
Meta-level Extension of the Multigraph Architecture

Greg Nordstrom, Janos Sztipanovits and Gabor Karsai
Measurement and Computing Systems Laboratory

Vanderbilt University

Abstract
Domain-specific model integrated program synthesis

(MIPS) environments are created according to a
modeling paradigm – a description of the class of models
that can be created using the system. Just as model
integrated computing applications are executable
instances of domain models, domain models can be
viewed as instances of meta-models. Desired modeling
environment characteristics are selected from a library of
model composition constraints and combined with
domain-specific modeling concepts and constraints to
create a meta model. This meta model is then translated
and used to automatically generate the actual MIPS
environment. Advantages include support for formal
specifications of domain-specific modeling paradigms
and model interpreters, fast adaptation of applications
through the automatic re-synthesis of running
applications from models, evolution of applications
through model modification, and slow evolution through
incremental modification of the MIPS environment
components.

Background

Large computer-based systems operate in ever-
changing environments. Throughout a system’s life cycle,
changes in mission requirements, personnel, hardware,
support systems, etc., all drive changes to the system.
Rapid reconfiguration via software has long been seen as
a potential means to effect rapid change in such systems.
However, due to the extremely complex nature of large-
scale, mission-critical systems, software modification
involves a large amount of risk. The magnitude of this
risk is proportional to the size of the system, not to the
size of the change. Small modifications in one area can
cause large and unforeseen changes in others. Because
such risk is always present, it must be managed.

To effectively manage such risk, the entire system
must be designed to evolve. Key factors in this evolution
are a method to state the system’s requirements and
design in concise and unambiguous terms, the ability to
automatically transform requirements and design into

software, and a method to safely and efficiently modify
the software throughout its lifetime. One promising
technology to aid in such evolution is model integrated
computing.

Model-integrated computing

Model-integrated computing (MIC) environments
synthesize software from domain-specific models of the
desired system. Multiple models are used to capture the
behavior of the system’s software, its environment (e.g.
system hardware, external data flows, user interfaces,
etc.), and the interaction between the two. Thus, model
integrated computing is well suited for systems where
there is a high degree of coupling between the software
and its environment.

The MIC environment can be broken down into three
main layers of abstraction. The top, or meta-level, layer
contains the metaprogramming interface and meta-level
translators. Here, formal descriptions of particular
modeling environments are created using formal
specification languages. Examples include modeling
environments for process control and monitoring; real-
time diagnostics and analysis; information distribution
and management; surety of high consequence, high
assurance systems; and fault detection, isolation, and
recovery.

Once the meta-level specifications have been created
and validated, they are translated for use by the next layer,
the model integrated program synthesis (MIPS) layer. The
MIPS layer uses information from the meta-level
translators to synthesize domain-specific modeling
environments. These domain-specific modeling
environments are then used to create and analyze domain-
specific models of individual systems. Model interpreters
are used to synthesize the actual executable applications.

The Multigraph Architecture

The Multigraph Architecture (MGA), currently under
development at Vanderbilt University’s Measurement and
Computing Systems Laboratory, is a model integrated

computing infrastructure. The MGA provides a layered
software architecture and framework for building domain-
specific environments. Such environments are capable of:
(1) constructing, testing, and storing domain-specific
models, (2) transforming these domain models into both
analyzable and executable models, and (3) integrating
applications on heterogeneous computing platforms.

Figure 1. Creating a modeling environment
using the Multigraph Architecture (MGA)

Figure 1 shows how the MGA is used to create
domain-specific modeling environments. The process
begins by formulating the domain’s modeling paradigm.
The modeling paradigm contains all the syntactic and
semantic information regarding the domain – which
concepts will be used to construct models, what
relationships may exist among those concepts, how the
concepts may be organized and viewed by the modeler,
and rules governing the construction of models. The
modeling paradigm defines the family of models that can
be created using the resultant MIPS environment.

Both domain- and MGA experts participate in the
task of formulating the modeling paradigm. Experience
has shown that the modeling paradigm changes rapidly
during early stages of development, becoming stable only
after a significant amount of testing and use. A
contributing factor to this phenomenon is the fact that
domain experts are often unable to initially specify
exactly how the modeling environment should behave. Of
course, as the system matures, the modeling paradigm
becomes stable. However, because the system itself must
evolve, the modeling paradigm must change to reflect this
evolution. Changes to the paradigm result in new
modeling environments, and new modeling environments
require new models. Model migration is very much an
open issue.

