of design spaces for digital circuit design, either 
parametrically or by explicit enumeration of design alternatives.  Parametric design is enabled in VHDL 
by providing constructs for creating parameterized modules.  The configuration parameters of the module 
are exposed along with the module interface description.  In the module interface, the configuration 
parameters are declared as generic, a VHDL keyword.  In the module implementation, a generate 
construct may be used for creating configurable modules.  The generate statement accepts a numerical 
parameter as an input, and can create and connect multiple copies of a module based on the parameter 
value.  Following is an example of a configurable bit-serial multiplier design in VHDL. 
 
entity Ser_Mult is 
  generic(N             :     integer := 16); 
  port( C, clr, sin, en : in  std_logic; 
        D               : in  std_logic_vector (N-1 downto 0); 
        Q               : out std_logic); 
end Ser_Mult; 
 
architecture behav of Ser_Mult is 
  component Ser_Add 
    port(A, B, clk, clr, en : in  std_logic; 
         S                  : out std_logic); 
  end component; 
  signal cy : std_logic_vector (N downto 0); 
  signal p  : std_logic_vector (N-1 downto 0); 
 
begin 
  --Generate and connect serial adders 
  A           : for I in p'RANGE generate 
    ser_add_i : ser_add port map(A => p(I), B => cy(I+1), 
    clk => c, S => cy(I), clr => clr, en => en); 
  end generate A; 
 
  --Generate AND gates to perform multiply operation 
  Q_generate  : for I in p'RANGE generate 
          p(I) <= D(I) and sin; 
  end generate Q_generate; 
 
  cy(cy'LEFT) <= '0'; 
  Q <= cy(cy'RIGHT); 
end behav; 
 
The configuration parameter N in this example configures the size of the multiplier.  An appropriate 
parameter value is supplied when the module is instantiated.  Explicit representation of alternatives is 
supported in VHDL by separating the interface specification of a component from its implementation.  
Component interface is defined in an entity construct.  Entities are described in terms of input and output 
ports.  Implementation of a component is defined in an architecture construct.  Multiple architectures can 
be supplied for an entity.  For instantiation, a specific architecture has to be bound to the entity.  The 
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binding can be accomplished in the instantiation construct itself, or can be separately specified in a 
Configuration script.  Following is an example of an Even-Parity component with multiple architecture 
definitions, and a configuration script that performs the binding. 
 
entity Even_Parity is 
  port 
  (Bvec : in Bit_Vector(7 downto 0); 
   Parity: out Bit); 
end Even_Parity; 
 
-- an architecture for the even_parity entity 
architecture Tree of Even_Parity is 
  signal Int1, Int2, Int3, Int4, Int5, Int6 : Bit; 
begin  Int1 <= Bvec(0) xor Bvec(1); 
  Int2 <= Bvec(2) xor Bvec(3); 
  Int3 <= Bvec(4) xor Bvec(5); 
  Int4 <= Bvec(6) xor Bvec(7); 
  Int5 <= Int1 xor Int2; 
  Int6 <= Int3 xor Int4; 
  Parity <= Int5 xor Int6; 
end Tree; 
 
-- another architecture for even_parity entity 
architecture Cascade of Even_Parity is 
  signal Int1, Int2, Int3, Int4, Int5, Int6 : Bit; 
begin  Int1 <= Bvec(0) xor Bvec(1); 
  Int2 <= Int1 xor Bvec(2); 
  Int3 <= Int2 xor Bvec(3); 
  Int4 <= Int3 xor Bvec(4); 
  Int5 <= Int4 xor Bvec(5); 
  Int6 <= Int5 xor Bvec(6); 
  Parity <= Int6 xor Bvec(7); 
end Cascade; 
 
-- configuration script binding one architecture to entity 
configuration  a_Config of a_system is 
  for an_Instance : Even_Parity 
    use entity Work.Even_Parity(Tree); 
  end for; 
end a_Config; 
 
Thus, VHDL supports the creation of design spaces for hardware designs in an elegant manner by 
enabling parametric design, as well as by allowing representation of design alternatives.  The primary 
limitations of VHDL however are the inability to specify performance metrics along with the alternative 
description in order to trade-off and compare alternatives, and the primitive form of configuration 
mechanism available in the language.  There are no tools that can provide automatic configuration of 
VHDL designs based on system constraints, and there is no mechanism to validate the consistency of the 
instantiated configuration.  Furthermore, VHDL, being primarily a hardware design language, is not 
suited for designing heterogeneous systems that consist of interacting hardware and software components. 

