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Abstract
Model integrated computing (MIC) is gaining

increased attention as an effective and efficient
method for developing, maintaining, and evolving
large-scale, domain-specific software applications
for computer-based systems. MIC is a model-based
approach to software development, allowing the
synthesis of application programs from models
created using customized, domain-specific model
integrated program synthesis (MIPS)
environments. Until now, these MIPS environments
have been handcrafted. Analysis has shown that it
is possible to “model the modeling environment”
by creating a metamodel that specifies both the
syntactic and semantic behavior of the desired
domain-specific MIPS environment (DSME). Such
a metamodel could then be used to synthesize the
DSME itself, allowing the entire design
environment to safely and efficiently evolve in the
face of changing domain requirements.  This paper
discusses the use of the Unified Modeling
Language and the Object Constraint Language to
specify such metamodels, and describes a method
for incorporating these metamodels into the
MultiGraph Architecture, a MIPS creation toolset.

Background

Large computer-based systems (CBSs), where
functional, performance, and reliability requirements
demand  the tight integration of physical processes and
information processing, are among the most significant
technological developments of the past 20 years [1].
CBSs operate in ever-changing environments, and
throughout a CBS system’s life cycle, changes in mission
requirements, personnel, hardware, support systems, etc.,
all drive changes to the CBS. Reconfiguration via
software has long been seen as a potential means to effect
rapid change in such systems. An emerging technology
that enables such system evolution is model integrated
computing (MIC).

Model-integrated computing

MIC is a methodology for generating application
programs automatically from multi-aspect models. One
approach to MIC is Model Integrated Program Synthesis
(MIPS). MIPS allows experts in a particular domain to
create an integrated set of models representing all or part
of various domain-specific systems. The models are then
used for system analysis or as a source from which to
automatically generate executable models (i.e. executable
programs) which run on the actual system. The
MultiGraph Architecture [2], under development at
Vanderbilt University, is a toolkit for creating MIPS
environments.
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Figure 1: The MultiGraph Architecture

A MIPS environment operates according to a
modeling paradigm. A modeling paradigm is a set of
requirements that governs how systems within the domain
are to be modeled. The modeling paradigm defines the
family of models that can be created using the MIPS
environment. Said another way, the modeling paradigm
defines the language for modeling systems in the domain.
The modeling paradigm is captured in the form of formal
modeling language specifications called a metamodel.



Once a domain-specific modeling language has been
formally defined, a meta-level translation can be
performed to synthesize the domain-specific MIPS
environment (DSME) from the metamodel. The DSME is
then used by domain experts to create various models of
domain-specific systems. Once one or more domain
models exists, model interpreters are used to perform
semantic translations on the models in order to generate
executable models or perform various types of data
translation and analysis.

Metamodeling

In a very real sense, modeling and metamodeling are
identical activities – the difference being one of
interpretation. Models are abstract representations of real-
world systems or processes, and when the process being
modeled is the process of creating other models, the
modeling activity is correctly termed metamodeling.
Therefore, concepts that apply to modeling also apply to
metamodeling. This logic can be extended to the process
of meta-metamodeling, too. However, because of the
goals of modeling, metamodeling, and meta-
metamodeling are quite different, a four-layer conceptual
framework for metamodeling has been established and is
in general use by the metamodeling community. The
following table, taken from [3], describes each layer of
this framework:

Layer Description

Meta-
metamodel

The infrastructure for a metamodeling
architecture. Defines the language for
describing metamodels.

Metamodel An instance of a meta-metamodel. Defines the
language for specifying a model.

Model An instance of a metamodel. Defines a
language to describe an information domain.

User
objects

An instance of a model. Defines a specific
information domain.

Table 1: Four-layer metamodeling architecture

This four-layer metamodeling architecture creates an
infrastructure for defining modeling, metamodeling, and
meta-metamodeling languages and activities, and
provides a basis for future metamodeling language
extensions. The architecture also provides a framework
for exchanging metamodels among different
metamodeling environments – critical for tool
interoperability, since such interoperability depends on a
precise specification of the structure of the language [3].

To properly specify a modeling language using a
metamodel, the syntax and semantics of the language
must be modeled.

Modeling syntax
To capture the syntax of a modeling language, a

metamodel must describe all the entities and relationships
that may exist in the target language. As discussed in [3],
when specifying graphical modeling languages, an
abstract syntax – a language syntax devoid of
implementation details – is first specified. Then a
concrete syntax is defined as a mapping of the graphical
notation onto the abstract syntax. In a graphical
metamodel, the syntax is modeled as a collection of
modeling object types, along with all relationships
allowed between those object types.

