
Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

Toward self-reconfiguring, fault-adaptive, high-performance
distributed real-time systems*

Steven G. Nordstrom, Shweta Shetty, Di Yao, Shikha Ahuja, Sandeep Neema, Ted Bapty, Gabor Karsai

Institute for Software Integrated Systems, Vanderbilt University, Box 1829, Station B Nashville, TN USA
e-mail: {steve-o, shweta, dyao, shikha, sandeep, bapty, gabor}@isis.vanderbilt.edu

Submitted for review 30 April, 2005

Abstract. Designing embedded systems that
guarantee some form of reasonable behavior in the
presence of failure is a difficult task, and the
addition of scalability and real-time constraints
only serve to exacerbate the problem. In large-scale
systems such as those used in high-energy physics
experiments, the necessary conditions to ensure
complete and reliable operation of the system can
not be guaranteed. Moreover, typical methods of
fault tolerance can not be applied to these systems
given their size and budgetary constraints. As the
performance, size, and inherent complexity of these
systems increase, it becomes necessary to develop
increasingly advanced tools and techniques to help
manage their design, implementation, and
configuration. This paper outlines an approach
toward designing large-scale embedded systems by
leveraging concepts of Model Integrated
Computing to configure a scalable Reflex and
Healing architecture to implement model-based
user-defined fault-mitigation strategies within the
system.

Keywords: Fault-mitigating -- Fault-tolerant --
Reflex -- Healing -- Model -- Integrated

1 Introduction and Problem Motivation

As high performance computing grows more
prominent and accessible, system designers
leverage the commoditization of components by
designing increasingly complex embedded
computers not from scratch but by composing
collections of existing components to form larger,
more elaborate systems. This activity places
considerable strain on both the design process and

the systems engineering process, and serves to add
complexity to the design; both of which can
adversely affect reliability.

Reliable operation of a high performance
distributed computer system is dependant upon 1.)
the proper operation of each system component,
and 2.) a proper interaction between components in
the composition. In systems with many thousands
of components, neither of these conditions can be
guaranteed. Proper consideration must be given to
the occurrence of failure in both the physical
components as well as in software; one must
anticipate that failures will occur sometime within
the operational lifetime of the system.

Acceptance of possible component failures
should be evident in every aspect of system design.
Complex embedded systems should behave such
that some degree of component or subsystem
malfunction does not result in catastrophic system
failure. Ensuring reliable and predictable system
behavior in the presence of failure is a difficult and
costly task, and the addition of real-time constraints
only serves to exacerbate the problem. Internal
knowledge of the system structure (past and
present) may be required to reason not only about
possible failure mitigation actions, but also about
the effects of undergoing such adaptations. This
becomes especially true in systems where real-time
constraints affect the time allowed for such
reasoning processes. Determination of when to
perform adaptation, in what ways may the system
be reconfigured, the amount of time used to
perform the adaptation, and what benefit or
increased utility these actions will yield are all
important design decisions that must be evaluated
when building a system under such constraints.

1.1 Problem Motivation

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

Of particular interest to us are the embedded
systems used to perform online phenomena capture,
signal processing, and data collection for high
energy physics (HEP) experiments. Physicists and
engineers collaborate to build massive real-time
embedded systems which perform the necessary
data acquisition and signal processing required for
capturing, processing, and recording the various
physical phenomena that occur inside a particle
accelerator. HEP experiments have a physical
process interaction periodicity as high as ~25
nanoseconds yielding aggregate front-end data rates
on the order of several Terabytes/second with ~1
Petabyte/year in permanent storage needs [1] [2].
Typical hardware architectures for HEP
computation are composed of several thousands of
processors. Given that there can exist only a
minimal amount of redundant resources, designers
of these systems face considerable difficulty when
applying traditional techniques for fault tolerance
[3].

Typical baseline criteria for these systems are
the following:

• Data must not be lost
• Maximum latency between phenomena

detection and storage must be guaranteed
• The system must be scalable (on the order

of several thousand processors)
• The system must exhibit reasonable

behavior in the presence of failures
• Redundancy must be kept to a minimum

(<10% overhead)
• Operator intervention should be minimal

for all but the most critical tasks
• Development and maintenance costs

should be minimized

A reasonable behavior is one which is

predictable, stable, and meets the criteria set forth at
design time regarding minimum system
performance and graceful degradation during
conditions of failure. Clearly, these concerns can be
conflicting; a reduction in development costs may
prohibit the implementation of customized fault
mitigating tasks and behaviors; Likewise, if
redundancy is minimized the ability to exhibit
reasonable fault tolerant behavior clearly suffers.