Dynamic Architecture Description Languages 
Many architecture description languages have been developed for software architecture specification, 
design and analysis [12][13][14][15].  Recently some of these languages have been extended with 
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constructs to enable capture and analysis of dynamic software architectures.  The dynamic behavior refers 
to the variability in composition of interacting components during the course of a single computation.  
Allen [14] argues the separation of dynamic re-configuration behavior of architecture from its non-
reconfiguration functionality, and recommends extensions to Wright [16], an ADL designed for steady-
state architectures, to handle dynamic software architectures.  Medvidovic has presented similar ideas in 
his work on dynamic software architecture representation using C2-style [13]. 
 
Wright represents architectural structure as graph of components and connectors.  Components represent 
architecturally-relevant units of computation and data storage, while connectors represent the interaction 
between components.  In Wright, components and connectors are typed.  Thus to define a system, one 
first declares a set of component and connector types, termed as a style.  Then one declares a set of 
instances of these types and the way in which they are assembled, termed a configuration.  Components 
in Wright have interfaces called ports.  A port defines a logically separable point of interaction with its 
environment.  Connectors also have interfaces called roles.  The roles of a connector identify the logical 
participants in the interaction represented by the connector, and specify the expected behavior of each 
participant in the interaction.   
 
Dynamic topologies can be described in Wright by extending the concept of a configuration.  Steady-state 
software architectures consist of a unique configuration that represents the fixed topology of the software 
architecture.  Allen proposes a Configuror, to manage the changes in the architectural topology.  The 
Style describes all components that are available for use in the architecture.  A Configuror script defines 
the behavior of the Configuror.  The behavior is defined similar to a finite state machine.  Appropriate 
events in the states trigger reconfiguration of the architecture.  The architectural changes are defined by a 
sequence of reconnection and dynamic instantiation/deletion of components. 
 
Dynamic architecture description languages provide the capability of creating a design space for software 
architecture design.  In the Style description, different Components implementing the same interface may 
be specified.  However, the dynamic ADLs suffer from the same limitations as VHDL.  The language 
does not support attributing the components with performance metrics, neither is there any tool support 
for design space exploration or automatic configuration.  In addition, ADLs are targeted towards software 
architecture description and are not particularly suitable for describing embedded heterogeneous systems. 

Software Variants 
Software alternatives or variants are used to create and maintain software product families.  Software 
variants have been the subject of attention in recent research into software configuration management.  It 
is understood that versatile management of software variants can help the software development process 
by distributing the development cost over many separate customized products in a product family adapted 
from the same base product.  In the absence of a proper variant management facility, emerging needs to 
maintain a complex system with an ever-increasing number of variants can easily become intractable. 
 
There is not a single, general and widely agreed definition of software variants in the software 
configuration management community.  A broad definition explains a variant as a relation linking two 
software source objects indistinguishable under a given abstraction.  Another definition explains variants 
as alternative implementations of the same specification, implying thereby that variants may be objects 
with interface as the invariant part and different implementations as the variant part.  This definition is 
argued to be too restrictive, as it rules out different implementations of interfaces that differ in irrelevant 
details. 
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Variant representation and management is one of the most cumbersome tasks in software configuration 
management.  There are two basic choices for the representation of variant components in software 
configuration management tools: 1) Maintaining a separate copy of the component for each variant 
(variant segregation); and 2) Maintaining a single source object for all variants that are extracted as 
needed (single source variants).  Variant segregation stores variants separately in a source repository.  The 
primary disadvantage of variant segregation is the introduction of redundancy into the product’s source 
library.  Software variants are typically modified copies of other source objects.  Often the modifications 
are small compared to the common data.  This leads to maintenance difficulties, as multiple copies of the 
same data need to be maintained separately.  Another disadvantage is in the representation of variance of 
a single component in multiple dimensions.  An example is different operating system variants of a 
component and different user-interface variants of the same component.  Owing to these difficulties, 
variant segregation is better suited for representing variants that have no or small source text in common 
with their siblings and vary only within a single dimension.  Single source variant representation on the 
other hand stores all the variants in a single source file.  Meta-constructs guide the selection and 
extraction of different variants from the same source file.  Single source variant representation is a 
promising variation scheme in programming languages that offers conditional compilation.  The main 
advantage of single source representation is that redundancy between different variants of a given 
component can be entirely eliminated or minimized.  A disadvantage of single source variant 
representation is in the obfuscation of the source code by the meta-constructs that control the instantiation 
of the different variants.  Additionally, it is difficult to guarantee the consistency of an instantiation. 
 
Thus, software variants are typically source code variations and are commonly used in creation of 
software product families.  In that respect, variants are analogous to design alternatives.  The research in 
software variants brings forth some interesting issues regarding variant management, and consistent 
instantiation of software products created with software variants.  Consistency issues have been addressed 
in some research by providing a configuration utility that helps in instantiating consistent products. 
 