As an example, consider a DSME for embedded
processor modeling. A metamodel describing such an
environment would likely include processor and
sensor entities, and a connectedTo relationship
specifying an allowed association between sensors and
processors.

Modeling semantics
In addition to specifying the syntax of a modeling

language, a metamodel must specify the semantics.
Continuing the embedded processor example, in addition
to specifying the types of entities involved in the
connectedTo relationship (a syntactic specification),
the metamodel must specify the allowable number of
individual processors and sensors that can participate in
the connectedTo relationship (a semantic
specification). So the metamodel must specify the
multiplicity of the connectedTo relationship.
Depending on the particular types of processors and
sensors selected, such a metamodel might specify that one
sensor can be connected to at most three processors, or
that one processor can be connected to no more than five
sensors.

At this point it is necessary to distinguish among two
types of semantics – static and dynamic. Static semantics
refer to the well-formedness of constructs in the modeled
language, and are specified as invariant conditions that
must hold for any model created using the modeling
language. Dynamic semantics refer to the interpretation of
a given set of modeling constructs in the context of the
model instances themselves. Only the static semantics
may be specified in a metamodel, since the metamodel
has no way of knowing a priori what meaning to
associate with particular instances (i.e. particular models)



created using the language. Distinguishing between static
and dynamic semantics is best illustrated by an example.

Consider a DSME used to model the behavior of real-
time scheduling systems. A metamodel description of
such a DSME would necessarily define objects and
relationships such as tasks, events, and schedules. The
static semantics expressed in the metamodel would
include constraints that must be maintained to ensure a
given model is valid. Scheduler models that violate any of
these constraints are, by definition, invalid models. Two
possible constraints, stated using standard English, might
be:

• "Task duration must be specified"
• "Schedules can hold a maximum of 10 tasks"

Such constraints represent the static semantics of the
modeling language, and can be defined in the metamodel.
However, the following constraints represent dynamic
semantics, and as such, cannot be represented as
metamodel constraints:

• "All tasks must meet their execution deadlines"
• "Scheduling queues must never overflow"

The metamodel can define what it means for a task to
have a duration associated with it (e.g. by requiring
certain values for a “duration” attribute), and can specify
that such a "meaning" must be satisfied in any model that
includes tasks. If the modeler fails to provide a value for
task duration, the model is considered invalid. However,
the metamodel cannot specify task schedulability, since
schedulability is a function of, among other things, certain
run-time factors – factors that the metamodel has no a
priori knowledge of. Unless otherwise indicated,
references to modeling language “semantics” in the
remainder of this paper refer to “static semantics.”

Closely associated with specifying the semantics of a
modeling language is the form that the constraint
expressions take. Constraints must be stated in such a way
as to be precise and analyzable, so that before any
modeling language or modeling environment is
synthesized from a metamodel, it can be shown (i.e.
proved) that the metamodel itself is semantically
consistent (i.e. the constraints do not contradict each other
or form a constraint set that can never be satisfied).
Therefore, the static semantics should be specified in a
mathematical language. An ideal candidate is any first- or
higher-order predicate calculus, since the invariants can
take the form of Boolean expressions that must be
satisfied by any model created using the target modeling
language. Such expressions can be tested using a proof

checker before the metamodel is used to generate a
modeling language.

Presentation specifications
When a metamodel is used to specify a graphical

modeling language, it is important to separate
presentation specifications (i.e. specifications concerned
with how objects should appear on screen, how entities
and relationships are viewed in different aspects, etc.)
from the syntactic and semantic specifications. While
such presentation specifications are necessary to
implement the target DSME, the presentation
specifications do not add meaning to the simple and
precise syntactic and semantic modeling language
specifications, and will, oftentimes, obscure those
specification, making metamodel interpretation more
difficult.

Making modeling (and metamodeling) tools
interoperable requires that metamodels be exchanged
among various metamodeling tool suites. This requires
the modeling language's syntax and semantics be
precisely specified by the metamodel, even if other
aspects, such as implementation and presentation details,
are not. This underscores the need to separate presentation
specifications from semantic and syntactic specifications.

Interpreter specifications
As mentioned earlier, model interpreters are used to

perform semantic translations on the domain models
created using DSMEs. Until now, these model interpreters
have been hand-crafted in C++. However, research is
being conducted into ways of specifying interpreter
behavior in metamodels [4]. Such behavioral
specifications would then be used to synthesize all or part
of the necessary domain-specific model interpreters.
Although interpreter specification is beyond the scope of
this paper, is should be noted that interpreter
specifications, like presentation specifications, should be
cleanly separated from syntactic and semantic
specifications.