The challenges then become the following:
• How does one design and manage a

system such that these goals can be met
with some degree of certainty?

• What architectures are suited for these
classes of systems and do they scale to
thousands nodes?

• Do existing tools and techniques exist
which can be used to reduce the
complexity of the design process?

• What levels of time, expertise, and risk are
associated with customizing the system to
suit ones specific needs?

This paper outlines our proposed and tested design
tools, techniques and best principles that should be
used when building complex, large-scale,
embedded systems when real-time and fault-
management constraints are applied.

2 Managing complexity through modeling

A critical aspect of engineering large computer
systems is the management of inherent
complexities of the final product. Proper design,
improved processes, and better supporting tools are
all potent stimuli of more robust system
construction. This chapter will cover some specific
tools and techniques regarding the management of
design and integration of large scale computer
based systems.

2.1 Model Integrated Computing

The software engineering community has seen a
marked increase over the last decade in the use of
model-centric tools which aid in system design and
complexity management [4] [5]. Early computer
based modeling tools were confined to highly
specialized domains whose budgets could afford
the added costs of computer based modeling. For
example, early and expensive CAD-CAM tools
were being used in the 1970’s for circuit design and
analysis, and CADD systems for modeling aircraft
and automotive designs were becoming more
prevalent [6]. The success of these tools and of the
model-based design approach in general is well
known, and over time the costs of using such tools
has made it increasingly feasible to apply model-
based design approaches to other domains,
including software design.

Model Integrated Computing (MIC) [7] has
proven itself in recent years as a sound method of
applying computer based modeling approaches to a
variety of problem domains. MIC incorporates the
creation of domain-specific, model-based
abstractions which serve to capture relevant aspects
of a target system. These models can then be
programmatically traversed and transformed to
produce a variety of domain specific artifacts.
These models are often transformed into alternate
but equivalent representations which can be used by
external analysis and simulation tools to verify

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

certain properties of the system [8] [9]. Examples
of MIC uses are the generation of real-time
schedules from a software model, the creation of
configuration files to integrate distributed systems,
or the generation of source code that can be
integrated into an existing framework [10].

MIC relies heavily on the use of domain-
specific modeling languages to capture relevant
characteristics of an object or system of objects. A
domain-specific modeling language (DSML)
allows a designer to describe objects in terms of the
domain rather than in terms of traditional computer
languages. The Generic Modeling Environment
(GME) [11] [12] is a freely available tool which
provides a platform upon which to perform MIC
design and development. Specifically, the GME is a
configurable and domain-independent modeling
environment that supports the creation and
instantiation of multiple user defined (domain-
specific) modeling languages.

Recent and State-of-the-art technologies for
model driven design include research into graphical
methods of model transformations [13], and
leveraging the OMG’s Model Driven Architecture
(MDA) 14 for meta-level language specification
[15]. Microsoft is bringing their .NET Software
Factories framework to fruition for high level
modeling of software [16].

2.2 Using models effectively

Without proper analysis and translation tools,
models are nothing but design documents; they may
have well defined semantics, but their only role is
that of documentation. The difference between
traditional models (PowerPoint or Visio diagrams,
blueprints, or CAD drawings) and MIC models is
that in addition to capturing and documenting
properties of an object, computer-based MIC
models can be programmatically leveraged to
produce something for the designer. The
application of semantics to a model is often referred
to as model interpretation [17], translation [18], or
transformation [19].

While domain models can be interpreted and
transformed to produce a variety of artifacts, the

models themselves need only be defined once. A
good example of this is the generation of either
C++ or Java classes from the same UML class
diagram [20] or in the creation of platform-specific
executable code from a StateCharts model [21].
Similarly, a single set of system models can be used
to drive simulations, generate source code and
configuration files, or produce system
documentation.

3 Modeling languages for large-scale
embedded systems

A major portion of our research is motivated
toward providing model-based design and fault
management tools for large scale HEP systems
[22]. There are several different aspects of these
systems ranging from hardware, communication
protocols, fault management, data and message
types, run control, event logging, and deployment.
While each individual aspect of these systems can
be modeled, building a fully unified model which
captures the system from all of these viewpoints
would be an arduous and error-prone process.

In order to extend the best practices of large
scale system development to MIC without
sacrificing the benefits of designing systems from
multiple aspects, one can create a set of modeling
languages, each corresponding to a particular aspect
of the system. For example, a hardware designer’s
aspect of an embedded control system may include
processors, busses, and sensor and actuator
interfaces, while the control systems engineer’s
aspect of the same system may include signal
integrators, delays, and transfer functions.