 

CONSTRAINT REPRESENTATION 

Constraints are integral to any design activity.  Typically, in an embedded system design constraints 
express SWEPT requirements.  Additionally, they  may also express relations, complex interactions and 
dependencies between different elements of an embedded system viz. hardware, middleware, and 
application components.  Ideally, a correct design must satisfy all the system constraints.  In practice, 
however, not all constraints are considered critical.  Often trade-offs have to be made and some 
constraints have to be relaxed in favor of others.  Constraint management is a cumbersome task that has 
been inadequately emphasized in embedded systems research.  Most embedded system design practices 
place very little emphasis on constraints and treat them on an ad-hoc basis, which means either testing 
after the implementation is complete, or an over-design with respect to critical parameters.  We argue that 
both of these situations can be avoided by elevating constraints to a higher level in the design process.  
Two important steps in that direction are a) formal representation of constraints; and b) verification/pre-
verification of the system design with respect to the specified constraints.  In this section we consider the 
types of constraints that are common to embedded systems, briefly present a constraint language that has 
been developed in an earlier effort at ISIS, and finally present an overview of a constraint-based design 
space exploration method.  The constraint-based design space pruning is like a pre-verification step that 
filters out those designs out of design space that do not satisfy the constraints that have been expressed. 
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Principally, four basic types of design constraints are common to embedded systems: (a) performance 
constraints, (b) resource constraints, (c) compositional constraints, and (d) operational constraints.  More 
complex constraints are typically combinations of one or more of these basic types joined by first order 
logic connectives. 
 
Performance constraints – Performance constraints express non-functional requirements that a 
synthesized system must obey.  These may be in the form of size, weight, energy, latency, throughput, 
frequency, jitter, noise, response-time, real-time deadlines, etc.  When an embedded computational 
system is expressed in a dataflow description, these constraints express bounds over the composite 
properties of the computational structure.  Following are some common examples: 

• Timing – expresses end-to-end latency constraints, specified over the entire system, or may be 
specified over a subsystem e.g. (latency < 20). 

• Area – expresses bound over the area of a system or a subsystem (area < 105).  The area is 
defined for a hardware component to be the logic block count and for a software component to be 
the code size. 

• Power – expresses bound over the maximum power consumption of a system or a subsystem e.g. 
(power < 100). 

 
Resource constraints – Resource constraints are commonly present in embedded systems in the form of 
dependencies of computational components over specific hardware components.  These constraints may 
be imperative in that they may express a direct assignment directive, or they may be conditionalized with 
other computational components.  Following is an example of a resource constraint in plain English: 

• Imperative – component FFT must be assigned to resource FPGA-1 
• Conditional – if component FFT is assigned to resource FPGA-1 then 

component IFFT must be assigned to resource FPGA-2  
 
Compositional constraints – Compositional constraints are logic expressions that restrict the composition 
of alternative computational blocks.  They express relationships between alternative implementations of 
different components.  These are essentially compatibility directives and are similar to the type 
equivalence specifications of a type system.  Therefore, compositional constraints are also referred to as 
typing constraints. For example, the constraint below expresses a compatibility directive between two 
computational blocks FFT and IFFT that have multiple alternate implementations: {if component 
FFT is implemented by component FFT-HW then implement component IFFT with 
component IFFT-HW}. 
 
Operational constraints – These constraints are common to reconfigurable embedded systems, where 
they express conditions relating design configurations to operational modes.  Mode-specific design 
requirements, composition preferences and allocation restrictions can be specified with these constraints.  
For example, {when the system is in terminal tracking mode the latency of the 
system must be less than 10 ms and the power consumption should be less than 
15 mw}. 
 
The Object Constraint Language (OCL), a part of the Universal Modeling Language (UML) [17] suite, 
forms a good basis for expressing the type of constraints shown above.  OCL is a declarative language, 
typically used in object modeling to specify invariance over objects and object properties, pre- and post- 
conditions on operations, and as a navigation language.  A subset of OCL has been extended to develop a 
constraint specification language to express the type of constraints specified above.  The constraints are 
specified in the context of an object.  A constraint expression can refer to the context object and to other 
objects associated with the context object and their properties.  The OCL keyword self refers to the 
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context object. Role names are used to navigate and access associated objects.  For example, the 
expression self.parent evaluates to the parent object of the context object, similarly 
self.children evaluates to a set of children object of the context object.  The following associations 
are enabled for navigation in the constraint language: 

• parent – evaluates to the parent of the context object in the containment hierarchy. 
• children – evaluates to a set of children objects of the context object in the object hierarchy.  

When invoked with the name of a child as an argument the expression evaluates to a specific 
child object e.g. self.children(“childX”) evaluates to an object with the name childX 
contained in the context object.  Enforcing unique names for objects in a single context is left to 
the modeling environment. 

