
Formalizing the Specification of Model Integrated
Program Synthesis Environments

Greg Nordstrom
Institute for Software Integrated Systems

Vanderbilt University
230 Appleton Place, Suite 201

Nashville, TN 37203
615-343-7521

greg.nordstrom@vanderbilt.edu

Abstract—Model integrated computing (MIC) is an
effective and efficient method for developing, maintaining,
and evolving large-scale computer-based systems (CBSs).
One approach to MIC is to synthesize application programs
from domain-specific models created using customized,
model integrated program synthesis (MIPS) environments.
The MultiGraph Architecture is a toolset for creating
graphical domain-specific MIPS environments (DSMEs).
By modeling the syntactic, semantic, and presentation
requirements of a DSME, ametamodelis formed and used
to synthesize the DSME itself, enabling design environment
evolution in the face of changing domain requirements.
Because both the domain-specific applications and the
DSME are designed to evolve, efficient and safe large-scale
computer-based systems development is possible over the
entire lifetime of the CBS.

This paper presents a method to represent DSME
requirements using UML class diagrams and predicate logic
constraint language expressions, and discusses automatic
transformation of metamodel specifications into DSMEs.

TABLE OF CONTENTS

1. INTRODUCTION

2. MODEL-INTEGRATEDPROGRAM SYNTHESIS

3. METAMODELING CONCEPTS

4. USING THEMETAMODELING SYSTEM

5. CONCLUSIONS

1. INTRODUCTION

Large computer-based systems (CBSs), where functional,
performance, and reliability requirements demand the tight
integration of physical processes and information
processing, are among the most significant technological
developments of the past 20 years [1]. CBSs operate in ever-
changing environments, and throughout the system’s life
cycle, changes in mission requirements, personnel,
hardware, support systems, etc., all drive changes to the
CBS. Rapid reconfiguration via software has long been seen
as a potential means to effect rapid change in such systems.

Examples of environments include large-scale production
facility process monitoring; real-time diagnostics and
analysis of manufacturing execution systems; web-based
information distribution, integration, and management;
surety of high consequence, high reliability systems; and
fault detection, isolation, and recovery of space vehicle life
support systems.

Due to the complex nature of large-scale, mission-critical
systems, software modification involves a large amount of
risk. The magnitude of this risk is proportional to the size
and importance of the system, not to the size of the change.
Small modifications in one area can cause large and
unforeseen changes in others. Because such risk is always
present, it must be managed. To effectively manage such
risk, the entire system must be designed to evolve. Key
factors in this evolution are:

• Requirements capture: A method to state the system’s
requirements and design in concise, unambiguous
terms.

• Program synthesis: The ability to automatically
transform requirements and design information into
application software.

• Application evolution: A method to safely and
efficiently evolve the application software over time as
system requirements change.

• Design environment evolution: A method to ensure the
design environment (e.g. design and analysis tools, etc.)
can correctly model domain-specific systems as domain
requirements change.

An emerging technology that enables such evolution is
model integrated computing (MIC). MIC allows designers to
create models of domain-specific systems, validate these
models, and perform various computational transformations
on the models, yielding executable code or input data
streams for simulation and/or analysis tools.

One approach to MIC is model-integrated program synthesis
(MIPS). In MIPS, formalized models capture various
aspects of a domain-specific system's desired structure and



behavior. Model interpreters are used to perform the
computational transformations necessary to synthesize
executable code for use in the system’s execution
environment, often in conjunction with code libraries and
some form of middleware (e.g. CORBA, the MultiGraph
kernel [2], POSIX, etc.), or to supply input data streams for
use by various GOTS, COTS, or custom software packages
(e.g. spreadsheets, simulation engines, etc.) When changes
in the overall system require new application programs, the
models are updated to reflect these changes, the
interpretation process is repeated, and the applications and
data streams are regenerated automatically from the models.

