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Abstract. A fundamental requirement for achieving rapid turn-round and short time-
to-market in embedded software and system development is to achieve high level of 
reuse. Platform-based design offers a systematic way to make tradeoff between the 
conflicting requirements of flexibility and reuse. This paper describes a model-
integrated approach in controlling and exploiting flexibility via the disciplined 
construction and automated exploration of large design-spaces on hardware/software 
platforms.  

1 Introduction 

Embedded software development is inextricably combined with system development. 
An embedded software component, whose logical behavior is defined in some 
computer language, is “instantiated into” a physical behavior on a computing device. 
The instantiation of logical behavior into physical behavior is complicated by the 
following factors [1]: 

1. Physical behavior is directly influenced by the detailed physical characteristics of 
the devices involved (physical architecture, instruction execution speed, bus 
bandwidth and others). 

2. Modern processor architectures introduce complex interactions between the code 
and essential physical characteristics of the device (speed, power dissipation, etc.)  

3. Lower layers of typical software architectures (RTOS scheduler, memory 
managers, middleware services) interact with application code in producing the net 
physical behavior. 

4. Properties of physically instantiated software components interfere with each other 
due to the use of shared resources (processors, buses, physical memory devices, 
etc.) 

Calculation of essential physical properties of designs can be significantly 
simplified by over design: we use enough resources to minimize or eliminate the need 
for resource sharing (computation, communication) or to consider hard to compute 
physical properties unessential (e.g. power).  Unfortunately, in most practical cases, 
efficiency and application circumstances force us to explicitly design for physicality, 
which requires deep modeling not only the functional structure and behavior of 
software but also the physical structure and behavior of the embedded system and 
their interactions.  

The cost of modeling on this level of detail is a major concern. The development of 
deep enough models to compute all interesting physical properties of embedded 
systems would be cost prohibitive. An emerging concept to mitigate this situation is 
platform-based design [2]. Platform-based design offers the advantage of large-scale 
reuse among model development efforts, while preserving controlled flexibility.  

The goal of this paper is to describe platform-based design in our model-based 
design framework called Model-Integrated Computing (MIC). The primary 
contribution of the described work is a constraint-based model-synthesis technique, 
which starts with carefully constructed design spaces representing partial designs and 
synthesizes fully specified models that meet selected design constraints. The paper 



first gives a short summary of relevant concepts of MIC and platform-based design. 
This will be followed by a discussion on constructing, shaping and aggregating design 
spaces. The next step is the description of our constraint-based model synthesis 
technique, which is currently based on a symbolic representation of the design space 
and symbolic pruning of the design alternatives. The paper will conclude with an 
application example, which shows how to integrate our meta-programmable tools in a 
domain-specific design environment. 

2 Platform-Based Design 

Since embedded systems are simultaneously computational and physical, it is not 
surprising that the need for layered abstractions in system design has emerged very 
strongly in this area. While layered design approaches are known in many engineering 
field, a clean conceptualization and systematic description of the method in embedded 
systems is a recent development. The basic tenets of platform-based design (from the 
point of view of our discussion) are the following [3]: 

1. The design proceeds in precisely defined layers of abstraction, such as functional 
and architectural. 

2. Each layer of abstraction is defined by a platform. A platform represents a family 
of designs (or design space), which satisfy a set of constraints that are imposed on 
all designs so as to allow the reuse of hardware and software components. 

3. A design is obtained by defining platform instances via composing platform 
components and by mapping one platform to the successive one (e.g. functional to 
architectural). 

In this conceptualization, the following tasks need to be accomplished for 
establishing an automated platform-based design process: 

1. Identification of layers of abstraction, which reflect the characteristics of the 
domain and the scope of the design process. 

2. Systematic construction of the design spaces in each layer of abstraction around 
some platform concept, which includes the collection of components and the 
design constraints that must be satisfied. 

3.  Setting up a synthesis process, which facilitates the mapping among selected 
platforms. 

These tasks represent significant challenge for any realistic application domain. 
Before describing our solution, we briefly discuss the approach we use for design 
space representation and manipulation: the meta-modeling technology in Model-
Integrated Computing [5]. 

