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ABSTRACT
Non Destructive Evaluation (NDE) uses many data processing techniques to transform raw data or information from a
specific NDE technique into useful NDE information from which decisions can be made. Historically, the data
processing systems associated with each NDE technique were tuned or optimized to that technique . In today's
environment it is desirable to quickly evaluate promising techniques while maintaining minimal manpower and/or
capital penalties. In this paper, we discuss the result of a joint effort between Arnold Engineering Development Center
(AEDC) and Vanderbilt University. The goal of this effort has been to apply modular Commercial Off-The-Shelf
(COTS) hardware and advanced parallel software synthesis techniques to create a flexible and adaptable image data
processing system.  The culmination of this effort is the MIRTIS (Model-Integrated Real Time Imaging System).
MIRTIS uses Model Integrated Program Synthesis (MIPS) techniques to automatically generate parallel software
implementations of image processing computations, which are executed on a parallel hardware architecture built from
COTS parts. The most significant difference between MIRTIS and traditional imaging systems is that the
"programming interface" consists of a high-level, graphical specification environment. The user specifies the
computations to be performed by drawing a graphical data flow representation consisting of boxes (algorithms) and
interconnecting lines (communications). The performance requirements of the application and the topology of the
available hardware network are also specified graphically. These graphical specifications (models) are used by
MIRTIS to generate the necessary parallel software configuration to implement the computation at the specified
performance. In addition to implementing data flows made up of standard image processing algorithms, the user can
also expand the functionality of the system by adding new algorithms to the support library. The algorithms are
implemented as normal “C" subroutines and are fully integrated into the system by specifying pertinent information in
terms of an algorithm model.  MIRTIS was initially designed to support the demands of the real-time image
processing domain, but is currently being extended to support applications which operate on very large data sets (ex.
Computed Tomography (CT)), but which do not necessarily require real-time performance. The approach will produce
a system which is programmed graphically, but which will generate high performance parallel implementations of a
large class of imaging computations. This will greatly enhance the capability to quickly and rapidly generate imaging
systems customized for NDE support.

1. INTRODUCTION
Many data processing techniques have been used to transform raw data or information specific NDE modalities into
useful NDE information from which decisions can be made.  While initially the techniques were based on programs
running on general purpose computers, as systems were fielded, customized hardware (HW) / software (SW)
systems were created to support timely decision making.  As the HW/SW systems became more “tuned” for higher
performance, the end user became more limited on trying new techniques from related disciplines for enhancing the
data (ex. using medical x-ray enhancing techniques on industrial or aerospace x-ray NDE applications). The ease
and complexity associated with making changes many times depend on the system that one inherits with a facility or
purchases to support an effort.  At one extreme lie systems for which the addition of new algorithms requires a new
consulting contract with the vendor supplying the system.  At the other extreme lie COTS-based NDE systems to
which new algorithms can be added, but only after the user becomes very familiar with the underlying HW/SW
system architecture and has mapped the algorithm to that architecture.  The resources (skills / man-hours) required
to do this are sometimes difficult to justify within a tight budget.  While a facility which must follow a tightly structured
procedure for material or part acceptance may not need this.  Facilities like AEDC are increasingly needing to “push
the envelope” to improve the quality of the NDE information being extracted and provided to our internal and external
customers.  While historically one might support one or two NDE techniques, now an NDE group might support many
techniques like ultrasound, x-ray, thermography, laser-based techniques, etc., which require support of additional
data processing techniques.  With declining budgets, this higher level of support needs to be carried out by fewer
people dedicated to the effort including programmer support for our data processing systems.



While the computational hardware elements have gone down in cost since AEDC started its joint effort with
Vanderbilt University, the software and algorithm complexity has not been diminished while the availability of
programmers has.  The approach described in this paper has simplified the process of supporting new processing
techniques for real-time image processing for the enhancement of x-ray, low-level light, and thermography camera
image data.  The model based approach used in the MIRTIS is now being expanded to support the rapid processing
of 10,000 by 10,000 by 12 Bits/pixel images from 70 mm film digitization.  These techniques could easily be adapted
to CT image processing or other modalities that have large data sets. While the MIRTIS system has primarily been
focused on imagery data, there are similar systems based on model integrated technology in use at AEDC
(CADDMAS), NASA Marshall (engine monitoring), and NASA Stennis (engine health monitor) that process 1-D data
streams while monitoring turbine engines & rocket engines.  The MIRITS system is composed of COTS or in-house
standard COTS format TIMs (Texas Instruments Module) and can be readily scaled from a few to a large number of
processors.  The largest system built to date contained 51 processors and was benchmarked at 520 MFlops
sustained throughput while performing a complex edge detection on live video (counting only useful operations).
However, the authors believe that by using more up to date processors, MIRTIS can scale up to 10 GFlop sustained
range (while actually solving useful NDE problems).  Because the run-time kernel was designed to introduce minimal
communication and computation overheads, the constraints on the scaling are governed more by how many
processors can be realistically packaged into a chassis and powered than by the parallelism of the software.