• project – evaluates to a project object that is the root container of all the objects in the system 
model.  

• resources – evaluates to a set of resource objects  contained in the system model.  
• modes – evaluates to a set of the operational modes of the system. 
• processes – evaluates to a set of the processing objects of the system 

 
A constraint expression can either express direct relation between the objects by using relational or 
logical operators, or express performance constraints by specifying bounds over object properties.  Object 
properties can be referred to in a manner similar to associations.  The following property constructs are 
enabled in the derived constraint language for expression of constraints: 

• latency – evaluates to the latency attribute of a processing object 
• area – evaluates to the area attribute of a processing object 
• power – evaluates to the power consumption of a processing object 
• implementedBy – evaluates to an alternative of a template processing object selected for 

implementation 
• assignedTo – evaluates to the resource that a processing object is assigned or mapped to. 
 

Design Space Exploration 
Given the flexibility in defining design alternatives, the design spaces for embedded systems can be 
extremely large (moderately sized examples have defined a space of 1024).  A designer cannot explore 
such a large space without sufficient tools.  The space must be evaluated to find a set of designs that 
satisfy all the constraints and best satisfy the design criteria.  The analysis tools must allow efficient 
exploration, navigation, and pruning of this space to select feasible hardware/software architectures for 
user-definable cost functions such as weight, power, algorithmic accuracy and flexibility.  Given the size 
of the design space, and the complexity of the analysis, a powerful, scalable analytical method has been 
developed. 
 
In the symbolic representation, sets/spaces are represented as Boolean expressions over the members of 
the set.  The members of the set are encoded as binary variables under a binary encoding scheme.  The 
principal benefit of the approach is that it does not require enumeration of the set/space to perform 
operations.  The symbolic method is based on Ordered Binary Decision Diagrams (OBDD) [18], a 
technique for representing Boolean functions symbolically.  OBDDs represent Boolean functions as 
directed acyclic graphs in a memory efficient format.  The operations over the Boolean functions are 
implemented as graph algorithms, thereby rendering “manipulation” of the space fast and efficient.   
 
With this symbolic formalism, the application of logical constraints is relatively straightforward.  The 
user-defined logical constraints can be represented as a Boolean expression over the components of the 
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design space.  Constraint application is a conjunction of the constraint Boolean expression with the 
Boolean expression that represents the design space.  The resultant Boolean expression represents the 
“constrained” design space.  Application of the integer arithmetic constraints such as timing and power 
constraints requires further analysis (see [19] for details), however the basic approach remains the same. 
 
While the approach scales well, in very large design spaces with many constraints applied an exponential 
explosion of the OBDD can occur.  To address this problem, hierarchical constraint processing has been 
supported.  The constraint processing is done hierarchically with constraints scoped to a particular level; 
i.e. constraints are applied to sub-spaces first, pruning them to the extent possible and then progressing 
upwards in the hierarchy.  This technique is very effective when there are a large number of constraints 
with a limited scope. The technique is not effective when there are many globally scoped constraints in a 
large design space. 
 
The constraints “prune” the design space by enforcing the requirements specified in the constraint.  These 
constraints can be iteratively applied to the design space, with the goal of reducing the “1024” to a more 
manageable, 10-1000 design alternatives.  The approach described above has been implemented in a 
design space exploration tool.  Design engineers can iteratively apply constraints and visualize the 
sensitivity of the design space to the constraint.  If a constraint is extremely tight, its application can 
eliminate the design space altogether.  In this case, the constraint can be released and other constraints 
applied instead.  The outcome of this symbolic constraint satisfaction step is a subset of the design space 
much smaller than the original, containing only the designs that satisfy all the specified constraints. 
 
 

HARDWARE ARCHITECTURE REPRESENTATION 

This section discusses many of the issues that arise when modeling representative PCA hardware 
platforms.  Two case studies of representing PCA hardware using MIC technology are discussed.  They 
illustrate many of the potential problems that must be addressed when representing PCA hardware 
systems.  The studies are based on representing the Chameleon processor and the BRASS hardware.  
Disadvantages and advantages of using MIC for PCA hardware representation are examined later. 

Multi-granular Hardware Modeling 
One of the primary issues faced in representing PCA hardware systems is to determine the level of 
representation granularity that is required to capture necessary information.  Unfortunately, depending on 
the application, different levels of hardware modeling may be required.  At one extreme lies the network-
centric approach that can be used to model networks of processors and support components (such as 
FPGAs).  This modeling approach was used in the ISIS ACS project [4].  The other extreme is to provide 
modeling down to the gate level for all system components.  This approach requires the system modeler 
to always specify their hardware system in greatest detail.  This is the equivalent to providing VHDL code 
for all components to be used in the final system.  Depending on the specific application requirements, 
different representation levels may be required. 
 