Once a paradigm is decided upon, the environment
builder creates a model description file (MDF). The MDF
contains a formal, declarative language description of the
paradigm’s model construction semantics – what types of
objects may be used to construct models, how those
objects will appear on-screen, and how they may be
associated (i.e. connected) with each other. The MDF also

contains descriptions of any hierarchical and/or multi-
aspect model creation and viewing properties that must
exist in the modeling environment

Once created, the MDF is used to automatically
generate the graphical model editor, the object database
schema, and database interface code. At this point, the
domain-specific modeling environment can be used to
create models of specific systems within the domain.
However, because the MDF specifies only the model
construction semantics of the modeling paradigm, no run-
time meaning can be inferred from the models. Making
sense of the models, i.e. interpreting the models, is the job
of the model interpreters, which access and process data
from the populated object database for use by the analysis
tools and executable modules.

Although the MDF and the model interpreter code
actually form an informal, de facto specification for the
MIPS environment, there is no single specification that
could be used to formally validate the consistency of the
modeling concepts represented by the MDF and the
model interpreters. Paradigm validation is necessary to
ensure that the environment sufficiently constrains the
modeler, so that only legal models can be created. Only a
careful examination of the MDF and considerable
amounts of testing can uncover such inconsistencies – a
time consuming and error prone process for humans.

Meta-modeling

To address the current shortcomings of the MGA,
meta-modeling techniques are being developed. Meta-
modeling offers several advantages. First, standardization
is achieved by using a single MIPS environment
specification – a meta model. The meta model is written
using a formal specification language, and can be
constructed by combining predefined general modeling
constraints with domain-specific constraints and concepts.

Figure 2. MIPS environment and domain-
specific application synthesis using the MGA

Domain-Specific
Software Apps

Domain-Specific
Software Apps

Domain-Specific
Software Apps

Application
Layer

Domain Models

Model Integrated
Program Synthesis

Layer

Meta Model

Meta-Level
Programming

Layer

• Model Composition Constraints
• Domain-Specific Concepts
• Domain-Specific Constraints

Modeling
Paradigm

MGA Experts &
Domain Experts Define
… Modeling Requirements
… Analysis Requirements
… Run-time Requirements

1

Environment Users
… Create models
… Use analysis tools
… Run executables

3
Analysis

Tools
Executable
Modules

Model
Interpreters

Model
Interpreters

Model
Definition
File (MDF)

OODB

Generator

Graphical
Editor

Model
Interpreters

Environment Builders
… Create MDF
… Write Interpreters
… Test System2 Synthesized

Hand Coded

Such a modular approach makes constructing the
meta model easier, and contributes to a better
understanding of the paradigm – a critical factor when
initially creating a MIPS environment. In this way, less
iteration is required to settle on a “good” modeling
paradigm. Also, because the meta model is written using a
formal specification language, it can be reasoned about
with the help of a proof checker to uncover
inconsistencies in the paradigm before a MIPS
environment is created, allowing for faster, easier, and
safer system development and evolution.

The MGA has been extended to include a meta-
programming level as shown in Figure 2. Meta models,
consisting of general engineering model composition
constraints as well as domain-specific concepts and
constraints, are used to synthesize domain-specific MIPS
environments. These domain-specific MIPS environments
are then used to create domain-specific models and to
synthesize domain-specific applications based on those
models.

Composing meta models

The field of engineering contains many domains,
such as process control, digital signal processing, and
information distribution and management to name a few.
Each domain deals with inherently different notions, but
because they are all engineering systems, certain
modeling concepts can be applied to them as a whole. For
example, hierarchy is often used as a means to represent
information hiding, and module interconnection principles
are used to specify information flow. Such principles
represent constraints when applied to a particular domain.
Because such modeling constraints can be reused across
engineering domains, meta-models can be constructed
quickly and accurately from a standardized “library” of
engineering modeling constraints. This assumes, of
course, that each constraint has been validated
beforehand, and that combining constraints does not
invalidate such compositions or that re-validation of the
composed specification is possible.

