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Abstract 
 

Among the most significant technological developments of the past 20 years are 
computer-based systems (CBSs), where functional, performance, and reliability requirements 
demand the tight integration of physical processes and information processing. Because 
complex component interactions exist in these systems, we must construct the software and 
its associated hardware such that they can evolve together. 
 

Model integrated computing (MIC) is an effective and efficient method for developing, 
maintaining, and evolving large-scale, domain-specific CBS applications. MIC is model-
based, allowing the synthesis of application programs from models created using customized, 
domain-specific, multi-aspect model integrated program synthesis (MIPS) environments. 
Integrated models explicitly represent dependencies and constraints among various design 
views. Because engineers can input design information at appropriate levels in the design 
hierarchy, and are freed from low-level implementation details, true end-user 
programmability is achieved. 
 

This paper discusses MIC technology and presents two large-scale MIC applications 
currently in use—the Saturn Site Production Flow (SSPF) system and the Integrated Test 
Information System (ITIS). The SSPF is a manufacturing execution system used by General 
Motors’ Saturn division to model, monitor, and analyze throughput characteristics of the 
plant. SSPF has been deployed in two Saturn plants and has helped Saturn to increase 
throughput in the Spring Hill, TN plant by nearly 10%. 
 

The ITIS, used to support Department of Defense aerospace testing at Arnold 
Engineering Development Center, integrates diverse sets of information from distributed, 
heterogeneous data sources into a seamless real-time, on-demand data system. The ITIS 
allows for rapid generation and customization of test information systems that track changing 
user requirements, allowing secure, uniform access to search metadata and retrieve test data 
from geographically distributed engineering teams. Using MIC technology, the system can 
respond to rapidly changing requirements for the interconnection of a wide variety of data 
sources and analyses. 



I. Introduction 
 

Developing and maintaining software for large-scale systems where a high degree of 
coupling exists between the software and its environment, and where the environment 
changes with time, is a difficult and time-consuming task. Many causes contribute to the 
difficulty, with some being more prevalent than others. For example, consider a 
manufacturing execution system that monitors the state of a large-scale manufacturing 
facility. The system collects and stores data from hundreds or thousands of points within the 
plant, and reduces that data into various real-time and historical production and status reports 
for use by production control, process and plant management, and business-oriented decision 
makers. Such a software-based system, while designed to respond to normal fluctuations in 
production flow, must also respond to changes in the business itself. These changes may 
involve database schema modifications, performance tuning, modifications to the data 
processing algorithms, etc. to maintain the capabilities of the system. Also, changes in the 
business model often necessitate additional features in the software—features previously 
unnecessary or unavailable due to the plant environment (i.e. the software’s operating 
environment). To ensure that such software development and evolution efforts are performed 
effectively, software developers must become “experts” in many areas—the overall operation 
of the plant, the business process models, and, of course, company-adopted software 
development methodologies. Also, to a lesser degree, the non-software development 
personnel (production engineers, business managers, and other support system developers) 
must become intimately familiar with the issues and concerns of the software development 
team. This leads to inefficiencies and errors in the software development cycle. 
 

We advocate an approach to software development and evolution that addresses these 
problems. We describe the approach on an abstract level, and present a set of tools to support 
the approach. Next we discuss two applications of this approach—one used to enhance the 
throughput of the General Motors Saturn automobile manufacturing facility in Spring Hill, 
Tennessee, and another used to integrate heterogeneous, legacy test support data systems in 
U.S. Air Force test facilities at Arnold Engineering Development Center, Arnold Air Force 
Base, Tennessee. We begin with a discussion of model integrated computing. 
 