1.1. Image Data Volume

Digital imaging applications require huge computational performance due to the large data sets involved. NDE
applications, which utilize on–line video processing, require sequences of images to be processed in real-time. Image
sequences of typical resolutions vary from 512 X 480 or 640 X 480 (typical industrial / home quality video) to 720 X
486 (D1 & D2 broadcast quality video) pixels. Such sequences at standard frame rates (30 frames/sec) and 256 level
gray scale (8 Bits/pixel) represent a data rate of 8.8 to 10.5 Megabytes per second.  Color sequences (24 Bits/pixel)
at the same pixel resolution produce a 26.4 to 31.5 Mbytes/sec data rate.

Generally, imaging sensors used in many NDE applications are based on COTS video (RS-170) cameras.  As the
High Definition Television (HDTV) standards drive the COTS market for high definition cameras and recording
systems the image sizes and data volumes could quadruple in the near future. When these increasing resolutions
become available many of the existing dedicated hardware solutions that have served the RS-170 resolution systems
will have to be replaced. This potential data volume increase coupled with the need to adapt processing algorithms
requires more flexible, scalable real–time image processing solutions than are currently available.  A more
generalized and flexible approach toward system development is needed in order to support such applications.

1.2. Image Processing Computation Costs

Typical image processing and enhancement applications require on the order of hundreds or even thousands of
operations per pixel in order to enhance, segment, and extract features from image sequences, which translates into
a demand for tens of Giga-operations per second[1,2,3]. Even less computational intensive applications, such as
video enhancement, can require hundreds of Mega-operations per second. Moreover, it has been estimated that
future applications, such as dynamic scene or image sequence interpretation, may require on the order of hundreds
of Giga-operations per second.  Hardware architectures consisting of a single general-purpose processor are
incapable of delivering these levels of computational performance.

Due to these high performance needs, most successful applications of real–time imaging have by necessity been
built from custom hardware designed to perform fixed sets of specific image processing algorithms. Although such
specialized hardware solutions have met computational requirements of some Real-Time Image Processing (RTIP)
applications, there are many drawbacks to this approach. Hardware implementations are expensive, and real–time
performance is achieved by sacrificing end–user programmability and flexibility.

1.2. Parallel Image Processing

The most obvious alternative to avoid custom hardware is to parallelize the computations and map them to a scalable
parallel hardware architecture made up of COTS components.  Image processing algorithms have inherent
concurrency that is relatively simple to exploit [4]. The idea of parallelism is certainly not new. Papers describing
parallel architectures, algorithms, kernels, programming models, compilers and software generators abound in the
literature. There have been many parallel hardware architectures boasting incredible numerical benchmarks, and
there have been instances in which parallel implementations have been successfully deployed in real applications.
However, the inherent difficulty of programming parallel machines has limited the number of cases in which
programmers without parallel processing expertise have successfully and cost–effectively exploited the technology in
real–world applications.

It has become clear that developing a general parallel image processing system involves much more than building a
high performance parallel hardware architecture or a parallel language. Some of the most difficult problems lie at the
systems level, including the hardware, software, and their relationships.  Without high–level programming



environments and tools designed for building parallel systems, exploiting parallelism in real world image processing
applications is, in most cases, not the most cost–effective or practical approach. An environment and framework for
building parallel image processing systems is needed.  It is crucial that this framework be system–centric,
simultaneously addressing the parallel hardware, parallel software, and integration issues.  The goal is a system with
which programmers without parallel systems expertise can generate real–time parallel software implementations
using the parallel hardware architecture available to them. The system should insulate the user from the underlying
parallel implementation details, while achieving the high performance of specialized hardware solutions, and retaining
the generality, flexibility, and ease of use of uni–processor software systems.

This paper presents an approach toward this goal.  By using MIPS techniques and by taking advantage of the natural
concurrency present in image processing computations, real-time parallel image processing systems can be
automatically synthesized from high–level system specifications.  The most difficult issues that usually inhibit the
cost-effective use of parallelism are decomposing the software into communicating sub-computations, mapping the
sub-computations to the available resources, and implementing the inter-processor communications, all in a way that
produces predictable, reliable performance.  The aim of applying MIPS to the parallel imaging domain is to effectively
render the complex details inherent to parallel software development transparent to the programmer by automating
these difficult tasks.  The MIPS approach promises to lead to the cost–effective exploitation of parallel hardware
architectures for building more flexible, powerful, and cost-effective imaging systems than are currently available.