Referring again to Figure 2, MGA meta models are
formed by composing general model composition
constraints with domain-specific concepts and constraints.
Meta-level translators are then used to automatically
create the necessary configuration files needed by the
program synthesis environment.

Applying domain-specific concepts involves
selecting certain model composition constraints for
inclusion in the meta model. Not all domains need every
constraint available in the library. For example, a simple
process control modeling application may not require
hierarchical behavior. For this reason, when creating
domain models, concepts specific to the domain must be

known a priori and must be used to guide the selection of
constraints from the library.

Constraint Name Constraint Description

Module Interconnect Provides rules for connecting
objects together. Used to describe
relationships among objects.

Aspects Enables multiple views of a model.
Used to allow models to be
constructed and viewed from
different “viewpoints.”

Hierarchy Describes the allowed encapsulation
and hierarchical behavior of model
objects. Used to represent
information hiding.

Object Association Binary and n-ary associations
among modeling objects. Used to
constrain the types and multiplicity
of connections between objects.

Specialization Describes inheritance rules. Used to
indicate object refinement.

Table 1. Model composition constraints

Table 1 describes these model composition
constraints. Note that these are not specific to a single
domain, but are written in such a way as to allow
application to many engineering domains. Because library
constraints have been predefined and pre-tested, meta
models can be constructed quickly and easily by selecting
specification modules according to the particular domain-
specific concepts required for the resulting MIPS
environment. While this modular construction method is
quite useful, it is not enough to adequately describe a
particular modeling domain. The constraints listed in
Table 1 are too general. They are “family-specific” (e.g.
engineering-specific) but not domain-specific. Before a
domain specification is complete, these model
composition constraints must be customized for the
specific domain. This is done by adding domain-specific
constraints.

Composition occurs via several mechanisms. The
simplest method is to include one specification in another.
This allows the meta models to be built up in a modular
fashion. When included specifications are too general for
a particular application, the modeler may choose to
translate the specification into a more specific form. For
example, the following partial specification, written in
Specware [3], describes a simple binary relation.

spec BINARY-RELATION is
sorts Domain, Range
op related? : Domain, Range -> Boolean

end-spec

This specification says that binary relations consist of
domains and ranges. The Boolean operation related?
allows the specifier to assert that a certain domain is
related to a certain range. Such a specification is much too
general for use in a meta model. However, by importing
and translating the sorts and operation contained in this
specification, a more domain-specific specification, called
CONNECTION, can be created as shown below.

spec CONNECTION is
translate BINARY-RELATION by
{ Domain -> Source,
Range -> Destination,
related? -> connected? }

end-spec

The resultant spec, CONNECTION, can now be used
to specify connections, which are made up of a source
connected to a destination. The binary operation
connected? can be used to assert that a particular
connection exists.

Another method for composing specifications with
Specware is the colimit. The colimit is used to create a
new specification from the union of two or more existing
specifications. The specifier indicates which portions of
each specification are to be shared in the union. For
example, one specification, named SIZE, may contain
axioms constraining an object’s size, while another
specification, COLOR, may contain axioms constraining
an object’s color. A new specification, IMAGE, could be
created from the colimit of SIZE and COLOR which
could be used to constrain both an object’s size and color,
as shown below.

spec SIZE is
axiom (height 10)
axiom (width 5)

end-spec
spec COLOR is

axiom (color “blue”)
end-spec
spec IMAGE is

colimit of diagram
nodes

E : TRIV,
SIZE,
COLOR

arcs
E -> SIZE
E -> COLOR

end-diagram
end-spec

The reader should not be concerned with the specifics
of Specware at this point, but recognize that this
mechanism allows axioms from two separate
specifications to be included in a newly created IMAGE
specification. In this example, IMAGE specifies objects

that are of height 10, width 5, and blue in color. The node
E:TRIV is used to “glue” together the specifications
SIZE and COLOR.

Proof-of-concept example

To assess the feasibility of applying meta-modeling
techniques to the MGA, a simple MIPS environment was
synthesized from a meta model. The example
demonstrates several key meta-modeling concepts, such
as formal specification of modeling constraints,
specification composition, and automatic synthesis of an
MDF.