II. Model-Integrated Computing 
 

We propose the use of models in the development and evolution of large-scale software 
systems [1]. Of course, the use of models in software development is not a new idea. Many 
analysis and design techniques (especially the object-oriented approaches) use models to 
describe the necessary class and inheritance relationships that must exist in the software. 
Such techniques can be extended to the modeling of external interfaces to the environment. 
However, such models remain loosely coupled to the actual system development cycle. We 
propose to extend and specialize this approach, forming a tightly coupled environment where 
the software, the environment, and the integration constraints are all modeled, with the 
resulting models used to generate and/or configure the necessary software components of the 
actual system (see [2] for some background on component generation). This process is called 



Model Integrated Computing (MIC) [3]. The MIC-based development cycle is shown in 
Figure 1 below. 
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Figure 1. Model integrated computing-based development 
 

Initially, a modeling paradigm is developed. The modeling paradigm defines the overall 
modeling effort—what is to be modeled (which aspects of the system, its behavior, its 
environment, etc.), how the necessary models are to be constructed (the syntactic, semantic, 
and presentation specifications of the resultant modeling language), and how the models are 
to be used (the model translation and interpretation requirements). Modeling paradigm 
definition requires both MIC- and domain experts. These experts work together to define the 
domain’s modeling, analysis, and run-time requirements. 
 

Once a modeling paradigm has been established, the modeling environment requirements 
are formally stated in a metamodel. The metamodel specifies the domain-specific, graphical 
modeling language (i.e. the domain-specific modeling environment) to be used when 
constructing models within the particular domain in question [4]. The domain-specific 
modeling environment (DSME) is synthesized from the metamodel by a meta-level 
translation process. The output of the meta-level translator is used to customize a suite of 
configurable model editing tools. These editing tools are typically graphical, but more 
importantly, they support modeling in terms of the actual application domain. Domain-
specific modeling is essential to enable end-user programmability. 
 



Once created, domain models are stored in a model database. In order to use the models 
effectively, one needs (at least) two more components beyond model editors: (1) tools for 
transforming abstract models into executable systems, and (2) run-time support libraries for 
the executable system. The transformation is done by a component called the model 
interpreter. A model interpreter traverses the model database, analyzes the models, and 
“creates” the executable system. Model interpreters can be implemented using various 
strategies, depending on what the run-time system looks like. For instance, if the run-time 
system includes a relational database, model interpreters can generate the SQL definitions for 
the schema; if it is a multi-tasking kernel, model interpreters generate the code skeletons 
performing synchronization; if it is a Petri-net simulator, they generate the configuration 
tables for use by the simulator. In the most general terms, the model interpreters are 
responsible for mapping domain-specific models into run-time components. Often, run-
time systems contain “generic” components that are specialized according to need (as derived 
from the models). They form the run-time support libraries mentioned above. Model 
interpreters perform an automatic system generation by instantiating and customizing the 
generic components. Note that the models are domain-specific, and do not (necessarily) 
include software concepts, even though the end solution is software-based. 
 

At the process level, MIC has two interrelated processes: (1) the process that involves the 
development of the model-integrated (i.e. modeling) system, and (2) the process that is 
performed by the end-user of the system in order to maintain, upgrade, and reconfigure the 
domain-based system (i.e. application programs), in accordance with the changes in its 
environment. 
 

To summarize, with MIC the system is created through the following steps: (1) definition 
of a modeling paradigm, (2) creation of a metamodel describing the DSME, (3) synthesis of 
the model builder (editor) environment, development of the model interpreters, and 
development of the run-time support system, and (4) use of the modeling and application 
synthesis tools by domain-aware end users. The key aspect of the development process is that 
domain-specific models are used in building the application, and the application can be 
regenerated by the end-users. 
 

The MIC approach can be contrasted with current development practices as follows. As 
opposed to developing a highly specialized product, in MIC we want to understand an entire 
class of problems related to a particular domain. As opposed to developing a specific 
application, we try to develop first the domain-specific tools to model (i.e. specify) the 
solution, then use these models to generate the actual application. Many of these ideas can 
already be found in other large-scale packages [5]. What is different here is that, in addition 
to making the models themselves available for the end-users, we want to make explicit use of 
the models in generating applications. See the Acknowledgments section for more on related 
software development technologies. 
 

It would appear that MIC necessitates a bigger effort than straightforward application 
development. This is true only if there is no reuse and every project has to start “from 
scratch.” In recent years we have developed a toolset called the MultiGraph Architecture 



(MGA) [6] that provides a highly reusable set of generic tools with which to do MIC. We 
claim that the tools provide a meta-architecture, because, instead of enforcing one particular 
architectural style for development, they can be customized to create design environments 
that embody many different styles, as required by domain practitioners. 
 