The Model Integrated Real–Time Image Processing System (MIRTIS) is a demonstration of this concept. MIRTIS
was developed for processing video in real–time and processing very large archived data sets off-line [5-8].  It
employs the Multigraph Architecture (MGA), a framework and set of tools for building MIPS systems [15], to generate
image processing applications which run under the control of a parallel run-time kernel on a network of Texas
Instruments TMS320C40 (C40s) Digital Signal Processors (DSP). The run–time system is configured automatically
from graphical models declaring (1) the computations to be performed, (2) the C40 network configuration, and (3) the
performance constraints of the target application. The automatic configuration is performed by the MIRTIS model
interpreter, which analyzes the models to determine the feasibility of a real–time implementation, and if a solution is
feasible, parallelizes, scales, and maps the given computations to the resources such that the real–time constraints
will be met.  It also configures a graphical user interface with which the user can adjust processing parameters
dynamically as the system runs.

2. BACKGROUND
This section provides a brief description of the class of imaging applications considered, and the issues involved in
designing, implementing, and maintaining systems for supporting these applications.

2.1. Image processing computations

Image processing is related to the larger field of computer vision. Computer vision systems process data acquired
from image and other sensors, which detect visible, infrared, or even magnetic radiation, and attempt to construct
some model of the surroundings which may be used in formulating controls over the environment and/or presented
for human interpretation. The early vision steps are made up largely of algorithms that operate on image data and
produce images, transformations of images, or simple data structures describing images. These image processing
algorithms are sometimes referred to as low level vision [9] because the role they play is to pre–process images for
transformation into symbolic data (edges, connected components, etc).

Because applications from the video processing domain have driven the effort, the emphasis has been placed on
image processing systems which are persistent. Persistent systems do not execute and terminate, but execute
continuously, computing sequences of result data structures from sequences of input images. This motivates the
extension of the genre of image processing algorithms from those which operate on images to those which operate
on image streams, or even volumes.

2.2. Image processing data flows

A popular method of building up image processing applications is to combine several pre–coded algorithms together
to form a Large Grain Data Flow (LGDF).  A LGDF is a directed graph in which the graph nodes represent processing
blocks and the arcs represent communication between the blocks. The LGDF style specification is commonly used in
signal and image processing.  One reason is that its visual nature promotes the integration of high–level graphical
programming interfaces.  For example, Khoros[10], a popular image processing development environment from the
University of New Mexico, provides a visual programming interface in which data flow graphs are drawn to specify the
computations.  Khoros performs the control flow and transfer of data between the computation blocks automatically
as it executes the data flow.
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In keeping with this approach, the problems considered are LGDF computations made up of image processing
algorithms. The following restrictions are placed on the data flow: (1) It must be a Synchronous Data Flow (SDF),
which means that for each computation block, the amount of data consumed and produced each time the block runs
is fixed [11]. (2) It must have no cycles (loops in the data flow graph not containing a delay element).  (3) It must have
no fan-ins (connections merged together), but Fan- outs  (connections with multiple readers) are allowed. These
computations are synchronous image processing data flows.

2.3. Real–time image processing

Real-time image processing systems (RTIP) interact with (and are embedded in) their environments, and thus must
produce outputs that are not only numerically correct, but which also meet timing constraints necessary for these
interactions.  The relevant environmental interactions for image processing systems are receiving data from sensors
or other systems, and outputting data to displays, devices, or other systems that may apply controls to the
surroundings directly (e.g. a vision system might generate controls for a robotic arm).

2.3.1. Relevant timing constraints

RTIP systems may be required to service the input devices as quickly as the data is produced, produce outputs at a
sustained rate, or produce an output from each particular input within a constrained amount of time. The two relevant
types of temporal constraints in real–time image processing systems are:

• throughput:  the rate at which results are produced by the system, usually quantified in (frames/sec) for video
based systems

• latency: the total time between the sensing (or reading from a file) of a particular image and the results of that
image leaving the system, usually quantified in seconds, and sometimes in frames.

It is important to note here the difference between high performance systems and real-time systems. Real-time image
processing systems must not only support the large I/O data rates and computational power discussed previously,
but the performance must be predictable and controllable. It must be known a priori to run-time (1) if a computation
can be done within the timing constraints on the available hardware, and (2) if so, how to utilize the hardware to
achieve the required performance. Thus, predictive models of both throughput and latency are necessary. Since it is
generally difficult to accurately characterize the performance behavior of a computation, the models must be
developed using knowledge of the algorithms and the underlying run–time system.