Different modeling approaches have been examined to try to determine the appropriate level of 
representation.  Ideally, the user shall have the flexibility to represent their system at their choice of 
granularity.  For first attempts, the system modeler can use the high-level network modeling to determine 
the overall parameters of their system.  If additional system information or fidelity of information is 
required, the modeler can refine the representation of  key components to a higher degree of fidelity.  In 
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most cases, the correct granularity lies between a network level and a gate level model.  However, it 
should be the designer’s choice as to what level of granularity is appropriate.   
 

Dynamic Reconfiguration 
A key feature of PCA hardware systems is the ability to reconfigure the hardware to more efficient 
configurations while the system is in use.  In order to represent dynamic reconfiguration, the system 
modeler must be able to represent not only the starting and ending hardware configurations, but also any 
intermediate hardware settings.  In addition, the effects of reconfiguring the hardware system must be 
taken into account in the application modeling.  The application models must be able to represent the 
“handling” of the transients that may be generated during reconfiguration.  In the case of systems that can 
be stopped, reconfigured, and restarted, this problem becomes manageable.  However, many systems can 
not be stopped for reconfiguration.  Again, somehow the reconfiguration process and handling of transient 
application results must be captured in the models.  Dynamic reconfiguration support should be included 
in any PCA design tool, as the ability to reconfigure an existing system is a key feature of PCA systems. 
 
The run-time issues associated with dynamic reconfiguration need to be solved before a suitable design 
representation can be formalized.  Modeling reconfiguration does not solve problems such as how to deal 
with transient data spikes.  Issues such as transients and application reconfiguration must be dealt with at 
a lower level, before system modeling.  Representing dynamic reconfiguration would only detail how the 
system should handle the reconfiguration process – actual reconfiguration must be performed by the run-
time system.  Dynamic system reconfiguration is one of the many issues the PCA program should deal 
with during its lifetime.  In the modeling approaches depicted in this report, dynamic reconfiguration is 
not considered, as it has not yet been addressed at a low level.   
 

BRASS Hardware Modeling 
The BRASS hardware architecture [21] has been modeled using GME 2000. A specific BRASS modeling 
paradigm was developed to allow the construction of graphical BRASS models.  The paradigm allows the 
modeler to represent BRASS type hardware systems using a structured, hierarchical, graphical approach.  
The graphical model could then be used to provide a configuration file for a hardware simulator or as a 
target for mapping the application model (modeled as with SCORE [22]) onto the hardware platform.  
Figure 2 shows the metamodel for the BRASS modeling paradigm. 
 
In BRASS, the key components are compute pages (CP) and configurable memory blocks (CMB).  The 
BRASS hardware configuration is composed of direct interconnections between CPs and CMBs.  Each 
block of CPs and CMBs can then be interconnected through a higher bandwidth connection.  In the GME 
paradigm, CP and CMB components can be connected directly.  They are contained in components 
known as Blocks.  Each Block can contain a Junction, which allows interconnection of Blocks.  Each 
Junction has an attribute to illustrate the relative bandwidth of the interconnect.  CP and CMB 
components can also be directly connected to a Junction.  Blocks are hierarchical in nature; therefore, 
Junctions must be able to be connected.  This allows the user to build a hierarchical representation of their 
hardware while maintaining details such as interconnect bandwidth and leaf block configuration. 
 
Using this modeling paradigm, example BRASS hardware configurations have been composed.  
Connections contain key attributes used to represent physical interconnection parameters (e.g. data bus 
width).  This modeling approach allows complete hardware systems to be captured graphically.  Using 
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this paradigm along with an application modeling paradigm (two examples will be discussed later), the 
user can capture the complete system design in one set of models. 
 
 

 
Figure 2:  BRASS MetaModel 

Chameleon Hardware Modeling 
A modeling paradigm has been developed to represent the hardware architecture of the CS2000 family of 
reconfigurable communications processors from Chameleon Systems Inc. [23].  Architecture models 
captured using this paradigm could be used in conjunction with application models as inputs to system 
synthesis and analysis tools.  Further, the modeling paradigm can be used to represent extended 
Chameleon-based architectures  
 
Figure 3 depicts the metamodel for the modeling paradigm.  The paradigm is fairly complex, involving 
several models, atoms, and connections.  Each of the CS2000 series processors offers an embedded 32-bit 
ARC processor core, as well as on-chip PCI and Memory controllers.  The processors also offer a 
configuration subsystem and a DMA subsystem for configuring and communicating with the 
Reconfigurable Processing Fabric (RPF).  Each subsystem is connected to the 128-bit RoadRunner bus, 
allowing fast communication between components.  The RPF is of specific interest with respect to PCA, 
in that it provides processor reconfiguration. 
 