The MultiGraph Architecture (MGA) is a toolset for
creating domain-specific MIPS environments. Although the
MGA provides a means for evolving domain-specific
applications, such capability is generally not enough to keep
pace with large changes in systems requirements.
Throughout the lifetime of a system, particularly a large-
scale system, requirements often change in ways that force
the entire design environment to change. For example, if a
domain-specific MIPS environment (DSME) exists for
modeling a chemical plant and generating executable code
for use on the plant's monitoring and analysis computers,
what happens when new equipment is later added to the
plant – equipment that was not in use or was unheard of at
the time the DSME was created? In all likelihood, the
existing DSME would not be able to model new
configurations of the plant. Instead, the entire DSME must
be upgraded to allow models of the new equipment to be
incorporated into existing and future chemical plant models.

The MGA tools have been used to develop MIC solutions
for computer-based systems for over 10 years [3] [4] [5] [6]
[7] [8]. Until now, DSMEs were handcrafted, and rebuilding
a DSME was a long and costly process. Our approach is to
automatically generate the DSME by applying MIPS
techniques to the process of creating the DSME itself – to
"model the modeling environment" in a manner similar to
modeling a particular domain-specific application. (In fact, a
DSME is a domain-specific application, where the domain is
the set of all possible MIPS environments.) Just as domain-
specific models are used to generate domain-specific
applications, by adding a metaprogramming interface to a
MIPS environment, the MIPS environment can be used to
generate various DSMEs. Such a MIPS environment is
called a metamodeling environment. Because models
created using a metamodeling environment describe other
modeling systems, they are calledmetamodels– formalized
descriptions of the objects, relationships, and behavior
required in a particular DSME. It can be seen that this
approach to DSME design and evolution is similar to that of
evolving domain-specific applications using DSMEs – just
"up one level" in the design hierarchy.

Metamodel

Domain-specific
MIC Application

Domain Model

is an
instance of *

Chemical Plant
Metamodel

specifies

produces
Chemical Plant

Modeling
Environment

synthesizes

Chemical Plant
Application

*

Chemical Plant
Model

*

is an
instance of *

Metamodel

Domain-specific
MIC Application

Domain Model

is an
instance of *

Chemical Plant
Metamodel

specifiesChemical Plant
Metamodel

specifies

produces
Chemical Plant

Modeling
Environment

synthesizes

Chemical Plant
Application

*Chemical Plant
Application

*

Chemical Plant
Model

*Chemical Plant
Model

*

is an
instance of *

Figure 1 Modeling and metamodeling relationships

Figure 1 illustrates the relationships between the conceptual
notions of metamodels, domain models, and domain-specific
MIC applications and the more concrete components of an
actual MIC application – in this case a chemical plant
modeling environment. On the left, domain models are
shown to be instances of metamodels, and domain-specific
MIC applications are shown to be instances of domain
models. Said another way, a metamodel is used to specify all
possible domain models, and a domain model is used to
specify all possible domain-specific applications.

The center of Figure 1 shows specialized versions of the
metamodel, model, and domain-specific MIC application
objects used in chemical plant modeling. A chemical plant
metamodel specifies the chemical plant modeling
environment (shown on the right). The chemical plant
modeling environment is used to produce chemical plant
models and to synthesize chemical plant applications from
those models. Note that the general relationships between
metamodels, domain models, and domain-specific MIC
applications still hold – the chemical plant model is one
instance of all possible chemical plants specified by the
chemical plant metamodel, and the chemical plant
application is one instance of all possible chemical plant
model applications.

This paper presents a method for creating metamodels to
represent DSME requirements using UML object diagrams
and predicate logic constraint language expressions, and
discusses automatic transformation of such metamodels into
DSMEs.

2. MODEL-INTEGRATEDPROGRAMSYNTHESIS

Modeling reduces design cycle times, allows completeness
and consistency checking throughout the design process,
aids in documenting the design itself, and, in the case of
executable models, allows automated design validation
and/or simulation. Because modeling lowers cost and error
rates, it becomes a key strategy in any system design process
[9]. The artifacts of the modeling process are models –
abstractions of the original system. A key feature of a model



is its ability to reduce or hide complexity. To aid designers
in creating models of hardware and software systems,
various modeling languages and design environments have
been created. For such languages to be successful, they must
be specific enough to enable designers to represent the key
elements of various designs without undue constraint, while
remaining general enough to allow a fairly wide variety of
models to be created.