Two model composition constraints (refer to Table 1.
above) included in this example are module
interconnection and object association. The example also
incorporates two domain-specific constraints –
constrained binary relationships and multiplicity.

Figure 3. Graphical meta model

Figure 3 is an Object Modeling Technique (OMT) [1]
object diagram which represents the modeling domain
used in this example. This object diagram is a meta model
which describes the relationships which are allowed to
exist in our modeling domain. The lines indicate which
objects can be connected together, the arrowheads1

indicate which object is the destination when connecting a
pair of objects, and the circles indicate how many of each
object can be connected together. Hollow circles indicate
zero or one object, while darkened circles indicate zero to
many. For example, when connecting AParts source
objects to BParts destination objects, the AParts object
can be connected to at most one BParts object.

Figure 4. Two domain models

Two possible domain models for our example
environment are shown in Figure 4. These are both
instances of the meta model in Figure 3. However, the
model on the left is illegal, since it violates the connection
rule established in the meta model for connecting AParts
source objects to BParts destination objects.

1 OMT uses a numbering scheme to indicate the source and destination
when connecting objects together. We have substituted the arrowheads
for clarity in this example only.

AParts BParts CParts

a1

a2

b1

c1

a1 b1 c1

b2b2 c2

L e g a lI l le g a l

Formal specification language

A model is said to be valid (or legal) if it conforms to
a given modeling paradigm. A model is correct if it
faithfully represents reality. Assuming that the modeling
paradigm is correct, we can state that all correct models
are valid models. However, the converse may not be true
– valid models are not necessarily correct models. For
example, imagine that an existing power plant is being
modeled, but the modeler fails to include a critical plant
component, such as an over-current detector. In this case,
the model is valid (the modeling paradigm does not
require over-current detectors, but merely allows them),
but incorrect – it does not represent reality. However, if
the modeling paradigm required every model to include
the over-current detector, the model would be invalid.

Why draw such a distinction? Looking again at
Figure 4, how does one become convinced that the model
on the left is, in fact, an illegal model? Only by reasoning
about a particular domain model in light of the meta
model can the domain model’s validity be determined.
And while reasoning in this manner may work for small
meta models, as the size and complexity of the modeling
paradigm grows, the meta modeler cannot be expected to
validate a meta model by mental reasoning alone. If,
however, the meta model is expressed in a formal
specification language, the meta modeler can use a
computer to aid in the task of ensuring meta model
consistency2.

The next question becomes “which formal language
to use?” The answer depends on the goals of the meta
modeling activity. In the case of the MGA, there are four
main goals driving the move toward meta modeling.

First, the formal language must be able to represent
the types of constraints that the meta modeler expects to
encounter. In the case of OMT, the modeler is faced with
a finite set of possibilities. Only so much can be
represented using OMT, and no facility exists for the
modeler to extend OMT to cover new situations. Thus,
graphical modeling “standards” such as OMT or UML [2]
are not adequate for describing the modeling relationships
found in typical MGA applications. A better choice in this
case is one of the many programmable formal
specification languages, such as Specware [3][4], Larch
[5], or PVS [6].

Second, meta models must be able to be assembled
from general, pre-existing specifications of model
composition constraints (refer to Table 1. above for
descriptions of the constraints.) The meta modeler must
be able to easily combine specifications to form a meta
model that accurately reflects the requirements

2 Consistent meta-models will lead to modeling environments which are
better able to prevent a system modeler from building invalid, if not
incorrect, models. Inconsistent meta-models will almost certainly lead to
incorrect models!

represented in the modeling paradigm. Therefore, the
formal language must have mechanisms for combining
one specification with another, and for customizing or
refining the specification from a general form to a more
domain-specific form. Specware was used earlier to show
how this can be accomplished, but Specware is not unique
in this respect. Other languages also have the capability to
create and refine specifications from existing ones.

Third, because the meta modeler will use computers
to aid in checking model consistency, the formal language
must support a theorem prover. Once the modeler
believes the meta model contains the proper axioms
describing the modeling paradigm, theorems must be
developed by which to test the meta model. Only then
will the meta modeler have sufficient confidence in the
meta model to use it to create a MIPS environment.