2.4. Specialized real–time hardware solutions

The approach traditionally taken in supporting real–
time imaging has been to implement the most
commonly used computations in specialized real–
time hardware. Hardware implementation has been
the most practical and cost– effective solution that
could meet the performance requirements of RTIP.
There are many commercially available machines
that perform various sets of standard image
processing computations at real–time rates (e.g.
Matrox, Coreco, DataCube). Some are more general
and flexible than others. However, no hardware
solution provides all of the following:

• Programmability/Extensibility: Existing
hardware solutions are either not end–user
programmable,  offer limited programmability, or
are programmable at a high resource cost
(labor and expertise). Adding functionality may
require costly VLSI design or reprogramming of
the Field Programmable Gate Arrays (FPGA).  It
is not practical for the user to invent and
experiment with non–standard algorithms. As
systems such as Khoros have shown, the ability
to rapid–prototype and experiment with
algorithms for the application at hand can
greatly enhance the ability to generate effective solutions.

• Flexibility: The data paths are either hard-wired or have a fixed number of configurations, so the possible
ordering of the computations is often limited.



• Scalability: More computations or higher performance cannot always be achieved by adding hardware.

• Ease of use: Existing hardware solutions are difficult and expensive to use. Learning to use specialized
hardware systems can require months of training, even for experienced image processing experts. The
steepness of the learning curve is a major factor in the economics of computer solutions, since labor is
traditionally more expensive than hardware.

The use of specialized real–time image processing hardware has proven successful for some applications. However,
the inherent limitations have caused the real-time imaging industry to develop the mind-set of trying to fit problems to
the fixed capabilities of the available real–time hardware, instead of building integrated solutions to the problems at
hand. This has had the unfortunate effect of placing a barrier between the algorithm development community and
many real-world embedded applications. Since it has not been feasible to create real–time implementations of new,
non–standard algorithms to use in embedded imaging systems, much of the theoretical image processing
developments have not been used in embedded applications.

2.5. Parallelizing image processing computations

Instead of using hardware implementations, a more flexible approach is to generate parallel software version of the
computations and map them to a distributed memory multi–computer, as is shown in Figure 1.  Because the
operations have characteristics that make them particularly suitable for implementation on parallel computers, image
processing has been the most common area for the application of high performance parallel computing.[4,12]

Then why are most commercially available image processing systems not parallel software systems?  The answer is
that the parallelism adds complexity to tasks of writing software and integrating systems.  The added complexity
translates into higher implementation and integration costs.  For applications with relatively fixed requirements,
specialized hardware systems provide adequate flexibility and performance.  Specialized hardware systems have
provided a more cost-effective solution because of the high costs of developing parallel software with traditional
methods.  However, for many of the current and near future applications (such as those mentioned above in the
introduction), the requirements vary widely depending upon many factors. The solution must be highly adaptable and
extensible to the particular situation at hand.  Parallel software systems, being more flexible, are more appropriate for
these applications.  To cost-effectively support these applications will require the development of methods and tools
for implementing and integrating parallel software imaging systems that automate the difficult parallel system
integration tasks.

The first step in this development will be to examine how image processing computations can be parallelized and
mapped to parallel architectures, and where the complexities lie.  The basic parallel computing organizational
concepts that best support the characteristics of image processing computations are data–parallelism (spatial
decomposition or temporal decomposition) and functional parallelism. These parallel processing constructs and how
they can be exploited in image processing are discussed next.

2.5.1 Spatial Decomposition

Many image processing algorithms are easily data parallelizable by decomposition of the data in the image plane.  A
simple data parallel programming technique which is applicable to image processing is the split-and-merge model.[4]
In this technique, each input data structure is split into N pieces, which can be blocks of rows, blocks of columns,
panels, overlapping regions, etc. The pieces are distributed across the memories of the N worker processors, each
which performs the same algorithm on its sub–section of the data. The partial results are then merged to form the
output.  Since each of the workers computes 1/Nth of the result concurrently, the per image computation time is
reduced by a factor of at most N. This has the potential of both reducing latency and increasing throughput when
executing on image sequences. However, the acceleration actually achieved depends upon the overheads
introduced by the decomposition.

Sources of overhead in the split-and-merge processing model are (1) splitting inputs: distributing the image pieces to
the processors, (2) merging outputs: communicating the partial results and combining them, and (3) sharing data:
communicating shared data and partial results between worker processors.  How the data is to be split, shared, and
merged depends upon the algorithm’s data access patterns.