A MIPS environment operates according to a domain-
specific modeling paradigm– a set of requirements that
govern how any system in the particular domain is to be
modeled. These modeling requirements specify the types of
entities and relationships that can be modeled; how to model
them; entity and/or relationship attributes; the number and
types of aspects necessary to logically and efficiently
partition the design space; how semantic information is to be
represented in, and later extracted from, the models; analysis
requirements; and, in the case of executable models, run-
time requirements.

Once a modeling paradigm has been established, the MIPS
environment itself can be built. A MIPS environment
consists of three main components: (1) a domain-aware
model builder used to create and modify models of domain-
specific systems, (2) the models themselves, and (3) one or
more model interpreters used to extract and translate
semantic knowledge from the models.

3. METAMODELING CONCEPTS

More and more, the prefix "meta" is being attached to words
that describe various modeling and data representation
activities (e.g. metaprocess, metadata, metaobject, etc.)
Unfortunately, the prefix is not always applied consistently,
causing considerable confusion among researchers.
Therefore, in the context of this paper, the following
definitions apply:

• Model: An abstract representation of a CBS.
• Modeling Environment: A system based on a

modeling paradigm for creating, analyzing, and
translating domain-specific models.

• Metamodel: A model that formally defines the syntax,
semantics, presentation, and translation specifications of
a particular domain-specific modeling environment.

• Metamodeling Environment: A tool-based framework
for creating, validating, and translating metamodels.

• Meta-metamodel: A model that formally defines the
syntax, semantics, presentation, and translation
specifications of a metamodeling environment.

In a very real sense, modeling and metamodeling are
identical activities – the difference being one of
interpretation. Models are abstract representations of real-

world systems, and when the system being modeled is a
system for creating other models, the modeling activity is
correctly termed metamodeling. Therefore, concepts that
apply to modeling also apply to metamodeling. This logic
can be extended to the process of meta-metamodeling, too.
However, because of the goals of modeling, metamodeling,
and meta-metamodeling are quite different, a four-layer
conceptual framework for metamodeling has been
established and is in general use by the metamodeling
community. The following table, taken from [10], describes
each layer:

Table 1 Four-layer metamodeling architecture

Layer Description
Meta-metamodel The infrastructure for a metamodeling

architecture. Defines the language for
describing metamodels.

Metamodel An instance of a meta-metamodel.
Defines the language for specifying a
model.

Model An instance of a metamodel. Defines
a language to describe an information
domain.

User objects An instance of a model. Defines a
specific information domain.

This four-layer architecture creates an infrastructure for
defining modeling, metamodeling, and meta-metamodeling
languages and activities, and provides a basis for future
metamodeling language extensions. The architecture also
provides a framework for exchanging metamodels among
different metamodeling environments – critical for tool
interoperability, since such interoperability depends on a
precise specification of the structure of the language [10].
The previous definitions for Model, Metamodel, and Meta-
metamodel correspond to the upper three layers of Table 1.

Modeling Syntax, Semantics, and Presentation

To properly capture the syntax of a modeling language, a
metamodel must describe all entities, relationships, and
attributes that may exist in the target language. As discussed
in [10], when specifying graphical modeling languages, an
abstract syntax – a language syntax devoid of
implementation details – is first specified. Then a concrete
syntax is defined as a mapping of the graphical notation onto
the abstract syntax, clearly defining the particular graphical
idioms and constructs used to represent entities,
relationships and attributes defined in the abstract syntax.
Furthermore, in the case of a multi-aspect graphical
modeling language, where models are to be viewed from
different aspects or points of view, the metamodel must
clearly define a partitioning of the graphical constructs into
such aspects.



Modeling language semantics must also be specified in a
metamodel. It is necessary to distinguish among two types of
semantics – static and dynamic. Static semantics refer to the
well-formedness of constructs in the modeled language and
are specified as invariant conditions that must hold for any
model created using the modeling language. Dynamic
semantics, however, refer to the interpretation of a given set
of modeling constructs in the context of model instances
themselves. Only static semantics may be specified in a
metamodel – the metamodel has no way of knowinga priori
what meaning to associate with particular instances (i.e.
particular models) created using the language.