In summary, when considering a metamodeling
language for the MGA, several requirements exist, as
listed below.

• Support for the four-layer metamodeling architecture.
• Ability to model both the abstract syntax and static

semantics of a modeling language.
• Ability to separate modeling language syntax and

semantic specifications from presentation  and/or
interpreter specifications.



• Ability to compose metamodels from pre-specified,
generalized modeling constraints, supplemented with
necessary domain-specific concepts and constraints.
(See [5] for an in-depth discussion of metamodel
composition).

• Ability to specify static semantics as a set of provably
correct invariant expressions (i.e. constraint
expressions).

• Ability to validate the consistency of metamodel
using machine-aided methods such as theorem
provers or proof checkers.

• Support for metamodeling tool interoperability by
allowing metamodels to be translated to and from
other metamodeling languages.

Environment generation

Once a metamodel has been created, it is used to
synthesize and/or configure various components in the
DSME. Because the metamodel contains syntactic,
semantic, presentation, and interpreter specifications,
most, if not all, of the DSME can be directly synthesized
from the metamodel.
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Figure 2: Metamodel Translation

Figure 2 shows that by performing a meta-level
translation, the metamodel specification on the left can be
used to generate the DSME on the right. The semantic
specifications in the metamodel are used by the DSME
constraint manager to verify that models created using the
DSME are legal – i.e. they don’t violate any of the
semantic constraints specified in the metamodel.

The presentation and syntactic specifications are used
to configure the DSME's graphical model editor. This
includes managing how various aspects of the models are
presented, how objects are created, controlling the type

and multiplicity of object associations, as well as allowing
storage and retrieval of models from persistent storage.

Information in the metamodel is also used to generate
the schema for the model database and the database
interface code for the constraint manager and the
graphical model builder.

Finally, as discussed in [4], portions of the model
interpreters can also be synthesized from the interpreter
specifications contained in the metamodel.

UML- and OCL-based metamodeling

The Unified Modeling Language (UML), along with
the Object Constraint Language (OCL), have been
adopted for use in defining MGA metamodels. Together,
UML and OCL meet all the metamodeling language
requirements listed above.

UML is an OMG-approved graphical modeling
language for specifying, constructing, visualizing, and
documenting the artifacts of a software-intensive system
[6][7]. It combines concepts from the Booch Method,
Rumbaugh's Object Modeling Technique, and Jacobson's
Object Oriented Software Engineering method. UML
supports many modeling notions, such as use-case
diagrams, class diagrams, implementation diagrams, and
behavior diagrams (including state charts, state machines,
activity diagrams, sequence charts, and collaboration
diagrams). UML is a specification language, and as such
it does not cover tool specifications, diagram layouts,
coloring, user navigation, and other presentation issues.

UML supports the four-layer metamodeling
architecture, and can be used to model other modeling
languages. When used to model an MGA modeling
language, the syntax requirements of the modeling
language are captured in the form of graphical, entity-
relationship diagrams using UML class diagrams.
Modeling language semantics are represented as invariant
predicate logic expressions using the Object Constraint
Language (OCL)[8]. OCL is a public domain, formal
language specification that can be used to express
modeling language constraints and other expressions
associated with graphical models. OCL is a textual
language, designed to be used in conjunction with, but
independent of, UML. The full OCL specification can be
found in [8]. Although OCL is formal and has an exact
syntax, it was also designed to be easily read and
understood by human designers. OCL is a typed language,
and OCL expressions to be type conformant (e.g. a
designer cannot compare string values with Boolean
values). Enumerated types are also supported in OCL.



OCL is not a programming language, and OCL
constraint expressions cannot directly affect any models
created using the target modeling language. The
constraint expressions are merely formal comments on the
semantics of the modeling language. Models created
using the target modeling language can be verified using
the OCL expressions, but the expressions cannot cause
any changes in the models.

In an MGA metamodel, OCL statements represent
invariant Boolean expressions that specify the semantics
of the target modeling language. As an example, in the
scheduling system previously discussed, it was mentioned
that schedules can hold a maximum of 10 tasks. Such a
requirement can be easily specified using UML class
diagrams as follows:

Schedule

Task

Duration : int

0..10

This diagram states that a Schedule object can
contain from zero to 10 Task objects. However, there
was another requirement that the duration of each task
must be specified. Because no graphical mechanism exists
in UML to specify such a requirement, OCL must be
used. The following OCL expression specifies this
requirement:

Task.allInstances->forAll(t |
t.Duration > 0)

This expression states that the Duration attribute
of every Task instance must have a value greater than
zero. Such an expression represents a semantic constraint
in the particular modeling paradigm.