3 Model-Integrated Computing: Meta-modeling 

Model-Integrated Computing (MIC) provides a comprehensive methodology and 
consistent infrastructure for composing domain-specific modeling languages (DSML) 



via meta-modeling [5], for automatically generating model-based generators from 
specifications [6] and for integrating domain-specific design environments [7]. For 
our later discussion, we briefly summarize our technology for composing domain-
specific languages and present a simple example using our meta-programmable 
modeling tool, the Generic Modeling Environment (GME) [8]. 

Specification of DSML-s requires the specification of their abstract syntax, 
concrete syntax, semantic domain and the mapping between the abstract and concrete 
syntax (syntactic mapping) and the abstract syntax and the semantic domain (semantic 
mapping) (see e.g. [9]). The formal representations of these specifications are the 
meta-models and the language we use for describing meta-models is the meta-
language. In MIC, the meta-language for representing the abstract syntax of DSML-s 
and the syntactic mapping is based on UML class diagrams (with stereotypes) and the 
Object Constraint Language (OCL) [8]. The abstract syntax defines the concepts, 
relationships, and integrity constraints available in the DSML. Thus, the abstract 
syntax determines all the (syntactically) correct “sentences” (domain models) that can 
be built. (It is important to note, the abstract syntax includes semantic elements as 
well. The integrity constraints, which define well formed-ness rules for the models, 
are frequently called “static semantics” [10].) (The formal and manipulable 
representation of the semantic mapping is harder due to the strongly different 
formalisms required for representing the abstract syntax and the semantic domain. 
Therefore, we follow the technique of assigning semantics to a DSML by specifying a 
mapping between its abstract syntax and the abstract syntax of a language with well-
defined semantics. The mapping between two abstract syntax can be defined much 
easier, e.g. by using graph re-writing [6]. ) 

Consider a simple example for the abstract syntax of a DSML for Signal Flow  
(SF) modeling. Figure [1] shows the meta-model of this language (we have omitted 
the integrity constraints). The core concepts of this language are Compounds, 
Primitives, Ports, and Signals. Primitives form the basic signal 
processing blocks (e.g. Filters, FFT, IFFT, Correlation, etc.). Ports define the I/O 
interfaces of these blocks, and Signals represent the signal-flow between the 
blocks. Compounds are processing blocks that can be decomposed into other 
Compounds, and/or Primitives. An abstract Base concept commonalizes 
Compounds and Primitives, and can be said to represent an abstract signal-
processing block. With these basic concepts a user can define a signal-processing 
application. Figure [2] shows a simple hierarchical application model. 



 

Fig. 1. Meta-model for SF 

 

Fig. 2. Domain model expressed in SF 

The modeling language is sufficient for describing functional models of a broad 
class of signal processing systems. Each model represents a point design in the overall 
design space. Operational semantics can be assigned to the modeling language by 
describing the mapping between the meta-model of SF and the meta-model of a 
modeling language representing a specific model of computation, such as 
Synchronous Data Flow (SDF) [12]. 



4. Defining and Shaping Design Spaces 

A key requirement for platform-based design is the systematic construction of design 
spaces. Since we want to develop tools for computer-aided synthesis, we also seek for 
reusable constructs in DSML-s, which are independent of the actual design language 
and can be applied over a variety of domains. A second requirement is that the 
mechanisms should be scalable, in the sense that the effort in constructing the design 
space should be proportional to the size of the design problem (such as the number of 
components), and not the size of the design space (typically combinatorial in the 
number of choices). We use two fundamentally different mechanisms here that satisfy 
these requirements: 1) Explicit representation of hierarchical alternatives, and 2) 
Parameterization. 

4.1 Explicit Representation of Alternatives 

Alternative design choices are inherent to an engineering design process. Typically, a 
design engineer is encountered with several choices for implementing a specification 
of a system or a sub-system while refining the design. Therefore, to construct a design 
space using hierarchically layered alternatives is natural to a design process. To 
enable this, we need to expand DSML-s with the ability to represent design 
alternatives explicitly.  