The paradigm provides a processor model at the highest level.  This model can contain the following 
components: Controller, ARC processor, Cache, IO, Configuration subsystem, DMA Subsystem, and 
RPF.  Each of these components is allowed to be connected to a bus component.  The RPF component is 
captured as a model, allowing further decomposition, while the other top-level components are 
represented as simple icons.  These components can be used to capture a CS2000-family processor at a 
high level.  Figure 4 shows a top-level model of a processor created using the Chameleon modeling 
paradigm.   
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Figure 3:  Metamodel of the Chameleon modeling paradigm 

 

 
Figure 4:  Top-level model of a Chameleon CS2000 family processor 
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The graphical description of the RPF may be further refined using the modeling paradigm.  As provided 
by the architecture, the RPF is divided into slices, and each slice into tiles.  Data exchanges through tiles 
and slices occur through a routing network called the Dynamic Interconnect.  The timing for data 
transfers within a slice differs from those between slices.  However, the Dynamic Interconnect offers full 
routing capabilities between tiles and slices.  The RPF model can contain Slice models, and a slice model 
can contain Tile models.  The paradigm represents the routing network as a Routing icon.  Components 
which route data through the Dynamic Interconnect can be connected to the Routing icon, meaning that a 
connection may be configured to send data from any component to any other component connected to the 
icon.  A BusPort component facilitates the depiction of inter-tile and inter-slice data routing through 
different levels of hierarchy.  The BusPort does not exist physically in the Chameleon architecture, but 
allows the simplification of the diagrams through hierarchical decomposition.   
 
Figure 5 shows a model of a tile constructed using the Chameleon modeling paradigm.  As each tile 
contains four Local Store memories, two 16x24 multipliers, seven Datapath units, and one Control Logic 
Unit, the paradigm provides icon representations for each of these components.  The Dynamic 
Interconnect is represented as a compass, and each component inside the tile can be connected to it.  The 
CLU can contain several Datapath Unit configurations which can be loaded to the various Datapath units 
at runtime, thus allowing dynamic reconfiguration.  An instruction routing icon was placed in the tile to 
represent the path by which instructions are routed from the CLU to the various Datapath units.  Exactly 
what each instruction is, and what governs when it is issued to the Datapath unit, is an application-
specific detail that is not captured in these architecture models.  However, this modeling paradigm could 
be extended with state-transition diagrams to capture the behavior of an application.  These application 
models could then be used to more precisely capture and analyze the runtime behavior of a Chameleon 
system.   
 
 

 
Figure 5:  Model of a single Chameleon processor tile 

As mentioned earlier, the Chameleon modeling paradigm allows the developer to capture the architecture 
of the CS2000 family of reconfigurable communications processors.  The modeling paradigm could be 
used to capture future revisions of CS2000 chips, perhaps with more tiles per slice, or different 
configurations of components inside a tile.  Further, with models of a particular application to be executed 
on the Chameleon processor, one could completely capture the runtime behavior of the architecture, 
allowing system analysis and even synthesis to occur. 
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The Chameleon processor architecture provides a platform where generative modeling is particularly 
applicable.  At the lowest architectural level represented in modeling paradigm, a processor consists of a 
set of tiles, where each tile consists of basically the same components.  Each of these components can be 
configured to perform a different function, and the tiles can be interconnected in different ways, but the 
tile itself is architecturally static.  Through generative modeling, a representation of a single tile could be 
captured, as well as rules for how tiles can interconnect.  A generator script would be responsible for 
instantiating tiles properly, as governed by the application, as well as generating interconnections between 
each tile.  It is not required to redundantly capture a complete configuration for each architecturally static 
tile. 
 

APPLICATION REPRESENTATION 

This section examines the issues that appear when modeling applications for implementation on PCA 
hardware platforms.  Application modeling does not have to be restricted to PCA applications, but some 
methods are more appropriate for representing embedded applications.  Two case studies that use MIC 
technology for application representation are discussed.  Both application modeling approaches are 
appropriate formalisms for PCA type applications.  Disadvantages and advantages of using MIC for 
application representation will be examined later.   

Models of Computation 
Models of computation (MOC) can be defined as natural methods to represent systems, their syntax, and 
their semantics.  MOC have well defined semantics that govern how the MOC models can be evaluated.  
Different classes of problems require different models of computation.  For example, a problem that can 
be efficiently stated as a data flow problem may not necessarily be efficiently represented by a set of 
differential equations.  Embedded systems could have many different representation methods, where 
some are more natural for a given problem domain than others.    Among the models of computation that 
should be considered are: finite state machines, data flow, differential equations, and discrete event 
systems.  Note that this is not a complete list of models of computation that need to be explored with 
respect to modeling PCA applications. 
  