Another consideration in any metamodeling language is the
form of these invariant constraint statements. Constraints
should be analyzable, allowing automated or semi-
automated consistency checking before synthesizing a
modeling environment. This requires that they be precisely
stated using a mathematical language such as predicate
calculus, where invariants take the form of Boolean
expressions – expressions that must be satisfied by any
instance model created using the DSME.

After the syntax and semantics of a domain-specific
modeling language have been specified, the presentation
specifications must be defined. Part of this specification is
the mapping of graphical modeling idioms available in the
target modeling environment onto the abstract syntax
discussed earlier. Another part of the presentation
specification involves deciding how best to represent the
syntactic and semantic specifications graphically. For
example, if a target modeling environment supports part-
whole hierarchy through the use of object containment, one
may use this modeling environment feature as a mechanism
for representing aggregation. Of course, other choices may
exist, such as representing containment as a special type of
interconnection. The choice rests with the metamodeler,
given the capabilities of a particular graphical modeling
environment.

As stated earlier, making modeling (and metamodeling)
tools interoperable requires that metamodels be exchanged
among various metamodeling tool suites. This requires that
the structure of any language – its syntax and semantics – be
precisely specified in the metamodel, apart from the
presentation specification. In this respect, the presentation
specification becomes an implementation detail that depends
on the particular editing environment that is being mapped
onto the syntactic and semantic specifications of the
modeling language. Therefore, metamodeling tools and
environments must be able to accept metamodels specified
in a variety of metalanguages, or those metalanguages must
be translatable to a metalanguage that the metamodeling
environment understands. This again underscores the need

to separate the implementation details from the language
specification itself.

Metamodel Composition and Translation

Because common modeling concepts apply to a wide variety
of engineering domains, the approach to creating DSMEs is
to customize (i.e. configure) a general graphical modeling
environment for use in a particular domain according to
specifications included in a metamodel. This is done by
representing general modeling principles abstractly and
placing such representations in a repository or library. The
metamodeler then accesses these representations and
composes a metamodel as dictated by the modeling
paradigm. Such an approach allows quick and accurate
construction of metamodels – assuming, of course, that these
individual representations have been validateda priori, and
that the act of combining or composing them does not
negate their individual validations (or that re-validation can
be easily accomplished).

Table 2 General modeling principles

Name Description
Module Interconnect Provides rules for connecting

objects together and defining
interfaces. Used to describe
relationships among objects.

Aspects Enables multiple views of a
model. Used to allow models to
be constructed and viewed from
different “viewpoints.”

Hierarchy Describes the allowed
encapsulation and hierarchical
behavior of model objects. Used
to represent information hiding.

Object Association Binary and n-ary associations
among modeling objects. Used
to constrain the types and
multiplicity of connections
between objects.

Specialization Describes inheritance rules.
Used to indicate object
refinement.

Table 2 describes several general modeling principles.
These principles represents constraints on the modeling
process. Because of their general nature, the principles must
be customized before being used in a given metamodel. This
allows the metamodeler to inject domain-specific concepts
into the metamodel. One approach to this customization is
parameterization.

Figure 2 defines a general constraint on binary object
association (shown both graphically and textually). This
constraint specifies that an object of type A can be



associated with between r and s objects, inclusive, of type B,
and that objects of type B can be associated with between p
and q objects, inclusive, of type A.

ObjAssociation(A, p, q, B, r, s) {
// f is a parameterized, invariant
// Boolean expression representing a
// general object association constraint.
return f(A,p,q,B,r,s);

}

Figure 2 General object association constraint (shown
graphically and textually)

Now consider a DSME for modeling aircraft in-flight safety
systems, where between three and six engine temperature
sensors can be associated with a single fire suppression
system actuator. The general object association constraint
from Figure 2 is parameterized for this particular domain as
follows:

DomainConstraint:ObjAssociation();
.
.
.

DomainConstraint(Actuator,1,1,Sensor,3,6)=true;

Figure 3 Customized general object association constraint

Figure 3 shows an instance of the general object association
constraint parameterized for the specific domain. In this
case, objects A and B become Actuator and Sensor,
respectively, and specific values are assigned to the
variables p, q, r, and s.