In the MGA we use a Generic Modeling Environment (GME) [20] (formerly called the 
Visual Programming Environment (VPE) [7]) for model building. Models are stored in an 
object-database; another customizable component. The domain-specific customization of 
these components determines how the visual editor behaves, how the database schema is 
organized, and how domain-specific constraints are enforced. The model interpreters are 
typically highly domain-specific. Model interpreters transform models into executable code 
and/or to the input language of various, domain-specific analysis tools. For run-time support 
purposes we have successfully used a macro-dataflow based run-time kernel that facilitates 
the dynamic creation of networks of computing objects, even across processors, and the 
scheduling of those objects. The flexibility with which the MGA can be adapted to various 
application domains has enabled us to use it in widely different projects during the past 12-15 
years [12]. Three of these projects are briefly described in the paragraphs below, followed by 
a detailed discussion of two large-scale projects—SSPF and ITIS—in sections III and IV, 
respectively. 
 

RDS and DTool: The MGA was used as the software framework for a robust,  model-
integrated real-time diagnostic system (RDS) [8], and a diagnosability and testability analysis 
tool (DTool) [9]. Both tools are used by Boeing on the International Space Station Alpha 
(ISSA) program to evaluate detectability, distinguishability, and predictability of faults given 
on-line sensor allocation and built-in-test coverage (BIT). In the case of RDS, the models are 
interpreted and the software for the RDS is generated automatically. The RDS implements 
algorithms that provide timely diagnosis for complex systems, even in the case of sensor 
failures. 
 

IPCS: The Intelligent Process Control System (IPCS) is an on-line problem solving 
environment and decision support tool for process and production management. The central 
concepts of IPCS are models of the plant and the process engineering activities. Plant models 
include a variety of modeling views, including process flow sheets, static and dynamic 
process equations, finite-state models, failure propagations, equipment structure, etc. Activity 
models cover a wide range of tasks related to process and production management (e.g. 
analysis of process operations). The activity models are automatically translated into 
executable software. The IPCS system is actively used at the DuPont Old Hickory, TN, plant 
for the development of commercial applications, including monitoring, sensor data 
validation, on-line process simulation, and process diagnosis [10]. 
 

CADDMAS: The MGA is the underlying software technology for the Computer Aided 
Dynamic Data Monitoring System (CADDMAS) developed in close cooperation with the 
USAF Arnold Engineering and Development Center (AEDC). CADDMAS provides real-
time vibration analysis for 48 channels of 50 kHz bandwidth using a heterogeneous network 
of nearly 100 processors [1][11]. In the CADDMAS application, the modeling environment 



supports the hierarchical modeling of signal flow graphs, hardware resources, and resource 
limitations [1]. A model interpreter synthesizes the complex executable program and 
configures the parallel computing platform. 
 
III. The Saturn Site Production Flow System 
 

The Saturn Site Production Flow (SSPF) system is a manufacturing execution system 
designed for the General Motors Saturn Automobile manufacturing facility in Spring Hill, 
TN. The SSPF acquires production data from the underlying plant instrumentation system, 
computes a standard set of throughput measurements from that data, stores that information, 
presents reduced results in real time to the production floor, and aids in the management 
reporting and analysis (i.e. back office) business processes. 
 

A. SSPF Functionalities 
 

Data Acquisition. SSPF functions involve real-time collection, presentation, storage, 
retrieval, and analysis of data. There is a data rich environment at Saturn based on traditional 
process monitoring and control (PM&C). The data being measured consists of production 
counts, downtimes, bank counts, and other production related information. Data can be 
presented on screens, using an existing data acquisition and display package. However, in the 
absence of any structured plant models to guide the data collection, logging and presentation, 
the enormous volume of data presents considerable difficulties in using the system for 
monitoring site-wide status and for performing simulations and other decision making 
analyses. 
 

Data Storage and Retrieval. Time is an essential factor in understanding the 
dynamics of production flow. The stored data contains detailed histories for every process 
and buffer in the plant. Furthermore, summarized information for a shift, day, week, and 
month is maintained. Even though Saturn currently has systems in place that log and retrieve 
the production data, the practical usability of this data is limited—access to data is very 
difficult. SSPF stores the raw data and processed information in a structured manner using a 
relational database (Microsoft SQL/Server). The database schemas and the interfaces to the 
database are generated automatically from the plant models, thereby providing the 
framework for easy access and maintenance of the database. 
 