Finally, because the MIPS environment will be
synthesized from the meta model, the meta modeler must
be able to transform the meta model into a form suitable
for use by the MGA. Therefore, the formal language must
be an open language, supporting access to its internal data
structures, so that key pieces of information may be
extracted and used in the transformation process.

Object association and multiplicity

Figure 3 above describes two important requirements
of our example interconnection environment – the number
(multiplicity) and type (object association) of objects that
can be connected together. To develop these requirements
into formal specifications it is necessary to examine the
mathematical foundation of object association and
multiplicity. This foundation is rooted in set theory and
first order logic. The following discussion is based on
work done by Bourdeau and Cheng [7].

Figure 5. Set theory representation of an
injective relationship

Figure 5 is an example of a relationship R between A-
and B-type objects. The diagram shows that every
element of B is related to at most one element of B. Such
a relationship is called an injective binary relationship
between A and B. The relationship can be written as a
relational predicate as follows.

∀ x, y:A, b:B . (R(x, b) ∧ R(y, b) ⇒ x=y)

a1
a2

A

b1

b2

B

a3 b4
b3

R

This equation reads that for all x and y of type A and
all b of type B, if x is related to b and y is related to b then
x must equal y.

Functional (R,A,B) Every element of A is related to at
most one element of B

Injective (R,A,B) Every element of B is related to at
most one element of A

Surjective (R,A,B) Every element of B is related to
some element of A

Total (R,A,B) Every element of A is related to
some element of B

Table 2. Basic relationships used to develop
multiplicity constraints

Table 2. describes the four key relationships needed
to formally describe binary object associations with
multiplicity. By combining these relationships, any binary
object association with multiplicity can be described.

Figure 6. A zero-to-one to one binary
relationship

Figure 6 shows an OMT relationship that allows zero
or one A-type objects to be associated with exactly one B-
type object. Such a relationship can be described by the
conjunctive predicate formula R1(A, B) = injective(A, B) ∧
total(A, B) ∧ functional(A, B).

Figure 7. A one to zero-to-many binary
relationship

Similarly, Figure 7 shows a relationship that allows
exactly one A-type object to be associated with zero or
more B-type objects. This relationship can be written as
R2(A, B) = surjective(A, B) ∧ injective(A, B).

Figure 8. A zero-or-one to zero-to-many binary
relationship

By combining OMT diagrams, new diagrams can be
obtained. Figure 8 shows the result of combining Figures
9 and 10 to obtain a zero-to-one to zero-to-many
relationship. Mathematically, this relationship becomes
R3(A, B) = R1(A, B) ∩ R2(A, B) = injective(A, B). Thus,
new relationships can be formed by taking the

intersection of existing relationships. This important
concept allows complex specifications to be composed
from existing, more general specifications, as discussed in
the previous section.

Specification code

The following code fragments demonstrate the key
meta-modeling concepts contained in this example. A
complete listing of Specware code is available from the
authors upon request. The code begins with a simple
specification describing a binary connection.

spec BINARY-CONNECTION is
sorts Src, Dst
op conn : Src, Dst -> Boolean

end-spec

BINARY-CONNECTION introduces the concept of a
connection which has a source (Src) and a destination
(Dst). Also introduced is the boolean operation conn
which takes a source and destination as arguments and
returns true if they are, in fact, connected together.
Because BINARY-CONNECTION is intended to be used
exclusively in other specifications, and not by itself, no
axioms or operational definitions are included with it.
Also, the sort Boolean is not explicitly defined, since it
is built into Specware.

spec CONSTRAINED-BINARY-CONNECTIONS is
import BINARY-CONNECTION
op injective?:(Src, Dst -> Boolean) ->

 Boolean
op surject? :(Src, Dst -> Boolean) ->

 Boolean
op funct? :(Src, Dst -> Boolean) ->

 Boolean
op total? :(Src, Dst -> Boolean) ->

 Boolean
definition of injective? Is

 axiom (iff (injective? conn)
 (fa (x:Src y:Src b:Dst)
 (implies(and (conn x b)
 (conn y b))
 (eq x y))))

end-definition
 ...
end-spec

Next, a CONSTRAINED-BINARY-CONNECTIONS
specification is created by importing the BINARY-
CONNECTION specification. This type of inclusion is
similar to the C #include preprocessor directive.
CONSTRAINED-BINARY-CONNECTIONS contains the
signatures and definitions for the four key multiplicity
operations previously listed in Table 2. For brevity, only

A B
R1

A B
R2

A B
R3

the injective? definition is shown. The original
specification contains definitions for all four operations.