Merely modeling each aspect of the system,
however, is not enough; these aspects need to be
meaningfully incorporated through a higher level
modeling language. As systems become more
interconnected and diverse, the number of aspects
from which the system is modeled increases.
Clearly, some form of automated tool support is
required to assist designers in managing the
complexity of such large system models.

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

Fig. 1. A high level modeling approach supplemented with multiple narrowly focused modeling languages provides a system-level

picture as well as access to refining models expressed in other languages

A set of narrowly focused domain specific
modeling languages integrated through a higher
level language provides a modeling tool suite
capable of specifying numerous relevant aspects of
large-scale embedded systems. This concept is
illustrated in Fig. 1. The following languages are
present in the tool suite:

• System Integration Modeling Language
(SIML) – a language used for high level
specification of the system

• Fault Mitigation Modeling Language
(FMML) – a language for specifying the
behavior of fault management components
in the target architecture

• Data Type Modeling Language (DTML) –
a language for data type modeling and
creation of architecture specific message
models

• GUI Configuration Modeling Language
(GCML) – a language used for rapid
layout and design of control, monitoring,
diagnostics, and fault injection user
interfaces

• Run-Control Modeling Language (RCML)
– a language used to describe the behavior
of the HEP experiment control
components for loading the software,
starting and stopping the experiment, etc.

What follows is a brief discussion of the SIML

and FMML languages present in the tool suite.
Details of the remaining modeling languages in the
suite are omitted for brevity, but can be found in
[23] and [24].

3.1 Systems Integration Modeling Language

The System Integration Modeling Language
(SIML) is a high level systems modeling language
that utilizes a loosely specified model of
computation for capturing components, component
hierarchy, and interactions within the system. SIML
allows designers to model from a global view the
information and components relevant for a given
system configuration. An example SIML model is
shown in Fig. 2.

Fig. 2. This SIML model defines a 64-node HEP application
configuration with Links to models refinements defined using

other modeling languages.

SIML is used to model the general dataflow, as
well as the structural and communication layout of
the system. Typical objects which are represented
in SIML are regions or partitions of the system,
software components, dataflow connections, and
message routers. SIML also serves as the highest
level language through which models of other
languages of the systems are accessed.

Figure. 2 shows the model of a prototype HEP
application from a global view as expressed in
SIML. This model defines a GlobalManager,

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

several Regions each of which contain a
RegionalManager and several LocalNodes. Each
LocalNode contains a LocalManager and a HEP
application. This view of the model defines the
dataflow between the components at global level.
Data paths represent point-to-point communication,
and Routers represent access points to publish-
subscribe middleware services. Models in SIML
can be decomposed to show more detail. The
decomposition of a SIML component is expressed
in one of the many other languages in the tool suite.

To address challenges of representing models in
multiple graphical languages we introduce the
concept of a Link type which forms a bridge
between two graphical modeling languages. Links
can be thought of as a conduit between layers of
models. A Link has attributes to identify the
modeling language of the target layer and
properties of the linked object, and provide a
concise interaction between different modeling
languages. Specialized tools facilitate the process of
link creation and link navigation, as the creation of
a Link is non-trivial and may require an intricate
mapping between concepts in different modeling
languages. These tools are a benefit to the designer
in that they place the onus of Link creation on
language and tool developers, thereby reducing the
possibility of error.

3.2 Fault Mitigation Modeling Language

There have been efforts towards decentralized
algorithms and techniques for managing large scale
distributed systems [25] [26]. Centralized or
‘expert’ methods for controlling complex systems
can become unwieldy and impractical as the
number of components increase to those required
by HEP systems.

Alternative techniques for managing large scale
distributed systems usually consist of a hierarchy of
managing entities placed strategically in the system
whereby control decisions are made using only
partial knowledge of the system [27]. Corrective
behavior embedded within these entities is
automatically activated when fault conditions are
observed, and certain actions will be taken in an
attempt to mitigate the failure. The benefits of
hierarchical behavior in large scale distributed
systems include improved robustness and
scalability, and the lack of centralized points of
failure or attack.

Often the behaviors of fault managing entities
are intimately tied to a specific system, and
designers will need to create custom fault-
mitigation behaviors to suit their own needs. The
tool suite provides a general framework by which a

designer can model the behavior of fault mitigating
entities in a large scale embedded system using
concepts specific to failure management within his
or her own system architecture.