Graphical User Interface. The primary purpose of SSPF is to provide the users with 
current (real-time) and historical production data, which can be used for various purposes—
monitoring, analysis, etc. For presenting the data, SSPF includes a Graphical User Interface 
(GUI), which is configured from the plant models. 
 

 



 
 

Figure 2. SSPF graphical user interface 
 

Figure 2 shows the SSPF GUI with hierarchical navigation, drop down boxes and 
detailed textual report. On the left, the process hierarchy is shown, which allows the user to 
go to any section of the plant and examine it. On the right the GUI layout for Vehicle
Initial Build, as synthesized from the models, and the textual report of production 
related data is shown. 
 

B. SSPF Modeling Paradigm 
 

The SSPF application offers a structured view of the data representing the state of the 
manufacturing processes. This structured view and the related visualization services create a 
tight conceptual relationship between the plant and the SSPF software. In this section, we 
summarize the key modeling concepts that are used for defining the SSPF application and 
that are also provided for the users of the system. 
 

The manufacturing plant is viewed as an aggregate of processes and buffers. 
Processes represent the operations required for making a car. Associated with each process 
are certain measurements that relate to the productivity of the process. Examples of such 
measurements are: cycle-time, production count (how many parts were assembled), Work In 
Process (WIP) (how many parts are currently being worked on), production downtime 



(equipment breakdown), etc. Buffers (or banks) lie between processes and hold parts and/or 
sub-assemblies that are produced by an upstream process before they are consumed by a 
downstream process. 
 

To model the Saturn site in terms of its production processes and business 
organizations, a special modeling paradigm was developed that utilizes four kinds of models: 
(1) Production Models, (2) Organization Models, (3) Activity Models, and (4) Resource 
Models. Production models are used to represent the production flow at Saturn. The 
Organization models are used to represent the business units at Saturn and to establish 
relationships between business units and production units. Activity models are used to 
configure the SSPF activities while resource models describe the allocation of SSPF 
activities to workstations. Here we briefly describe the first kind of models only. 

 
 

 
Figure 3. Structural aspect for Vehicle Initial Build 

 
Production models hierarchically describe the production flow of Saturn Plant in 

terms of processes and buffers. A process represents a production entity in which production 
and/or assembly operations are performed. A process can be a leaf process, e.g., Hardware
310, or it may be an aggregate process, e.g., Vehicle Initial Build. Aggregate 
processes consist of other (leaf and/or aggregate) processes and buffers. Buffers represent the 
banks between processes, e.g., 300, which is the bank between processes Hardware 200E 
and Hardware 310 (see Figure 3). A process may have input and output conveyors. These 
act as interfaces to buffers and other processes and are used to connect banks and processes 
together. 

 
C. SSPF Architecture and Component Generation 



 
There are three main parts to the SSPF system: (1) The Model-Integrated Programs 

Synthesis (MIPS) Environment consists of the Visual Programming Environment (VPE) also 
referred to as the Graphical Model Builder (GMB) , Model Database and the Application 
Generator (AG); (2) the SSPF Server consists of the Real-Time Data Server (RTDS), 
Historical Data Server (HTDS), Cimplicity Interface, a Cimplicity project bridge (SSPFPB) 
(for PM&C), ODBC Interface and one or more MS/SQL Server and MS/SQL Database; and 
(3) the SSPF Client that consists of the Client Data Handler and the Client GUI. The 
Application Generator (AG) translates the SSPF models into the executable application. This 
is accomplished as follows. 
 

1. Configurable run-time libraries and programs were developed, which get their 
configuration information from configuration files produced by the AG. These 
components implement generic functionalities (e.g. interface to the data acquisition 
system, user interface, etc.), that can be instantiated according to the contents of 
models.  

2. Schemas for storing production data were defined. At this time, this is a manual 
process. In the future, these schemas will also be generated from the models. 

3. AG traverses the model database, extracting the relevant information and produces a 
number of configuration files and SQL script files. 

4. The configuration files are read by the SSPF components to build internal data 
structures, thus reflecting exactly what is in the models. 