Tailoring general modeling principles in this manner
represents specifying the DSME's modeling language
syntax. There must also be a mechanism for specifying the
semantics of the language. This is done by directly including
additional domain-specific constraints that, even in their
general form, pertain only to the domain being modeled.
Such constraints would not be present in any general
modeling constraints library, since they only apply to the
particular domain.

Figure 4 shows how metamodels are composed by tailoring
general model composition constraints and combining them
with constraints specific to the domain.

Composer
Domain-Specific

Constraints
Domain-Specific

Concepts

Metamodel

• Module Interconnect
• Aspects
• Hierarchy

• Object Association
• Specialization

(Inheritance)

Model Composition Constraints

Figure 4 Metamodel composition

Once the syntactic and semantic specifications for a
modeling language are composed into a metamodel, a
modeling language specification exists, albeit still abstract.
Additional specifications regarding how the DSME presents
the language's entities and relationships to the modeler must
be made. In other words, the language specification is not a
specification for an entire modeling environment. It can be
argued that presentation specifications are merely additional
syntactic specifications. As mentioned earlier, however, for
reasons of portability and interoperability it is desirable to
keep the presentation specifications separate from the
syntactic and semantic specifications.

Finally, since a general modeling environment should
include facilities for extracting information from model
instances created using the environment, a set of model
interpretation specifications should be included when
specifying a complete DSME. Such interpreter
specifications are a form of semantic specification, but as
with the presentation specifications, it is better to develop
and maintain interpreter specifications separately from the
syntactic, semantic, and presentation specifications already
discussed. See [11] for a discussion of the theory and
practice of specifying interpreter behavior.

Semantic
Specifications

Syntactic
Specifications

Interpreter
Specifications

Constraint Manager

Graphical Model Editor
• Object Construction
• Object Visualization
• Relational Constraints
• Zooming
• Customization

Model Database

Model Interpreters

Presentation
Specifications

Metamodel

-

Semantic
Specifications

Syntactic
Specifications

Interpreter
Specifications

Constraint Manager

Graphical Model Editor
• Object Construction
• Object Visualization
• Relational Constraints
• Zooming
• Customization

Model Database

Model InterpretersModel Interpreters

Presentation
Specifications Metalevel

Translation

Semantic
Specifications

Syntactic
Specifications

Interpreter
Specifications

Constraint Manager

Graphical Model Editor
• Object Construction
• Object Visualization
• Relational Constraints
• Zooming
• Customization

Model Database

Model InterpretersModel Interpreters

Presentation
Specifications

Metamodel

-

Semantic
Specifications

Syntactic
Specifications

Interpreter
Specifications

Constraint Manager

Graphical Model Editor
• Object Construction
• Object Visualization
• Relational Constraints
• Zooming
• Customization

Model Database

Model InterpretersModel Interpreters

Presentation
Specifications Metalevel

Translation

Actuator Sensor
1..1 3..6

A B
p..q r..s



Figure 5 Metamodel translation

As mentioned earlier, DSME synthesis and evolution is done
by translating the metamodel to configure the elements of a
general modeling environment, creating the DSME. Figure 5
shows a metamodel containing the necessary specifications.
Translating these specifications into a form suitable for
configuring the DSME is done by the metalevel translator.
The Constraint Manager, which is responsible for ensuring
that only valid models are created in the target domain, is
configured using information from the metamodel’s
semantic specification (i.e. constraint equations). The
Graphical Model Editor is configured by combining
information from the semantic, presentation, and syntactic
specifications. This includes managing how various aspects
of the models are presented, how objects are created, and
how to control the type and multiplicity of object
associations. Model Interpreters are partially configured
using information from the metamodel’s interpreter
specification.

Constraint Management

The activity of modeling is essentially choosing a particular
model from an infinite set of possible models. By limiting
the types of modeling objects and relationships allowed in
the models, the set of possible models can be greatly
reduced (of course, the set can still be infinite!) As discussed
in the previous section, these limitations represent the static
semantics of a modeling paradigm, and as such, appear as
domain-specific modeling constraints in the metamodel.
Such constraints can only be enforced in the presence of
actual domain-specific models – model instances created
using the modeling language specified by the metamodel.
Enforcing these constraints is done by the constraint
manager. The constraint manager is part of the domain-
specific modeling environment. It provides various queues
to the modeler according to the static semantics described in
the metamodel.