 

Fig. 3. Meta-model of SF extended with the “Alternative” construct 

Figure [3] shows the meta-model of SF extended with the concept of 
Alternatives. Note that we use a meta-model composition technique described in 
[13] to accomplish this extension; figure shows the result of the composition. We 
selected the abstract Base concept for Alternative implementation, and 
introduced a containment relationship to enable hierarchical composition. An 



Alternative, in the composed SF meta-model context, can now be defined as a 
processing block with rigorously defined interface, which contains two or more 
(notice the cardinality of the containment relation highlighted in the figure) alternative 
implementations. The implementations can be Compounds, Primitives, or other 
Alternatives, with matching interfaces. Note that matching interfaces is a 
necessary, but not sufficient condition to ensure composability of the alternative 
implementations. (We consider the issue of additional conditions for composability 
later in this paper.) 

 

Fig. 4. Example for a design space model 

With this small extension of the SF design language, a user can now modularly 
define very large design spaces for a signal-processing application. A domain model, 
which includes Alternatives, now represent a structured design space and not 
point designs. A small example can be seen in Figure [4], where alternative 
implementations (Spectral and Spatial Correlation choices for Correlation operator) 
are utilized to construct a design space for the application. 

The scalability of this mechanism in capturing large design space can be judged 
from the following expressions: With a  alternative implementations per 
Alternative block, and n  Alternative blocks per Compound, composed in 



an m -level deep hierarchy this representation can define: mka  design configurations, 
where ( ) nkk mm ×+= − 11 , and nk =1 , using just ( )mna×  Primitives. As an 
example, with 4=n , 3=a , and 3=m , a total of 1728 Primitives can represent 

843  design configurations! 
We should emphasize here that this construct for representing design spaces is 

independent of the design language. Extending meta-models with the Alternative 
construct is very simple and can be done according to the nature of the domain and 
abstraction layer via meta-model composition technique. For example, we can easily 
define a modeling language for capturing the hardware architecture of a platform, and 
we can introduce flexibility in the architecture by defining alternative solutions along 
component hierarchies.  

4.2 Parameterization 

A second approach to define design spaces is based on parameterization, a technique 
popularized in digital circuit design. A parametric design encapsulates a range of 
implementations, each of which can be synthesized by binding the parameters 
appropriately. A simple example to illustrate the point is an N-bit multiplier design in 
VHDL, using generics. The range of the generic parameter N defines the design-
space in this case. With multiple parameters the design space is defined by the cross 
product of the domains of the parameters.  

 

Fig. 5. Meta-model of SF extended with the “Parameter” construct 

The design spaces defined by this approach can be finer-grained and potentially 
infinite, compared to that of the explicitly represented alternatives. Figure [5] shows 
meta-model of the SF language shown earlier extended with Parameters, using 
meta-model composition technique as before. With this extension a Primitive can 



be parameterized, by containing one or more Parameters. It must be noted here 
that parameterization as a design space definition mechanism, can also be 
independent of the design language. However, it relies on the implementation 
language and the support tools (e.g. VHDL compiler) for synthesizing 
implementations from parametric representations. 

5. Shaping and Aggregating Design Spaces 

In the previous section we identified two basic constructs that can be used to extend 
DSML-s to represent design spaces instead of point designs. We can use these 
extensions in composed, multiple-aspect DMSL-s, where individual aspects represent 
different layers of abstractions in embedded systems and yield a (not necessarily 
orthogonal) decomposition of the design [13]. However, we face the following 
problems with the unrestricted composition of large design spaces: 

1. While defining design spaces for individual aspects (such as SF), there are many 
constraints restricting the arbitrary selection of design alternatives.  

2. If we construct multiple-aspect design spaces by composing meta-models of 
individual aspects (e.g. functional and architectural), the resulting aggregate space 
is the cross product of the design spaces of the individual aspects. However, the 
product space will represent unrestricted compositions neglecting the fact that 
aspects may not be orthogonal: design decisions in one sub-space are intricately 
coupled with design decisions in other sub-space.   