5. The SQL scripts are executed by the SQL/Server. The SQL scripts fill in the rows for 
the tables with essential information about the processes, buffers, etc. in the plant. If 
the models are changed to reflect changes in the plant, only the last three steps need 
to performed. If a change in the functionality of SSPF is desired, the first two (and 
possibly the last three) steps need to be performed. 

 
D. SSPF Experiences 

 
The SSPF project was started in September of 1995, with an engineering study and 

preliminary design. By the end of the year, a prototype was developed, with about one-third 
of the plant being modeled. During 1996, the prototype was moved towards a production 
release. Some of the changes were necessitated by the integration process, but most were due 
to added functionalities. A large part of the effort after April 1996 was spent on building the 
complete models of the plant. The modeling phase involved consulting with Saturn personnel 
and putting this information into the models. SSPF was put into production release in the first 
week of August 1996. 
 

We learned many lessons during our system integration efforts: 
 

• A large part of the effort was required for modeling of the plant. This is not 
surprising since the application itself is generated from the models. 
 



• Using the MIC approach helped us considerably in verifying and testing the 
application. Before going into production release, SSPF Beta release was on-line 
during the model building phase. This allowed us to verify the application and the 
models. 
 

• Due to iterations on functional specifications for SSPF, many times during the 
integration phase, requirements and/or enhancements in the functionality of SSPF 
were added. We had a very quick turn-around time on these since all that was 
required was a change in one configurable component followed by regeneration of 
the application. Without the use of MIC, trying to keep an application upgrade 
consistent for all the processes (and the buffers) would have been a very difficult 
and costly task. 
 

• Since the data acquisition systems in different sections of the plant were 
implemented by different people, we had to deal with the idiosyncrasies of these 
implementations. Being able to capture this information in models also helped the 
integration effort considerably. 

 
IV. The Integrated Test Information System 
 

The Integrated Test Information System (ITIS) addresses the need to integrate diverse 
sets of information from distributed, heterogeneous data sources into a web-based metadata 
search and data retrieval application. (Here, metadata is defined as data used as index or 
search criteria when collecting sets of archived test data.) The approaches used allow for 
rapid generation and customization of test information systems that track changing user 
requirements. MIC technology is used to automatically synthesize complex test information 
systems using high-level models. Using MIC, the system can manage rapidly changing 
requirements for the interconnection of a wide variety of data sources, analyses, and their 
associated restrictions. The ITIS allows secure, restricted data access to geographically 
distributed engineering teams. 
 

A. ITIS Modeling Paradigm 
 

The ITIS modeling paradigm allows the creation of configurations that describe a 
group of users’ view and access to archived data. The paradigm consists of two categories: 
Configurations and Library. Configurations contain all configurations currently included in 
the ITIS configuration database for access by authorized users. Library contains all 
components of a configuration and past configurations that are no longer active. Modelers 
create active configurations by dragging references to the Library’s components into a 
Configuration model. 
 

The GME graphical modeling tool, developed by ISIS, creates a visual representation 
of the paradigm’s components and their relationships for creation and editing. Figure 4 
depicts a Configuration model that contains the elements available when a user selects this 
configuration. These elements describe the location and names of archived data files, data 



fusion modules and their operations, available search types, search parameters, any default 
search values, and output types available to user groups. Figure 5 illustrates a fusion model 
that contains an FFT operation. Figure 6 shows the selection of search parameters that will be 
displayed when a search of type “Test Engineer” is selected. Figure 7 details the specification 
of parameters from the metadata schema and any default values they may take on. 
 

 
Figure 4. Configuration model contents 

 

 
Figure 5. Fusion module with FFT operation 

 



 
Figure 6. Search parameter selection 

 

 
Figure 7. Parameter specification with default values 

 
B. ITIS Configuration Database 
 

By building a set of models corresponding to configurations of the ITIS application, a 
modeler populates a database schema corresponding to information captured in the models. 
This configuration database is then utilized by the server to verify any user requests against 
their modeled roles as well as generate HTML content that is configuration-specific. 

 
C. ITIS Meta Database 
 

Based on research by ISIS, AEDC designed a database schema to capture all test 
metadata that is generated for each test. The schema uses relational database design methods 
to link all information in a hierarchy of tables corresponding to project, test, and each AEDC 
business area. Through these relationships, searches may be restricted based on the actual 
archived data files. So, a user authorized to see data file X is unable to see matches to his/her 
criteria that correspond to data file Y. These access restrictions are modeled in the ITIS 
paradigm. 