Consider again the processors and sensors example. It was
stated earlier that sensors can be connected to processors,
and vice versa. By specifying the entities (processors and
sensors), the connection roles and multiplicities, and a
simple mapping to particular graphical objects, the resulting
sensor-to-processor connection specification could be easily
enforced by a graphical model editor – the graphical editor
would only allow interconnections between processors and
sensors, and disallow all other types of connections (e.g.
processor-to-processor, sensor-to-sensor, etc.) However,
suppose a domain-specific constraint is included in the
metamodel stating that every sensor must be connected to
something (a very important real-world consideration).
Although such a constraint can easily be stated in the

metamodel (for example, by including an invariant
expression stating that the size of the set of processor
objects connected to the output of any sensor be greater than
zero), such a constraint can only be checked once a specific
model exists. In other words, the graphical model editor can
preventcertain editing actions, but cannotguaranteecertain
editing actions. Of course, the constraint manager can't
guarantee certain editing actions either, but it can indicate
that, at a given point in time, a certain model does not satisfy
a particular constraint.

4. USING THEMETAMODELING SYSTEM

To illustrate the process of specifying and synthesizing a
DSME, a simple audio processing system modeling
environment will be created. The DSME requirements are:

• Audio systems are to be modeled using microphone,
preamp, power amp, integrated amp, and speaker
components.

• Integrated amps contain one or two preamps and one or
two power amps, along with input and output ports.
Connections between input ports, preamps, power
amps, and output ports indicate signal flow paths within
an integrated amp.

• Audio systems consist of at least one microphone, one
integrated amp, and one speaker. Connections between
microphones, the input ports and output ports of
integrated amps, and speakers indicate signal flow paths
in the audio system.

• Microphones connect to the input ports of integrated
amps. The output port of every integrated amp must be
connected to at least one speaker.

• Modelers must be able to create models of both mono
and stereo audio processing systems.

The Audio Processing System Metamodel

Figure 6 below shows the UML portion of the audio
processing system metamodel. This specification is a direct
representation of the requirements listed above.

Figure 6 specifies the types of modeling objects allowed
(e.g. Mic s, Preamps, etc.), object attributes (e.g.
Rating ), and association types allowed among the objects
(e.g. PreToPower ). The metamodel shows that
IntegratedAmp s are made up of one or twoPreamps,
one or twoPowerAmps, and zero or moreInPort s and
OutPort s. A System consists of one or more
IntegratedAmp s along with one or moreSpeaker s
and/or Mic s. A UML Note is used to hold metamodel
version information. Within an IntegratedAmp ,
InPort s connect to PreAmps, PreAmps connect to
PowerAmps, and PowerAmps connect to OutPort s.
Mic s connect to theInPort s of IntegratedAmp s and



OutPort s of IntegratedAmp s connect toSpeaker s,
forming models of audio processing systems
(interconnections show signal flow paths).

While Figure 6 captures the audio processing system
requirements as listed above, it represents a fairly restrictive
approach to specifying a DSME. Classification of similar
component types is not used, and many associations between
objects need to be defined (e.g.MicToIn , InToPre ,
PreToPower , etc.). Such a brittle DSME design will
generally require significant modification as domain
requirements change. For example, if a new signal
processing component such as a noise gate were added to
the domain and allowed to connect betweenMic s and the
InPort s of IntegratedAmp s, a noise gate object would
need to be added to the metamodel, the existingMicToPre
connection would have to be discarded, and two new
connection specifications (e.g. MicToGate and
GateToIn ) would have to be created between the noise
gate and theMic andInPort objects.