Both UML and OCL are de facto industry modeling
standards, developed by a large consortium of industry
leaders. They enjoy wide popularity in the modeling
community and have been used in a wide variety of
modeling applications. Public domain parsers exist for
checking OCL specifications, and several public domain
and commercial UML software development
environments are available.

Proof-of-concept example

To demonstrate the use of UML/OCL in specifying
an MGA modeling paradigm, consider an audio

processing system consisting of microphones,
preamplifiers, power amplifiers, and speakers. Each of
these modeling objects can be represented using a set of
UML class objects. A UML class object describes a set of
objects sharing a set of features, such as attributes,
operations, methods, relationships and semantics. (MGA
UML-based metamodels currently do not use class
operations or methods.)

PowerAmp

Power : int = 100
Z_In : int
Z_Out : int

0..1 0..1 0..10..* 0..* 1..*

src src src dstdstdst Preamp

Z_In : int
Z_Out : int

Speaker

Z_In : int

Mic

Z_Out : int

Figure 3: Simple UML Audio Processing
Metamodel

Figure 3 shows a simple UML metamodel
representing this audio signal processing modeling
paradigm. The metamodel specifies the types of modeling
objects allowed (e.g. Mic, Preamp, etc.), object
attributes (e.g. Z_In, Z_Out, etc.), as well the
associations allowed among the objects (e.g. every Mic
object, playing the role of src, may be associated with
zero or more Preamp objects, playing the role of dst.
Similarly, every Preamp, playing the role of dst, may
be associated with zero or one Mics playing the role of
src). Note that the Power attribute of each PowerAmp
will be initialized to 100 when PowerAmp objects are
instantiated (this value may later be changed by the
modeler). Also, the association between PowerAmp
objects and Speaker objects requires every PowerAmp
to be associated with at least one Speaker. This
requirement means that any audio processing system
model in which a PowerAmp is not connected to a
Speaker would be illegal.

Although not shown in Figure 3, there is another
requirement of this modeling paradigm – every audio
processing model must contain at least one PowerAmp.
Such a requirement cannot be stated using UML class
diagrams alone, since the presence of a PowerAmp class
diagram in this metamodel merely states that PowerAmps
are allowed in audio processing models – there is no way
to indicate graphically that a certain number of these
objects are required. That requirement must be stated
using an OCL constraint as follows:

PowerAmp.allInstances->size >= 1

This states that all audio processing models must
contain at least one PowerAmp instance to be valid. (NB:
OCL expressions can be included in UML diagrams using



the UML textbox notation, but are shown here as free-
standing equations for convenience. In any case, the OCL
expressions are considered part of the metamodel.) Note
that while modeling language semantic requirements such
as this are stated in the context of a metamodel (i.e. at
metamodeling time), they are used to verify model
instances created using the DSME at model building time.

The metamodel of Figure 3 represents a fairly brittle
specification of the audio processing modeling language.
Although every modeling object contains one or both of
the impedance attributes Z_Out and Z_In, hierarchical
decomposition has not been used to create specialized
modeling objects from more general objects. Also,
associations between objects are made at the lowest
possible level – between the components themselves –
instead of between hierarchically more general objects.
And while there is an underlying relationship between the
impedance values and the association roles (e.g. the Z_In
attribute of the PowerAmp is related to the dst role of
the association between the Preamp and the
PowerAmp), the metamodel indicates no such direct
relationship.

Port

IO_Device

PreampMic PowerAmp

Power:int=100

Speaker

1 11 1

0..1

0..*

src

dst

OutputPort

Z_Out:int

InputPort

Z_In:int

Connection

Figure 4: Refined Audio Processing Metamodel

Figure 4 shows a refined audio processing metamodel
using object hierarchy to derive specialized objects from
general ones. The metamodel also incorporates module
interconnection principles [9] to specify how objects
relate (i.e. connect) to one another. Each modeling object
is treated as a module, and a specialized form of
association, called a connection, is used to connect one
module to another. The actual connection is made
between ports contained in the modules. If directional
connections are to be modeled (as in this example) the

ports can be divided into two types – input ports and
output ports. Modules may contain both types of ports,
depending on the type of module. For example, a Mic
contains a single OutputPort, while a PowerAmp
contains both an InputPort and an OutputPort.