2.5.2. Temporal decomposition

Algorithms that either cannot be decomposed spatially, or for which the resulting gains would minimal, can still be
successfully data parallelized when operating on image sequences by taking advantage of the sequence structure.
Image sequences can be decomposed temporally instead of spatially (split the data along the time domain, instead of
the spatial domain). Instead of images being distributed spatially, the pieces of the image sequence (entire images)
can be distributed across the N processors in a round-robin fashion.  In this case, each worker processes an entire
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image, so there is no decrease in the time it takes for any one image to be processed (latency).  However, images
will be processed concurrently, so the throughput can potential increase by a factor of at most N.

2.5.3. Functional parallelism

Functional parallelism takes advantage of the natural concurrency of a computation. The computation is broken down
into semi-independent communicating sub-computations.  The sub–computations along with the data passed
between them form an implicit data flow computation graph. The application of functional decomposition to
parallelized LGDF computation is straight–forward. N sub– computations can be executed concurrently on N
processing elements, with data being transferred between the
computations via inter–processor communication. The performance
gains of functional parallelism are achieved through allowing the
sub–computations to execute concurrently, and are controlled by
the structure of the data flow and the allocation of processes onto
processors. The speedup is bounded above by N, and the
efficiency, (speedup/N), is affected greatly by the relative
complexities of the sub–computations as well as the
communications overhead. Unless the sub–computations are of
similar complexity, the system is not load balanced, which results in
the inefficient use of the parallel resources and poor performance
gains.

2.5.4. Hybrid parallel constructs

It is reasonable to combine these approaches and form a hybrid
parallel construct which uses two levels of parallel decomposition,
the top data flow level being functionally parallel, and the underlying
sub-computations being data parallel (see Figure 2). Scaling and
load balancing to the target throughput can be achieved by scaling
the data parallelism of the sub–computations independently until
each achieves the target throughput. This type of hybrid parallel
construct can be applied automatically to data flow computations if
methods of automatically data parallelizing and scaling the sub–
computations are developed.

3. Approach
The approach taken in this work has been to use MIPS techniques, specifically the Multigraph Architecture, to
generate parallel software versions of synchronous image processing data flows made up of sequentially coded
algorithms, and automatically scale and map the resulting decomposition to a parallel hardware architecture. This
section provides an overview of the approach taken toward this automatic decomposition, scaling, and mapping.
Then it introduces MIPS and the MGA, and how MGA is used in automating the parallelization decisions.

3.1. Data flow decomposition and allocation to hardware

The data flows are decomposed using the
two level hybrid parallel construct discussed
in the previous section. As is shown in
Figure 2, the data flow is first partitioned into
computation blocks. Each block is then
decomposed using either spatial or temporal
data parallelism.   Scaling (assignment of a
number of processors to each block) is
performed with the use of performance
models constructed with a priori knowledge
of the algorithms. Referring to Figure 3 note
that Block has been decomposed using
spatial data parallelism, and assigned a
scaling factor of 3. The data parallelism has
been implemented by making 3 replicas of
the computation in Block, which have been
allocated to 3 processing nodes in the
hardware architecture.



3.2. Difficulties

Nothing has been said yet of how the implementation, including the control flow and communication, is supported.
Moreover, the decision making processes for selecting the types of parallelism, the scaling factors, and the allocation
of the decomposed data flow to the processing nodes have yet to be discussed. At this point is where the concept of
developing a system becomes most important.

The difficulty lies in that fact that the task of decomposing the algorithms, supporting the inter-process
communication, providing control flow (synchronization and scheduling), figuring out to how many and to which
processors the computations should be allocated, and determining how to route the communications through the
communications network are inter–related. Some of these problems are difficult to solve even when considered
alone. For instance, the general assignment problem is NP–complete.[13]

The following interrelated problems must be solved simultaneously (assuming the partitioning has been done):

• Decomposition of blocks: select a parallelization method for each block of the partition.

• Scaling blocks: select the number of processor for each block to load balanced and meet timing constraints.

• Allocation: assign the decomposed, sub–computations of the scaled data flow to the available processors.

• Communications routing: determines the path along which the communications will flow. For instance, each of
the lines representing communication in Figure 3 must be routed somewhere through the hardware network.

• Formation of performance models: determine accurately the performance that will result from a particular
decomposition and mapping of a computation to the available resources. .

• Support of parallel execution: provide the scheduling, communication, and synchronization to support
execution of the data flow.

A major obstruction to automating the decomposition, scaling, and mapping processes is that these tasks are
inherently inter–dependent. Note that the construction of performance models, which are used in making the
parallelization decisions, requires knowledge of both the run–time system and the allocation of computations and
hardware nodes. However, as figure 2 shows, the allocation is done after the parallelization decisions have been
made. Performance models can not be built without taking into account the allocation, and vice versa.

Because of these inter-dependencies, the general problem of mapping image processing synchronous data flows to
arbitrary multi–computer networks while simultaneously guaranteeing that throughput and latency constraints are met
has no closed–form solution. Moreover, performing an exhaustive search of all decompositions and allocations until
the constraints are met is not a practical alternative because the search space is too large.