There is a need for a mechanism that can help shaping both the individual aspect 
and the aggregate spaces by restricting them with relations and dependencies.  To 
remain consistent with the selected meta-language, we use OCL-based constraints to 
“shape” the design space. While the meaning of these constraints is domain-specific, 
there are typical constraint categories that are suitable to demonstrate the method.  

1. Composability constraints – We noted earlier that matching interface is not a 
sufficient condition for composability. In fact, in many situations it may not be 
possible to compose any arbitrary alternative implementation of a subsystem with 
any arbitrary implementation of other subsystems. This could be due to the lack of 
semantic compatibility. A simple example for a semantic composability constraint 
for a design space defined in SF is shown in Figure [6]. The meaning of the 
constraint is that Spectral domain correlation composes only with Spectral domain 
filters and Spatial domain correlation composes only with Spatial domain filters. 
Semantic composability constraints can express more complex concepts. For 
example, let us assume that we define a DSML for hierarchical finite state 
machines with multiple concurrency models [12] – called HFSM. The 
hierarchically composed components in this language are associated with different 
models of computations (or concurrency models) [12]. As Lee shows in [14], 
models of computations that capture the dynamic aspects of component 
interactions can be considered system-level types. System-level types can be 
organized in a partial order, which defines composability constraints among the 
components. By extending the hypothetical HFSM with the construct of 



Alternative components for defining design spaces, we can restrict the space 
by imposing Lee’s composability constraints. 

2. Inter-aspect constraints – Inter-aspect constraints express interdependencies across 
design spaces defined for different layers of abstraction.  For example, in platform-
based design where we have functional (or application) space on the one hand, and 
architectural (hardware platform) space on the other hand, a large number of inter-
dependencies exist between the functional and architectural components. 
Composing an end-to-end system requires evaluating crosscutting constraints and 
making trade-off decisions in the application as well as the architectural space. For 
example, precision requirements (floating-point vs. fixed-point) in the application 
may drive the selection of architectural components from one side, while power 
limitations may drive the selection of architectural components, which in turn 
drives the selection of application components. Inter-aspect constraints can be used 
to explicate these dependencies and relations as a constraint network, which can 
then be subsequently utilized in the design space exploration to systematically 
synthesize a point-design for the aggregate system. 

 

Fig. 6. Example for semantic composability constraints 

6. Design Space Exploration 

Up to this point, we identified constructs and methods for defining, aggregating and 
shaping design spaces.  There are two important goals for this exercise: 

1. Understand whether or not we have created inconsistency during the design space 
composition (meaning that the design space is ‘empty’), and 

2. Synthesizing designs that meet performance constraints. 

Given the size of the design spaces we routinely need to deal with, scalable 
representation, manipulation and exploration of design spaces are very hard problems. 
In this section we describe a meta-programmable tool, called DEsign Space 
ExploRation Tool (DESERT) that addresses some of the problems effectively.  



6.1 Design-Space Abstraction 

Design-space representation needs to focus on those aspects of extended DSML-s, 
which deal with variability in the design. Design-space abstraction means the 
extraction of this information from domain models defined in extended DSML-s. The 
abstracted design -space is also represented with a meta-model. Figure [7] shows the 
meta-model of the design space abstraction within DESERT.  Elements, 
Properties, NaturalDomains, ElementRelations, and Constraints 
are the core concepts of this abstraction. An Element is an abstraction of a design 
component (e.g. a Compound in SF design language). Elements can contain other 
elements, and the containment relation is characterized by the decomposition attribute 
that can be either AND-decomposition, or OR-decomposition. AND-decomposition 
implies inclusive containment (maps to a Compound in SF domain), whereas OR-
decomposition implies exclusive containment (maps to an Alternative in SF 
domain).  