Figure 7 shows a more general approach. Here, abstract
Component and Port objects are defined. As before,
IntegratedAmp s contain Port s, but a more general
CompPortConn association is used to allow specialized

Mic , Preamp , PowerAmp, andSpeaker components to
connect to port-type objects (e.g.InPort s andOutPort s)
contained withinIntegratedAmp components. Such a
module interconnection design approach [12] (i.e.
connecting modules together via encapsulated I/O ports)
allows easier evolution of the modeling environment as
domain requirements change over time. Adding a noise gate
to the metamodel of Figure 7 involves deriving the new
noise gate object from theComponent object and
aggregating it into theSystem object. No new connection
specifications would be required, since the “connectivity” of
component objects is not changed when new components are
added.

Of course, the generalized approach of Figure 7 represents a
trade-off over the more specific design of Figure 6. Consider
the previously stated requirement that the output of every
IntegratedAmp be connected to at least oneSpeaker .
Such a requirement was easily modeled directly in Figure 6,
but cannot be modeled using the UML diagram of Figure 7
due to the general nature ofPort objects. Aconstrainton
the OutPort objects contained withinIntegratedAmp
objects must be specified.

Figure 6 UML portion of the audio processing system metamodel (initial version)



Constraints in the MGA metamodeling environment are
expressed using the MGA Constraint Language (MCL), a
predicate logic language based on OCL [13] [14]. MCL uses
a syntax and a semantics similar to OCL, but also includes
expressions for collections of specific kinds of MGA objects
such asmodels (MGA container objects) andparts
(contained objects). An MCL constraint specifying that
every IntegratedAmp be connected to at least one
Speaker is listed below.

models(“IntegratedAmp”)->
forAll(m|m.parts(“OutPort”)->

connectedTo(“Speaker”)->size() > 0)

This invariant expression states that the size of the set of
Speaker objects that eachOutPort contained within an
IntegratedAmp connects to must be greater than zero.
(Here, models(“IntegratedAmp”)-> returns the set of

all IntegratedAmp models in a given audio system, and
m.parts(“OutPort”)-> returns the set ofOutPort
objects contained within eachIntegratedAmp ). In other
words, the output of everyIntegratedAmp must be
connected to at least oneSpeaker . NB: The
CompPortConn association specifying that connections
may exist betweenComponent - andPort -type objects is
made at a hierarchically abstract level within the design –
between the abstract classesComponent andPort . While
such abstract associations allow for modular designs and
make designing and composing metamodels easier, such an
approach generally requires more constraint equations than
designs with no abstract objects.

The metamodel is not yet complete. What remains is to
establish a presentation specification that maps the general
modeling concepts expressed as UML objects and
associations onto the available MGA modeling resources

Figure 7 UML portion of the audio processing system metamodel (final version)



(i.e. the MGA graphical modeling objects and relationship
mechanisms). Table 3 shows which MGA resources can be
used to represent various general modeling concepts. MGA
resources are discussed in detail in [15].

Table 3 Representing general modeling concepts using
MGA modeling resources

General Modeling
Concept

MGA Modeling Resource

Module Interconnect Models containing Atomic Parts (playing
the role of interconnection ports)

Multi-Aspect Modeling Aspects
Hierarchy 1. Model/Atomic Part containment

2. Conditionalization
Object Association 1. Binary Connections

2. Atomic Part- and/or Model
References; References to References

Specialization (a.k.a.
Inheritance)

N/A (possibly using references,
attributes)

The details of the presentation specification mapping are
beyond the scope of this paper. However, once the mapping
has been defined, the metamodel is complete, and can be
used to generate the DSME itself. Figure 8 below shows the
resultant audio processing system modeling environment
being used to model a simple stereo audio system. The lower
MGA model is a detailed view of theIntegratedAmp

component shown in the center of the upper (“System ”)
MGA model.

5. CONCLUSIONS

This paper has presented a method for formally representing
DSME requirements as metamodels using UML class
diagrams and predicate logic constraint language
expressions which can be used to synthesize a target DSME.
The DSME can then be used to create models of domain-

Figure 8 Synthesized audio modeling environment



specific systems. Model interpreters are used to apply
semantic meaning to the models, forming a basis for model
analysis and for translation of the domain models into
executable models or data streams required by third-party
analysis and/or execution environments.