The approach toward automatically mapping the computations to the resources must be to reduce the size of the
search space by developing simplified decomposition procedures and allocation techniques which exploit the
capabilities of the target hardware architecture and favor the properties of the majority of the applications. This is the
approach taken in the MIRTIS system, as will be discussed in the next section. First, however, a short introduction to
model–integrated program synthesis and the Multigraph architecture is in order.

3.3. Model–integrated program synthesis overview

MIPS is a method of synthesizing software systems from high-level models. MIPS is related to code generation
performed by compilers, but the goal of MIPS is not the generation of machine code. MIPS systems generate instead
either code to be executed on a virtual machine, or a configuration of existing computations. Common to all the
various existing MIPS approaches is a component called the model interpreter, which actually performs the program
synthesis. The model interpreter transforms high-level system models, specified in terms of a paradigm, or language,
into the system program.[13]

3.4. The Multigraph architecture

The MGA is a MIPS architecture developed at Vanderbilt University which provides a frame–work and tools for (1)
building graphical domain specific models and (2) transforming the graphical models into executable applications.14

By using user problem domain specific models and interpreters, MGA allows the domain experts to specify a system
in familiar terms without dealing with the underlying software engineering details, The MGA consists of the following
components: (1) A graphical model builder (GMB).-this is a graphical environment in which domain specific models
are built and manipulated. The current MGA model builder is called XVPE. (2) A model database for storing the
models. The current implementation uses a public domain Object–Oriented DataBase (OODB) called obst. (3)
Problem domain specific model interpreters, which translate the system models into the various components of the
target system. (4) Integrated applications make up the target software system. (5) The run-time kernel, application
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libraries, and/or operating system platform together form the run-time environment. For more detailed information
about MGA, refer to [15].

3.5. MGA models

The models are built and manipulated via the XVPE graphical model building environment. XVPE is configured with a
user specific problem domain specific modeling paradigm, which contains the concepts particular to the application.
The modeling concepts available in the MGA system include attributes, parts, hierarchy, connection, association,
reference, and multiple aspects. This set of modeling concepts has been shown to be rich enough to support the
needs of a large and diverse set of problem domains[16…20].

4. MIRTIS
4.1. Overview

MIRTIS is an MGA–based realization of the ideas that have been developed in the previous sections. It uses a
combination of automatic program translation and meta–level driven software synthesis to automatically parallelize
image processing data flows made up of sequentially coded algorithms. The parallelization decisions (types of
parallelism and scaling factors) and the allocation of the decomposed data flow to the parallel architecture are
performed automatically. The decisions are driven by the real–time constraints, which are modeled explicitly.

It was determined that the decomposition and allocation algorithms should be simplified in order to decrease the
search space of data flow to network mappings, and to make the automatic mapping of processes to processors a
practical endeavor. The simplification in the mapping algorithm was made possible by adding complexity to the run–
time system. Specifically, a special communication technique was implemented for the C40 which enables all
communication to be routed along a hardware pipeline.

The run–time system was kept semi-architecture independent by implementing the communication components as a
separate layer which can be re–implemented for new hardware architectures, thus allowing the re–use of a large part
of the implementation. Both a prototype C40 run–time system and the resulting mapping algorithm have been
designed and implemented for this work. The special communications routing support in the run–time system
reduced the complexity of the mapping algorithm significantly, making the interpretation process more feasible.

4.2. The MIRTIS architecture

As is shown in Figure 4, the MIRTIS architecture follows
the MGA framework.  The system consists of (1) the
Image Processing Description Language (IPDL) model
building environment, (2) a model database, (3) the
MIRTIS model interpreter, (4) an image processing
application library, (5) the Pipeline Cut-Through (PCT) –
C40 run–time system, (6) the MIRTIS graphical user
interface, and (7) a network of C40s. The most important
aspects of these elements are discussed next.

4.3. The IPDL modeling paradigm

The MIRTIS modeling paradigm, called Image
Processing Description Language (IPDL), was designed
specifically for real-time image processing. The concepts
were developed by extracting the set of information
required to support the automatic decomposition and
mapping approach outlined in the previously. This
section will briefly describe the paradigm, putting
emphasis on the novel concepts.

IPDL contains three types of graphical models, Signal
Flow, Hardware, and Constraints, which represent the
data flow computation to be performed, the hardware
resources available for the solution, and the timing
constraints required by the solution, respectively. The
combination of a Signal Flow Application model, a
Hardware Network model, and a Constraint model
together form the specifications for a real–time image
processing system.