 

Fig. 7. Meta-model for design-space abstraction in DESERT 

Elements contain Properties that capture performance attributes of design 
components. Properties can assume values from NaturalDomains that is a 
bounded range of natural numbers. Properties can be ConstantProperty to 
model single-valued performance attributes, or VariableProperty to model 
multi-valued performance attributes. Multi-valued performance attributes commonly 
occur in platform-based designs, where performance attributes such as timing, power, 
etc. of functional components depend on the architectural components to which these 
are assigned.  

Introduction of the abstracted design-space has major significance. The design-
space manipulation and exploration algorithms of DESERT operate on the abstract 
design-space, which is isolated from the accidental characteristics of various extended 
DSML-s. Meta-programmability of DESERT means that after defining the 
relationship between the meta-model of an extended DSML, and the meta-model of 



the abstract design-space, a translator can be generated automatically, which extracts 
the relevant information from the domain models and builds the abstract design-
space. (Currently, the translator generation is only partially automated. A parallel 
research efforts targets the fully automated generation of model translators [7].) 

6.2 Symbolic Representation of the Design-Space 

The manipulation and exploitation of design-spaces can be reduced to set operations: 
calculating the product space (composition of design spaces), union and intersection 
and finding subspaces that satisfy various constraints.  Since the size of design-spaces 
is frequently huge, execution of these operations with enumeration of all elements is 
hopeless. Therefore, we choose to perform the manipulation and exploitation 
operations symbolically. Two problems had to be solved: 1) Symbolic representation 
of design-spaces, and 2) Symbolic representation of constraints. 

By introducing a binary encoding of the elements in a finite set, all operations 
involving the set and its subsets can be represented as Boolean functions [17].  These 
can then be symbolically manipulated with Ordered Binary Decision Diagrams 
(OBDD-s) [17], a powerful tool for representing, and performing operations involving 
Boolean function. The choice of encoding scheme has a strong impact on the 
scalability of the symbolic manipulation algorithms, as it determines the number of 
binary variables required for representing the sets.  The details of our encoding have 
been described in [16]. 

Figure [8] shows the encoding of a set of hierarchically structured alternatives, 
shown as a tree (branches emerging from a horizontal line below a node denote an 
AND-decomposition). In this example, S has three alternative implementations: S1 or 
S2 or S3. S1 also has three alternatives: S11 or S12 or S13. S2’s implementation 
requires three components, S21 and S22 and S23. Out of these components, S21 and 
S23 have two alternative implementations, S211 or S212, and S231 or S232, 
respectively. The prefix-based encoding scheme assigns encoding values to each 
element such that each configuration receives a unique encoding value. A full 
configuration is defined to be a well-formed path in the tree (e.g. [S {S2 [{S21 S212} 
S22 {S23 S231}] in the figure). Figure [9] shows the symbolic Boolean 
representation of this set of hierarchically structured alternatives, given the encoding 
(vi-s are Boolean variables). 

In addition to encoding the structure of design-space, the encoding scheme has to 
encode the properties of elements also. This requires discretizing the domains of the 
property variables. The domain size heavily influences the total number of binary 
variables required to encode the design-space [16]. Subsequent to encoding, and 
deciding the variable ordering, the symbolic Boolean representation is mapped to an 
OBDD representation in a straightforward manner [16]. 



 

Fig. 8. Encoding abstracted design-spaces 

 

Fig. 9. Symbolic Boolean representation of abstracted design-spaces 

6.3 Symbolic Representation of Constraints 

Earlier we listed some basic categories of constraints.  Symbolic representation of 
each of these categories of constraints is summarized below. 

1. Composability and Inter-aspect constraints – These constraints specify relations 
between elements of the space.  Symbolically, the constraints can be represented as 
a Boolean expression over the Boolean representation of the design-space. Figure 
[10] shows an example of a composability constraint, and its symbolic Boolean 
representation. 

2. Performance constraints – Performance constraints specify bounds on the 
performance attributes of an aggregate or composed system. These may be in the 
form of size, weight, energy, latency, throughput, frequency, jitter, noise, response-
time, real-time deadlines, etc. Following are some simple examples for the SF 
language:  
• Timing – end-to-end latency constraints, specified over a signal-flow system, or 

subsystem e.g. (latency < 20).  
• Power – expresses bound over the maximum power consumption of a system or 

a subsystem e.g. (power < 100). 