In Figure 4, a Port is created which acts as a general
module interconnection object. A Connection
association, with src and dst roles, is used to associate
(i.e. connect) Ports together. Notice that Ports are not
used as first-class modeling objects in this paradigm, but
are specialized into OutputPort and InputPort
objects. Z_Out and Z_In attributes are added to the
OutputPort and InputPort objects, respectively.
The final modeling objects are specified as either
aggregations of an OutputPort or an InputPort, or
by deriving specialized versions of the IO_Device
object which contains both an OutputPort and an
InputPort. This approach represents an improvement
over the metamodel of Figure 3 by more clearly defining
object containment, derivation and interconnection, as
well as directly associating the impedance attributes with
the OutputPort and InputPort objects.

While the use of hierarchy allows a modular design
approach and makes composing metamodels easier, such
an approach generally requires more constraint equations
to fully constrain the design. For example, the metamodel
of Figure 4 allows full connectivity between any two
Port-type objects (e.g. OutputPort or InputPort
objects), regardless of which type of container object they
appear in. This metamodel even allows an OutputPort
to connect to itself – definitely not allowed in this
paradigm. Therefore, several constraints must be placed
on the metamodel.

First, the relationship between OutputPorts and
InputPorts must be limited. OutputPorts may
connect to InputPorts and InputPorts may connect
to OutputPorts. No other connections between
OutputPorts and InputPorts are allowed. The
following OCL equation properly constrains this
relationship:

Connection->forAll(c |
c.src.oclIsTypeOf(OutputPort) and
c.dst.oclIsTypeOf(InputPort))

This expression states that the src role of every
Connection association must be an OutputPort
object, and that the dst role must be an InputPort
object.



The interconnections between modules must also be
constrained. For example, Mics can only connect to
Preamps, Preamps can only connect to PowerAmps,
and PowerAmps can only connect to Speakers. The
following set of constraints specifies these allowed
connections:

Mic->forAll(m | m.outputPort.dst->
forAll(i | i.preamp))

Preamp->forAll(p | p.outputPort.dst->
forAll(i | i.powerAmp))

PowerAmp->forAll(a | a.outputPort.dst->
forAll(i | i.speaker))

The first of these constraints allows Mics to connect
only to Preamps. Note the use of outputPort (first
letter lower case) to refer to the unnamed role at the
“Preamp end” of the aggregation association between
the InputPort and Preamp objects. Because the role
is unnamed, OCL allows using the name of the associated
object (beginning with a lowercase letter) as the
association role name.  The other two constraints function
similarly to constrain connections between Preamps and
PowerAmps, and PowerAmps and Speakers,
respectively.

 dst Mic Preamp PowerAmp Speaker
src Out In Out In Out In
Mic Out X X X X X X
Preamp In X X X X X X
Preamp Out X X X X X X
PowerAmp In X X X X X X
PowerAmp Out X X X X X X
Speaker In X X X X X X

Table 2: Possible connections without
constraints

 dst Mic Preamp PowerAmp Speaker
src Out In Out In Out In
Mic Out X
Preamp In
Preamp Out X
PowerAmp In
PowerAmp Out X
Speaker In

Table 3: Possible connections with constraints

Using OCL in this way is a powerful method for
applying semantic constrains to the modeling language
specification. Table 2 shows that if no constraint

equations were used in the metamodel of Figure 4, 36
possible connections between the OutputPort and
InputPort objects contained inside the various
modules would be possible. By introducing just four
constraint equations, the allowable connections are
reduced to three, as shown in Table 3.

To complete this metamodel, one more constraint
equation is needed to satisfy the requirement that every
audio processing model have at least one PowerAmp.
(This is the same constraint presented as part of the
metamodel shown in Figure 3):

PowerAmp.allInstances->size >= 1

Before this metamodel can be used to synthesize an
MGA modeling environment, the presentation
specifications must be added. This is done by mapping the
entities and relationships specified in the UML
metamodel to various MGA-specific presentation objects.
This is a fairly straightforward mapping and is not
presented here to conserve space.

Conclusions and future work

This paper has presented a method for specifying
MGA metamodels using UML and OCL. The method
captures both abstract syntax and the static semantics of
the target modeling language, and supports metamodeling
composition and metamodeling tool interoperability by
separating the syntactic and semantic specifications from
the presentation and interpreter specifications needed to
synthesize a DSME from the metamodel. An audio
processing modeling paradigm was developed and used to
illustrate the use of UML and OCL to state various
syntactic and semantic modeling language specifications.

By using the industry standard modeling languages
such as UML and OCL, potential DSME users who are
familiar with these modeling languages can quickly and
accurately communicate their DSME requirements to
DSME developers. What remains is to apply this
UML/OCL metamodeling technique to various existing
and new DSME development projects to analyze the
effectiveness of this approach.
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