The Ptolemy project [24][3] focuses on embedded system modeling, simulation, and design.  As part of 
their work, research on differing models of computation has emerged.  Ptolemy has identified an 
extensive set of models of computation.   
 
A key feature of using MIC for representing different models of computation is the flexibility MIC 
provides.  As new models of computation are identified, the MIC modeling paradigm can be extended to 
support the new modeling approach.  Older models can be “migrated” to the new paradigm, thus allowing 
the user to keep existing models.  The model interpreter would require modification, but only on how to 
apply the defined semantics to the new representation method.  It should be noted that model migration is 
not a trivial task, but it does eliminate the task of “reconstructing” existing models in the updated 
paradigm. 

Signal Flow Modeling 

The signal flow application models are used to describe the processing algorithm structure and operation. 
The basic application is described in terms of computational components and data interactions.  To 
manage system complexity, the concept of hierarchy is used to structure application definitions.  The 
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logical composition of systems using component subsystems has proven effective for designing very 
large, complex applications.  
 
In this modeling approach, application models are constructed as signal flow models.  These models 
break a system into distinct components with well-defined interfaces.  The “ports” that form these 
interfaces allow for data to be exchanged between components.  The signal flow defines the order of 
processing for an application.  Each component in the signal flow graph receives data from other 
components, performs some transformation on the data, and then outputs new data to other system 
components.  This modeling formalism is widely used in modeling of embedded systems.  
 
The application is modeled as a signal flow structure with the following classes of objects: compounds, 
primitives, and alternatives. The metamodel for this modeling paradigm is shown in Figure 6. A primitive 
is a basic element representing the lowest level of processing that can be modeled. A primitive maps 
directly to a processing object that will be implemented as either a hardware function or a software 
function.  Primitive objects are annotated with attributes.  These attributes capture measured performance, 
resource (memory) requirements, and other user-defined properties. 
 
A compound is an aggregation object that may contain primitives, other compounds, and/or alternatives. 
The component objects can be connected within the compound to define the signal flow.  Compounds 
provide the hierarchy in the application description that is necessary for managing the complexity of large 
designs.  Figure 7 shows an example data flow model.   This is the high level model of an automatic  
target recognition system.  Each block in the model is a data flow compound that can be broken down into 
other data flow nodes.  The leaf nodes in the system (primitives) have an implementation specification 
given.  This implementation can be a section of C code, a FPGA specification, or a Matlab specification, 
for example. 
 
 

 

Figure 6: Data flow metamodel 

A design alternative object is used in the modeling process to allow the specification of multiple 
application architecture choices for a given task. The alternative object is used to capture design 
alternatives. This object represents a choice between multiple design architectures. These design 
alternatives can be either primitives or compounds, allowing hierarchies of design alternatives.  When 
alternatives are used, the application models can describe a very large number of potential design 
implementations. The large design space gives the environment the freedom to search for and select an 
implementation that meets the specified requirements and fits within available resources.  See the section 
on Design Space Representation for more detail.  
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Another use of alternatives is to model multiple physical technology implementation alternatives, i.e. 
different ways a processing function may be implemented in the architecture. For example, a convolution 
can be computed in software running on a DSP, in software running on a network of multiple DSP’s, in a 
hardware function in a FPGA, or in a dedicated ASIC solution.  The selection of the desired 
implementation technology is determined in the synthesis process, driven by power consumption, 
throughput, latency, specific part availability, and other architectural interactions. 
 
 

 
Figure 7:  Data flow example model 

SCORE Modeling 
Another approach to modeling PCA applications utilizes the SCORE [22] modeling formalism.  SCORE 
is the application modeling approach associated with the BRASS hardware representation from the 
DARPA Adaptive Computing Systems program.  Currently, SCORE programs are constructed in a 
textual language known as TDF, an intermediate register transfer language based on C. One of the stated 
advantages of SCORE is the ability to virtualize reconfigurable computing resources.  
 
SCORE programs are similar to Hoare’s Communicating Sequential Processes (CSP).  All SCORE 
applications are defined by a graph.  Each graph may contain two types of nodes, either FSM (denoted 
SFSM) nodes or turing complete nodes (denoted STM).  A STM node has the ability to perform stream 
operations, to create SCORE graph nodes and edges (within the current SCORE graph), and to lock 
regions of memory.  A SFSM node is modeled as a set of states the node can be in with state transition 
logic specified. SCORE allows applications to be multi-tasked onto corresponding BRASS hardware, 
allowing applications to make use of smaller sets of available hardware [22].  
 