Given that various design alternatives may have different values for different 
performance attributes, performance constraints indirectly imply composability of 
design alternatives. This makes performance constraints more challenging to 
represent symbolically, than composability or inter-aspect constraints. Different 
performance attributes compose differently, e.g. cost can be composed additively, 
reliability can be composed multiplicatively, latency can be composed as 
additively for pipelined components, and as maximum for parallel components, 
etc. The PCM_STR attribute of the Properties in the meta-model of the 
abstract design-space (Figure [7]) specifies the composition function to use. 
DESERT provides some built-in composition functions (addition, maximum, 
minimum, etc.), and has a well-defined interface for creating custom composition 
functions. The containment relation between elements is generally not sufficient 
for composing properties. The ElementRelations concept abstracts these 
other relations such as dataflow, execution order, and others. 

In addition to these basic categories of constraints, complex constraints may be 
expressed by combining one or more of these constraints with first order logic 
connectives.  The symbolic representation of the complex constraints can be 
accomplished simply by composing the symbolic representation of the basic 
constraints. 

 

 

Fig. 10. Symbolic representation of a composability constraint 

6.4 Symbolic Pruning of the Design-Space 

The symbolic pruning of the design-space, as observed earlier, in essence is a set 
manipulation problem. The aggregate design-space is the cross product of design-
spaces, each of which is a finite set of designs. Constraints specify relations within the 
aggregate space. Constraint-based pruning is a restriction of the aggregate space with 
the constraints. Symbolic pruning is simply the logical conjunction of the symbolic 
representation of the space with the symbolic representation of the constraints. It is 
worth reemphasizing that during the pruning process all of the (potentially very large) 
design spaces are evaluated simultaneously. Figure [11] illustrates the process of 
symbolic design-space pruning. 

 



 

Fig. 11. Symbolic design space pruning 

7. Example: Automated Model Compiler (AMC) 

One of the challenge problems presented at EMSOFT 2001 by Butts et al from Ford 
Research [15] was an automated model compiler for composing controller models for 
automotive applications. In this section we briefly summarize their problem 
definition, and show our solution based on DESERT. 

7.1 Usage scenarios 

AMC is an automated model composition tool, which takes component models, target 
architectures, and synthesizes models automatically, which meet design requirements. 
The key elements of the usage scenarios for our discussion are the following: 

1. Model components are Matlab®, Simulink®, Stateflow® models.  
2. Model components have a set of key component attributes (I/O definitions, 

essential parameters, etc.) that influence composability and capture performance 
characteristics. 

3. Target model architectures are described by an abstracted, hierarchical, high-level 
modeling language, whose leaf nodes refer to model components defined above. 

4. There is a rich set of compatibility relations for components. Structural constraints 
focus on I/O signal types and simulation properties. Component compatibility 
relates components via high-level design goals, such as “fun-to-drive” or “green”. 

The challenge is to synthesize models that meet set design goals and performance 
targets using the available model components. To characterize problem sizes, authors 



refer to a powertrain control example, where 218 model components, each with 3-30 
alternatives, are used in 130 vehicle applications. A typical vehicle application 
includes 75-105 components.  

7.2 AMC Architecture 

AMC is a rich enough very interesting application problem, therefore we use a 
preliminary implementation of AMC for demonstrating an important category of 
DESERT applications.  Since in the defined use scenario AMC needs to work 
together with other modeling tools, the presented solution needs to deal with broader 
tool integration issues.  

The architecture of AMC is shown in Figure [12]. Components of the architecture 
are the following: 

  

 

Fig. 12. Architecture of an Automated Model Compiler 

1. Matlab/Simulink and Component Repository: The repository contains simulation 
model for various automotive subsystems. The models are stored in .mdl (Model 
Definition Language) files, and there is an associated parameter definition file, that 
defines a number of performance parameter (e.g. CPU usage, RAM/ROM usage) 
and characterization information (green vs. fun-to-drive vehicle, etc.) for the 
Simulink model. (The experimental system does not include StateFlow models.) 