Figure 5 - MIRTIS GUI

4.3.1. Signal flow models

Signal flow models specify the image processing computations to be performed. The two types of signal flow models
are applications, and algorithms. Applications are simply data flow graphs made up of algorithm models, each
which declares pertinent information about an algorithm in the image processing library, such a how the algorithm
accesses data in calculating its output data structures, and performance on the algorithm (benchmarks) the target
hardware architecture.  For a detailed description of IPDL see [7].

4.3.2. Hardware and constraints models

The Hardware models represent the computational resources available to implement the system.  These contain
information about the parallel configuration, such as network topology, resources available on each CPU, location of
I/O resources, etc. The types of hardware models are Nodes (eg. C40s) , HostNodes (PCs or workstations), and
Networks.

Constraint models contain explicit declarations of the target latency and throughput required for an application.
Throughput models have a numerical attribute specifying frame rate in throughput terms(ex. Video frames per
second) and latency models have attributes specifying latency in frames. Both throughput and latency models have
attributes specifying whether it is a hard or soft constraint. As will be seen, this attribute is used in the interpretation
procedure in the case that the constraints cannot be met exactly. It specifies whether that constraint can be relaxed to
allow a best effort implementation on the available hardware.

4.3.3. The MIRTIS graphical editor
The IPDL models are built and manipulated via a Graphical User Interface (GUI) that is intuitive and easy
to use.  The original version of the system used an X-Windows based editor called XVPE, but the current
effort to generalize the MIRTIS is migrating the system
to a newly developed PC Windows Microsoft
Foundation Classes (MFC) based editor called GME.
A view of GME can be seen in Figure 5.   Not only is
GME more usable, but it also stores the models as
OLE containers instead of storing the models in the
obst object oriented database.  Without the
requirement of an object oriented database, the new
MIRTIS editor and interpreter will be able to be run on
most any machine.

4.4. The PCT–C40 run–time system
A real–time image processing kernel called PCT–C40
has been implemented which provides run-time
support for spatial and temporal data parallel
execution of image processing synchronous data
flows on pipeline–connected C40 networks. The
kernel runs on each C40 node and performs the scheduling, communication, and synchronization
necessary for data parallel computations.

The scheduler on each node runs a Periodic Admissible Sequential Schedule (PASS)[11] that implements the
synchronous data flow local to that node. The kernel configures and starts the PCT communication engine, which, in
cooperation with the neighboring nodes, distributes the input data appropriately across the processors and combines
the local results to form the output data. Since the computation and communication schedules are static, the
scheduler introduces minimal run–time overhead. This also has the effect of simplifying the kernel by pushing the
work of generating computation and communication schedules into the model interpretation process.

4.4.1. Pipeline cut–through overview

Pipeline Cut-Through (PCT) is a communication technique that allows synchronous data flows parallelized with the
spatial or temporal data parallel constructs to be mapped to a group of C40s connected in a sequential
copmputational grouping called a pipeline (a PCT group). PCT achieves computational organization by routing all
communications, including the distribution (splitting) of input data and the collection of partial results (merging), along
the C40 pipeline (see Figure 6). PCT also provides coordination between the communication and computation
processes. Since PCT implements the parallel facilities automatically, the data parallelism is absolutely transparent to
the programmer.

Each node of a PCT group performs the same computations on a different section of the image data. The incoming
stream is split and spread across the memory banks of the group nodes, and after the local data flow computation
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has produced the partial results, they are merged to form the output data stream. As well as splitting and merging the
data stream, the communication engine also supports the sharing of regions of the input sequences between two or
more nodes in a PCT group. For more information about PCT, see [5-8].

4.5. The image processing library

The actual image processing functionality is provided by a library of image processing algorithms written in C and
compiled with the standard Texas Instruments C40 compiler. This library is the simplest component of the system,
since the image processing functions can be written as if they were to be used in a normal uni–processor system.  It
was decided to take this approach instead of generating the image processing specific code directly from the models
so that image processing libraries optimized for the target architecture could be re–used, which saves time and
results in better resource utilization.

4.6. The MIRTIS interpreter

The model interpreter is the heart of any MGA system, and requires the largest implementation effort. The job of the
MIRTIS model interpreter is to translate the IPDL models into a decomposition of the data flow, scale and map the
decomposition to the underlying hardware architecture, and construct network communication and computation
schedules which configure the real–time image processing kernel and realize the parallel real–time computation.
Referring to figure 4, the products of the interpretation are (1) PCT network configuration files, and (2) a GUI
configuration file. These files are used in (1) booting the network, (2) configuring the network communication engines
and schedulers, and (3) configuring the dynamic parameter graphical user interface.