Such a metamodeling approach has three distinct
advantages. First, by formalizing the DSME specification
process, DSME design requirements can be stated
hierarchically and refined using information as it becomes
available. The formalized specifications also improve
communication and information exchange among customers
and developers. Second, once the design has been finalized
(i.e. once the metamodel is complete), synthesis of the target
DSME from the metamodel is rapid and less error prone
than previous manual implementation methods. Finally, this
approach allows DSMEs to be evolved in a safe and
controlled manner as domain requirements change.

Current and future research in DSME specification and
generation focuses on two goals: making better use of
existing metamodel design formalisms (e.g. UML and
MCL), and allowing interpreter specifications to be stated
formally in metamodels. It is anticipated that libraries of
metamodel solutions to “standard” modeling problems will
be developed and incorporated into the metamodeling
environment. Also, by formally specifying and including key
model interpreter features into metamodels, much of the
interpreter code currently written by hand can be generated
as part of the DSME synthesis process.

This work was sponsored by the Defense Advanced
Research Projects Agency, Information Technology Office,
as part of the Evolutionary Design of Complex Software
program, under contract #F30602-96-2-0227.

REFERENCES

[1] J. Sztipanovits, “Engineering of Computer-Based
Systems: An Emerging Discipline,”Proceedings of the
IEEE ECBS’98 Conference, 1998.

[2] J. Sztipanovits, et al.: “MULTIGRAPH: An
Architecture for Model-Integrated Computing,” Proceedings
of the IEEE ICECCS’95, pp. 361-368, Nov. 1995.

[3] E. Long, A. Misra, J. Sztipanovits: "Increasing
Productivity at Saturn",IEEE Computer Magazine, August,
1998.

[4] G. Karsai, F. DeCaria: "Model-Integrated On-line
Problem-Solving Environment for Chemical Engineering",
IFAC Control Engineering Practice, Vol. 5, No. 5, pp. 1-9,
1997.

[5] G. Karsai, S. Padalkar, H. Franke, Sztipanovits J.: "A
Practical Method For Creating Plant Diagnostics
Applications", Integrated Computer-Aided Engineering,
Vol. 3, No. 4, pp. 291-304, 1996.

[6] S. Padalkar, G. Karsai, J. Sztipanovits, F. DeCaria:
"Online Diagnostics Makes Manufacturing More Robust
(Part 1)",Chemical Engineering Magzine, pp. 80-83, 1995.

[7] G. Karsai, J. Sztipanovits, S. Padalkar, C. Biegl: "Model
Based Intelligent Process Control for Cogenerator Plants",
Journal of Parallel and Distributed Systems, pp. 90-103,
1992.

[8] J. Sztipanovits, J. R. Bourne: "Architecture of
Intelligent Medical Instruments",Journal of Biomedical
Measurements Informatics and Control, London, UK., Vol.
1, No. 3, pp. 140-146, 1987.

[9] D. Oliver, T. Kelliher, J. Keegan, Jr., Engineering
Complex Systems with Models and Objects. New York:
McGraw-Hill, 1997.

[10] UML Semantics, ver. 1.1, Rational Software
Corporation, et al., September 1997.

[11] G. Karsai, et al., “Towards Specification of Program
Synthesis in Model-Integrated Computing," Proceedings of
the IEEE ECBS’98 Conference, 1998.

[12] M. Rice and S. Seidman, “A Formal Model for Module
Interconnection Languages,” IEEE Transactions on
Software Engineering, Vol. 20, No. 1, pp. 88-101, Jan.
1994.

[13] Object Constraint Language Specification, ver.1.1,
Rational Software Corporation, et al., Sept. 1997.

[14] J. Warmer, A. Kleppe, The Object Constraint
Language. Addison-Wesley1999.

[15] A. Ledeczi, et al., “Metaprogrammable Toolkit for
Model-Integrated Computing," Proceedings of the IEEE
ECBS’99 Conference, 1999.

Greg Nordstrom is an Associate
Research Professor at Vanderbilt
University’s Institute for Software
Integrated Systems where much of
his work is in the area of graphical
modeling language specification. He
received the B.S. degree in electrical
engineering from Arizona State



University in 1987, the M.S. degree in electrical and
computer engineering from the University of Tennessee
Space Institute in 1992, and the Ph.D. in electrical and
computer engineering from Vanderbilt University in 1999.