Using the operations contained in CONSTRAINED-
BINARY-CONNECTIONS, a series of specifications can
be created which define particular binary connections
with multiplicity. For example, the ZO-to-ZM-CONN
listed below defines a specification that allows zero-to-
one source objects to be associated with zero-to-many
destination objects. Such a connection was discussed in
the previous section. ZO-to-ZM-CONN contains an op
called zo-to-zm? which defines this relationship. As
expected from the earlier discussion, this relationship is
described mathematically as an injective relationship.

spec ZO-to-ZM-CONN is
import CONSTRAINED-BINARY-CONNECTIONS
op zo-to-zm? : (Src, Dst -> Boolean) ->

 Boolean
definition of zo-to-zm? is

 axiom (iff (zo-to-zm? c)
 (injective? c))

end-definition
axiom (zo-to-zm? conn)

end-spec

Although they specify relationships that are
constrained with respect to multiplicity, specifications
such as ZO-to-ZM-CONN are not useful in and of
themselves. Instead, they are placed in a model
composition constraints library, and are combined with
other specifications to form a complete object
interconnection specification.

Recall that in this example problem, the modeling
paradigm requires connections involving AParts as
sources and BParts as destinations to be of type zero-to-
one to zero-to-many. This domain-specific requirement is
described by the A-to-B-INTERCONNECTION
specification listed below.

spec A-to-B-INTERCONNECTION is
translate

colimit of diagram
nodes
S:TRIV, D:TRIV,
ZO-to-ZM-CONNECTION,
APARTS, BPARTS

arcs
S -> APARTS : { E -> AParts },
S -> ZO-to-ZM-CONN : { E -> Src },
D -> BPARTS : { E -> BParts },
D -> ZO-to-ZM-CONN : { E -> Dst }

end-diagram
by {conn -> ab-connection}

end-spec

Here, a colimit is formed between specifications that
describe the endpoints of the interconnection (APARTS
and BPARTS) and a specification that describes the

constrained connection itself (ZO-to-ZM-
CONNECTION). Two dummy specifications (S and D,
both of type TRIV, which each contain a single sort, E)
act as “glue points” during the colimit operation. The
colimit creates a new specification from the union of
specifications cited in the nodes section of the colimit.
The arcs section of the colimit allows the specifier to
indicate how the nodes are connected together, and which
sorts from each node (i.e. specification) are associated
with each other. Thus, the colimit can be seen as a union
of specifications with selective sharing of sorts.

The first two lines in the arcs section state that the
APARTS and ZO-to-ZM-CONN specifications are
associated together, and that the sort AParts is
associated with sort Source via the “glue” sort E. In
other words, the source of this particular type of
interconnection is an AParts type of object. Similarly, the
last two lines in the arcs section identify the destination
of the connection as a BPARTS object, by associating the
sort BParts in the BPARTS specification with sort E of
the D specification, which is also associated with sort Dst
of the ZO-to-ZM-CONN specification. Although both
the D and S specifications contain a sort named E, the E’s
are unique – sort E of specification D is distinct from sort
E of specification S.

Finally, notice that the A-to-B-
INTERCONNECTION refines the notion of a connection
into the more specific “ab-connection.” This is done
by translating the conn operation, which originated in the
BINARY-CONNECTION specification, into an operation
called ab-connection.

This example has shown that it is possible to use a
formal specification language to create general model
composition constraint specifications and refine and
compose them into a domain-specific specification. Such
an exercise is useful in its own right, to establish the
credibility of a modeling paradigm, to allow formal
reasoning of a specification, and to document the
system’s design in a formal way. However, this is not
enough. The MIC environment designer must be able to
take the formal specification, i.e. the meta model, and
translate it for use in synthesizing the MIC environment.
This final phase of the work is discussed below.