4.6.1. Relationship between performance models and allocation

Performance models are needed for determining (1) if a particular computation can meet the specified performance
goals using the available hardware, (2) a decomposition method and granularity of parallelism (scale) for each block,
and (3) a mapping of the decomposed computations to the hardware that will meet the constraints. In general,
performance models are dependent upon the properties of the particular computations, the parallelization technique,
and the allocation to the hardware network. This forces the processes of decomposing the data flow and allocating
the data flow to the hardware to occur simultaneously. It is preferable to decouple these processes to make the
mapping more practical to automate.

Due to the properties of the PCT communication technique and the support provided by the PCT run–time system,
the allocation scheme and hardware topology can be simplified enough that the throughput and latency models can
be built in a separate step before allocation. This effectively decouples the decomposition and allocation processes,
making the automatic mapping of data flows to hardware tractable. The emphasis in developing performance models
can thus be placed on the properties of the computations. See [7] for a complete development of these models.

4.6.2. The interpretation procedure

The decomposition and allocation processes can be made independent by assuming that the PCT run–time system
will be used, the search for an appropriate mapping between the image processing data flow and the hardware
pipeline can be reduced to finding an appropriate partition of the dataflow, and choosing a decomposition alternative
(a supported type of parallel decomposition) and a scaling factor for each PCT Block.

The success of a particular decomposition involves building throughput and latency models and comparing them to
the throughput and latency goals specified in the system’s RealTlmeConstraints model, then making sure that the
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hardware architecture can support the decomposition. Enough of the appropriate type of processors must be
available, and they must be connected in an appropriate topology.

The procedure followed by the interpreter is to first partition the synchronous image processing data flow such that it
is compliant with the PCT run–time system (see [5-8]). Then a search is performed for a combination of block
decomposition alternatives and scaling factors that will meet the performance constraints and that the hardware
architecture can support.

The interpretation algorithm performs an exhaustive search of all decomposition alternative combinations until either
the constraints have been met, or the valid alternative sets have been exhausted. Alternative combinations that meet
the hard real–time constraint (s), but may not meet the other(s), are stored during the search. The end result of a
successful search is a partition, and a set of decomposition alternatives and scale factors for the partition blocks that
can be allocated to the hardware pipeline to achieve the target throughput and latency. If no solution is found during
the search, an attempt is made to relax the throughput and/or latency constraints. If both constraints are hard
constraints, then no concessions are made. Otherwise, the alternatives that were stored during the search are
examined and the one that most nearly matches the hard constraints is chosen. The decision of which of these most
nearly matches the constraints is made by putting priority on throughput by choosing the set which produces the
highest frame rate. This decision was made primarily because the system was designed with real–time video in mind,
and in video applications throughput is most often the more important constraint.

The allocation occurs only after a scaled decomposition has been chosen for the solution. This decoupling of the
decomposition and allocation was made possible by first partitioning the data flow and using the PCT run–time
system. Without this simplification, the performance models would be inextricably dependent upon the allocation, and
thus a much more complicated procedure would be required.

5. CONCLUSIONS
This work has begun to address the problems which must be solved to support the current and future NDE image
processing applications. Some more involved image processing applications may require on the order of billions of
operations per second to support real-time applications. The work has taken a novel approach toward parallel
programming by generating parallel real–time implementations of image processing data flows from high–level
specifications.

The implemented system includes a graphical environment with which the user builds visual models of the data flow
computation, the hardware resources available to solve the problem, and real–time specifications of an application
(figure 6). A model interpreter automatically transforms these models into a configuration of a real–time system that
executes the modeled computation. The interpreter performs the data flow decomposition, performance modeling,
scaling, load balancing, and scheduling automatically, then allocates the decomposed, scaled computation to a
network of DSPs. A parallel image processing run–time kernel provides communication, routing, scheduling, and
synchronization for the implementation.  The current system can process incoming video data in real-time, process
data from a system disk in non
real-time, and in the near future,
will support web based
interaction using the MIRTIS
system as a web-based image
compute server (figure 7).

Although the mapping requires
knowledge about the underlying
run–time system, the
applications are specified in
terms of high-level models.
This approach, supported by
the MGA architecture, results in a level of architecture independence that will allow much of the system to be re-used
when the target hardware platform evolves with the availability of faster and cheaper hardware.

Presently the system is being extended to support C44 TIMs along with C40 TIMs.  Future plans call for inclusion of
TI 320C6x TIM modules (~1.5 Billion Operations/sec) and Field Programmable Gate Arrays (FPGAs) to perform more
involved real-time calculation and data reduction processing. The integration of these new types of hardware will
require changes in both the underlying runtime system and the interpretation procedure, but we expect that these
changes can be achieved through extensions of the existing system as opposed to totally new efforts.
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