2. Component Abstraction: AMC does not need all of the detailed information in the 
components. Component abstraction means that components are modeled, and the 
component models include only the relevant information for model synthesis. For 
example, the detailed I/O interface specifications of Matlab/Simulink models are 
abstracted into basic I/O types. Parameters which are not essential for model 
composition are suppressed. The component abstraction separates the 
Matlab/Simulink world and the AMC world. The actual abstraction is supported by 
a two-way model translator (generator). The content of the Component Repository 



is translated into partial component models and sent to the GME-based Design-
Space Modeling environment in .xml format. The unique association between the 
components in the Repository and their models in GME are maintained. In the 
other direction, abstracted models, synthesized  by AMC are translated into fully 
specified Matlab/Simulink models by using the unique model component id-s and 
auto-generating all of the connections based on the detailed I/O specifications. 

3. Design-Space Modeling Environment: The challenge problem definition [15] 
suggested the introduction of a high-level modeling language for the specification 
of target architectures. This language uses the abstracted components at its leaf 
nodes so as to allow modelers focusing on the appropriate level of abstraction. 
Therefore, we defined an SF-like design language with hierarchy and alternatives 
and instantiated it in our meta-programmable Graphical Model Editor (GME). 
Design space models capture the hierarchical composition of vehicle systems and 
capture design alternatives for subsystems. A primitive (leaf node) in this language 
represents a simulation model in the Matlab/Simulink Component Repository, and 
is linked to the simulation model through attributes that store model name, version 
number, and file name. There are additional placeholder attributes for performance, 
and characterization parameters that need not be filled by the user. The translator in 
the Component Abstraction tool parses the parameter and I/O definitions and 
populates the models with this information. The user can model design 
specifications (e.g. CPU_usage < 70%, RAM < 20Kbytes) as constraints in the 
design space models. Consistency constraints (e.g. connected I/O should have 
matching data types) are automatically introduced in the models. The Design-
Space Modeling Environment supports the specification of structural, and 
component compatibility constraints in OCL. 

4. Design-Space Abstraction: As we described it in Section 6, DESERT uses a 
domain-independent meta-model, which separates its internal algorithms from 
domain-specific constructs. The Design-Space Abstraction component of the 
architecture provides two-way model translation between the Design-Space 
Models and the DESERT’s abstract design-space models. The two-way translation 
enables that acceptable point designs selected from the pruned design space by 
DESERT can be presented in the Design-Space Modeling Environment and can be 
translated further automatically for the Matlab/Simulink environment for detailed 
simulation studies. 

We have a working prototype with the feed-forward path from the 
Matlab/Simulink component repository to design-space models and DESERT, fully 
implemented. The prototype has been demonstrated and tested. Design-spaces were 
subjected primarily to I/O compatibility and performance constraints (CPU usage, 
RAM/ROM requirements). The largest design spaces constructed during “stress tests” 
included 130 binary variables.  

8. Conclusions and Future Work 

In this paper we presented an approach and a related tool for constructing and 
exploring large design-spaces as part of a platform-based design process. Symbolic 



pruning of large design-spaces seems to be a useful tool component in the overall tool 
chain. Our preliminary results in the example described above and in other examples 
(e.g. reported in [16]) have shown that the selected binary representation method for 
design spaces scales well. The critical challenge in scalability is during the design-
space pruning phase. Application of complex constraints to large spaces may result in 
explosion of the OBDD-s, therefore DESERT has an interactive user interface. Users 
can control the importance of constraints and select the sequence order of their 
application. We are experimenting with re-encoding the design-space after each 
pruning steps, which usually results in a drastic decrease in the number of binary 
variables. 

Since OBDD-s are not effective as SAT solvers, we separate design-space pruning 
from finding a single architectural alternative, which satisfies complex performance 
constraints. To facilitate this step, we are in the process of developing an interface in 
DESERT toward high performance SAT solvers. 
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