A graphical modeling approach is applied that can support construction of SCORE models.  A model 
interpreter can then be utilized to produce compliant TDF code that follows from the graphical model 
specification.  This TDF code can then be used to configure an application on the BRASS hardware.  
Figure 8 illustrates the metamodel for the GME SCORE modeling paradigm. 
 
In the modeling paradigm, Graph models can contain interconnections of SFSM and STM nodes.  An 
SFSM node contains states, their connections, and connections from other nodes in the graph.  STM 
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nodes can contain other STM or SFSM nodes and their interconnections, along with special atoms to 
represent memory locking.  Several classes of connections exist to represent the different interconnections 
allowed in a SCORE specification.  Ports are used to illustrate the interconnection of nodes in the  graph.   
  
SCORE application models can be constructed from the components described above.  Figure 9 illustrates 
an example SCORE application model.  Each block in the graph represents a SFSM node.  Each of these 
nodes has a FSM representation that describes the detailed operation of each node in the graph.  Some 
details are given through the use of attributes, which are not shown in the graphical model.  This example 
comes from [22]. 
 

 
Figure 8:  SCORE metamodel 

Preliminary results on writing a model interpreter for the SCORE paradigm shows that enough 
information is captured using the above constructs to automatically produce TDF specifications from the 
models.  Design alternatives can only be captured using the SCORE supported constructs.  Additional 
features that may prove useful include extending the FSM notation to include hierarchy and parallelism 
[5] and adding explicit design alternative modeling capabilities to the paradigm.  These features would 
enable better abstraction of complex problems and better design space representation.  This would also 
allow for more flexible system representation using the basic SCORE modeling formalism. 
 
 

 
Figure 9:  Example SCORE Model 
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Other Application Representation Approaches 
While this work has focused on explicitly enumerated alternatives, other application representation 
approaches should be examined.  Specifically, generative modeling appears to be an appropriate 
approach.  Other approaches, such as using software variants, should also be examined.  Other models of 
computation should be examined for applicability to certain embedded system applications.  Questions 
that must be answered include what is a complete-enough set of models of computation to allow most 
embedded applications to be represented and how to semantically interface them.  A clear understanding 
of how differing models of computation may be made to interact is necessary.  Some approaches, such as 
explicit source code representations, are not promising approaches, as they require system representation 
at a low-level of detail.  
 

CONCLUSIONS 

This report has detailed areas of interest with respect to representing PCA hardware architectures and 
PCA applications.  In no way is this intended to completely address or identify all issues related to PCA 
system design and development.  The two technologies that are most important to PCA system design that 
have been discussed are design space representation and design space exploration through constraint 
satisfaction.  Additionally, this report has detailed several example PCA modeling approaches based on 
Model Integrated Computing (MIC).  
  
MIC offers several advantages when applied to modeling PCA hardware systems. One of them is the 
quick prototyping capability allowing many different modeling approaches to be examined before 
choosing the desired modeling formalism.  MIC also allows for the use of domain-specific modeling 
paradigms.  The modeling approaches can be tailored to a representation understood by, and natural to, 
the system user.  MIC also allows flexible modeling—existing modeling techniques can be combined to 
create a unified modeling environment.  Lastly, MIC is an extensible technology.  Modeling paradigms 
can be extended with new features and modeling formalisms as needed (e.g. as new PCA hardware 
becomes available).  Extending a modeling paradigm should require minimal modifications to existing 
components.  One of the goals of using MIC is to make “the amount of effort related to the size of the 
change instead of the size of the system.”  For more information, please see [2][25]. 
 
MIC also has some disadvantages associated with its usage.  First, complex and evolving modeling 
paradigms can still allow inconsistencies in the models that are beyond the ability of the tools to detect.  
Some aspects of PCA-type systems is hard to capture, fro example, the problem of dealing with dynamic 
reconfiguration is not currently handled by any GME paradigm.  Additionally integrating existing 
modeling paradigms is not a trivial task.  While research is being undertaken to aid in extending MIC 
systems [20], currently integrating differing paradigms is a manual process.  In many cases, migrating 
models across paradigm changes is not a trivial task.  In the worst case, the models must be manually 
reconstructed in the updated paradigm.  Model migration would eliminate the possibility of manual errors 
by automating the process of  “migrating” a set of models to an updated paradigm.  Research currebtly 
being undertaken in our DARPA/ITO MoBIES project will address these issues. 
 
Another problem is in the representation of certain system attributes.  In the Chameleon modeling 
paradigm, for example, the Control Logic Unit does not have its behavior specified.  However, the CLU 
provides some of the key advantages of the Chameleon architecture.  Representing the CLU in a MIC 
modeling paradigm can be done; however it may result in a cumbersome, unnatural representation. 
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