Mediator and MDF generation

Only by generating an MDF can a modeling
paradigm’s formal specification be fully utilized.
Generating an MDF from a formal specification requires
detailed knowledge about the application programming
interface (API) used by the specification language, so that
key information may be extracted from the final meta
model specification and used to generate the MDF.

Specware was written using Refine [8]. (Refine is a
programming environment for language design which
uses BNF-like notational descriptions of the language’s
grammar. Refine is a product of Reasoning Systems of
Palo Alto, CA, USA.) Because of this, a Refine-based
mediator had to be written to examine the resulting
Specware data structures, extract certain information
necessary to generate an MDF, and to finally create the
MDF. Because Specware is an emerging technology, little
formal documentation was available on the API used to
access the underlying data structures. However, with the
help of Specware design and maintenance personnel at the
Kestrel Institute, a mediator was developed to generate
MDF files from simple specifications – simpler
specifications than the example just presented. (The
modeling paradigm was the same, but the source
specifications contained only carefully written axioms
from which the MDF information could be easily
extracted.) The generated MDF was then used with the
MGA to synthesize a modeling environment which
conformed to the specified modeling paradigm. A more
detailed mediator, capable of creating an MDF from the
specifications presented in the proof-of-concept example
contained in this paper, was planned, but not completed.
Nonetheless, the concept of an automatically generated
MDF was demonstrated, albeit on a small scale.

Conclusions and future work

Clearly the need exists to apply meta modeling
techniques to the Multigraph MIPS environment, and the
approach discussed in this paper appears viable. The key
to meta modeling in this application is the use of a formal
specification language. Formal specification languages
enable system specifications to be standardized, allow
reuse of general modeling concept specifications, and
enable the MIPS environment creator to reason about the
modeling paradigm, validating the meta model’s
consistency before creating an actual MIPS environment.

Building on the work of Bourdeau and Cheng, this
paper develops Specware specifications for the model
composition constraints of binary object association and
connection multiplicity. These formal specifications were
then used in a proof-of-concept example to demonstrate
refinement of general model composition constraint
specifications into a domain-specific meta model. A
Specware mediator was created which generated an MDF
automatically from a simple set of specifications.

The remaining model composition constraints
(hierarchy, aspects, and specialization) must now be
formalized. However, new formal specification languages
should be investigated, such as PVS or Larch, as an
alternative to Specware. Larch appears particularly
attractive due to its open nature and the ability to create

domain-specific interface language specifications.
Regardless of the language chosen, it must allow easy
access to key specification information in order to allow
an MDF (or an MDF-like file) to be automatically
generated for use by the MGA to synthesize domain-
specific MIPS environments. Because the current MDF
language is known to be inadequate for specifying the
broad range of MIPS environments required, the
development of meta level extensions to the MGA must
be accompanied by, and must be done in conjunction
with, an effort to upgrade and expand the current model
description language used in the MGA.

This work was sponsored by the Defense Advanced
Research Projects Agency, Information Technology
Office, as part of the Evolutionary Design of Complex
Software program, under contract #F30602-96-2-0227.

References

[1] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W.
Sorenson, Object-Oriented Modeling and Design,
Prentice-Hall, 1991.

[2] UML Summary, Rational Software Corporation, 1997

[3] Y.V. Srinivas and R. Jüllig, About Specware, Suresoft,
Inc., 1996

[4] R. Waldinger, Y.V. Srinivas, A. Golberg, R. Jüllig,
Specware Language Manual, KDC and Suresoft, Inc.,
1996

[5] J.V. Guttag and J.J. Horning, Larch: Languages and
Tools for Formal Specification, Springer-Verlag, 1993.

[6] S. Owre, S. Rajan, J.M. Rushby, N. Shankar, and M.K.
Srivas. PVS: Combining specification, proof checking,
and model checking. In Rajeev Alur and Thomas A.
Henzinger, editors, Computer-Aided Verification, CAV
'96, volume 1102 of Lecture Notes in Computer Science,
pages 411-414, New Brunswick, NJ, Springer-Verlag,
July/August, 1996

[7] R.H. Bourdeau and B.H. Cheng, A Formal Semantics for
Object Model Diagrams, IEEE Transactions on Software
Engineering, Vol. 21, No. 10, October, 1995

[8] Refine User’s Guide, Reasoning Systems Inc., 1990