 



D. Server 
 
The ITIS application utilizes Microsoft’s Internet Information Server (IIS) with 

Active Server Pages (ASP) technology to deliver dynamic HTML content based on each user 
and the current request. The application is configured to only accept 128-bit Secure Sockets 
Layer (SSL) connections for encrypted client/server communications. The flexibility of ASP 
allow the creation and use of any Component Object Model (COM)-compliant object for use 
in generating client content.  
 

A user must first authenticate himself to the server before entering the application. At 
AEDC, external customers access the site using SecurID where AEDC on-site employees use 
a simple username/password combination. Once authenticated, the server creates a session 
for the user that is used to track their use of the system. The user is first presented a list of 
configurations that his group has been modeled to access. For every page submission or 
request that the user makes, his user authentication, assigned session number, and selected 
configuration are matched to ensure he can only access permitted data. 

 
E. Client 

 
Users of the ITIS web-based application are required to access the website using 

either Microsoft Internet Explorer (version 4.0 or higher) or Netscape (version 4.6 or higher). 
 

F. Data Sources 
 
A variety of proprietary file formats have been created for storing test data in each 

AEDC business area. ITIS allows the plotting of data from different test data files on the 
same plot. This is accomplished by utilizing Microsoft’s Universal Data Access strategy 
involving OLE DB technology. OLE DB is a set of COM interfaces to enable applications to 
have uniform access to data stored in DBMS and non-DBMS information containers. Using 
the ActiveX Template Library, we created custom OLE DB data providers that incorporate 
legacy file access code from AEDC. Through these data providers, we are able to retrieve 
and manipulate archived data in a similar manner for all file formats. 

 
G. Data Services 

 
Each proprietary file format also has a set of tools or routines normally used to 

analyze the data. In a similar manner, these routines may be wrapped as OLE DB data 
services to perform operations on the supplied data. For example, we have wrapped the 
MATLAB application to be a component in the ITIS application. Now, users may request 
operations modeled in the system to be performed on test data and view the output. 

 
H. Data Output 

 
Users may request test data in a variety of formats. The modeling environment allows 

the specification of which output modules are available for each particular configuration. 



Each module is an ActiveX DLL that runs on the server. It retrieves the archived test data 
and then does any formatting or manipulation necessary to generate the output requested by 
the user. In the current system, output modules allow the plotting of data using a commercial-
off-the-shelf JAVA-based charting package. Also, either ASCII-based tab-delimited files of 
selected data, or an entire archive file, may be downloaded to the client machine. 
 

I. ITIS Status 
 

The ITIS system was installed July 1999 at AEDC in Tullahoma, TN. Since 
installation, eight datasets have been added to the metadata for viewing through modeled 
configurations. Beginning in mid-September 1999, the Air Force Information Warfare Center 
(AFIWC) began evaluation of our design, and the system was installed at AFSEO/Eglin Air 
Force Base in Ft. Walton, FL. The system was also demonstrated to Boeing in October, and 
was installed at their St. Louis facility in early December, 1999. 
 
V. Conclusions and Future Work 
 

Model Integrated Computing shows the following advantages in the software and system 
development process: (1) It establishes a software engineering process that promotes 
designing for change; (2) the process shifts the engineering focus from implementing point 
solutions to capturing and representing the relationship between problems and solutions; (3) 
it supports the applications with model-integrated program synthesis environments offering a 
good deal of end-user programmability. We have found that the critical issue in system 
acceptance has been to facilitate domain specific modeling. This need has led us to follow an 
architecture-based tool development strategy that helps separate the generic and 
domain/application-specific system components. The MultiGraph Architecture has proven to 
be efficient in creating domain-specific model-integrated program synthesis environments for 
several major applications. 

 
Using the metamodeling technology described in this paper, domain-specific modeling 

tools have been created, and have been in constant use for many years, in many engineering 
application areas and domains [12]. Our future work will focus on more efficient methods for 
mapping the abstract syntax of a metamodel onto the graphical idioms of the GME and 
improving the GME constraint manager, as well as continued research into interpreter 
specification and generation [13]. 
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