The Fault-Mitigation Modeling Language
(FMML) allows system designers to model the
behavioral specification components by providing a
general notation refined with additional domain
specific features to support fault management
activities. This refinement is necessary to facilitate
complete generation of source code (object classes,
middleware API calls, etc.) to implement the
behavior within a software component. The
language is general enough, however, that changes
to the underlying middleware and execution
platform do not necessitate a change to the
behavioral model.

Fig. 3. The Fault-Mitigation Modeling Language (FMML)
allows system designers to manage specification of fault-

mitigation responses within the system

Features of the FMML can be summarized as
follows:

• Blocks represent system states
• Transition models capture the necessary

conditions to progress between states
• Transitions are annotated with a Trigger,

Guard, and Action expression
• Transitions may contain Message

Channels to receive and dispatch
Messages

• Transitions may specify an incoming
Message events from Message Channels
as additional triggering conditions for the
transition

• Messages may be produced and consumed
from within an Action

FMML utilizes a basic formalism similar to

StateCharts [28] for capturing the logical
progression of states which define component
behavior. As HEP systems place a large emphasis

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

on messaging and Message-Oriented Middleware
(MOM), it is necessary that any fault managing
entities have use of these facilities. These
messaging systems often have complex interfaces
and interactions which are not fully understood by
designers of HEP systems. Therefore, state
transitions (which in traditional formalism are
specified using textual trigger, guard, and action
expressions) have been refined to model
graphically the concepts and operations common to
message passing middleware. Such refinements
include the modeling of event channels, message
structures, and message creation and distribution
operations. The benefit of a modeling language
which can represent these facilities allows the full
implementation of the behavior (message passing
inclusive) to be automatically generated from the
model.

Figure 3 shows a custom fault behavior
expressed in FMML. The specific behavior being
modeled is used for reporting input data stream
errors in a HEP application. Nominal and Bad_Data
states are defined, and a model defining the
transition from Nominal to Fault is shown. The
transition model refinement shows the particular
messages which are produced and consumed during
the transition.

4 Model-integrated frameworks for large-scale
embedded systems

The need for dependability in large scale embedded
systems is certainly not unique to those in the high
energy physics community. Furthermore, much
work has been done in the areas of fault recovery,
fault tolerance, and autonomicity of a wide range of
distributed and embedded systems [29] [30] [31]
[32]. Some existing approaches are geared toward
design-time techniques; others focus primarily on
runtime aspects of the system. Our contribution in
the area of large scale embedded systems is the
development of fault tolerant software architectures
in which models are an integral part, playing an
active role in the engineering process and during
runtime.

4.1 The Reflex and Healing Architecture

In order to ensure proper operation of an embedded
system 1) the computational hardware must be in
physical working order, 2) any utilized
communication channels must be intact, and 3) the
software components must be exhibiting desired
behavior. A Reflex and Healing architecture [33]
employs a hierarchical network of fault
management entities called reflex engines whose

primary purpose is to implement a fast reflex action
when they detect failures within their immediate
area of observation. User applications (such as HEP
applications) are managed locally, and coordination
between managers is limited to adjacent levels of
the hierarchy.

4.2 Reflex Engines

Customized software processes are used to perform
monitoring, diagnostics, and implementation of
failure mitigating actions in the Reflex and Healing
Architecture. These processes have mechanisms by
which they sense and affect their environment and
can produce and consume event notifications to and
from other processes to exhibit coordinated
behavior. These customizable software processes
are called reflex engines.

Definition 1. A reflex engine is a software-based
failure management process whose behavior can be
configured by an external source. A reflex engine

re can be defined as a quad-tuple

coir RZZQe ,,,=

where

Q : The set of all possible states of re

iZ : A set of inputs accepted by re

Zo : A set of all outputs produced by re

cR : The current set of reflex actions performed

by re , where ZQRRc ×⊆⊂
given
R : The complete set of possible reflex actions

which can be performed by re .

Reflex engines can be organized hierarchically
to form a Reflex and Healing network. This
network has tree structure to define hierarchical
level of a reflex engine. Each reflex engine is
responsible for mitigating failures which occur in
descendant portions of the tree. This structure
defines the various management levels within the
hierarchy. A global manager resides at the top node
of the tree structure, local managers reside at the
leaf nodes of the tree structure, and mid-tier or
regional managers reside at all other nodes. The
specific structural specification of this hierarchy
(number of management levels, number of branches
of each node, etc.) is defined within the SIML
model, and the behavioral specification of each
reflex engine is defined using the FMML modeling
language.

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

High Speed Data Bus

HEP HEP HEP HEP HEP HEP HEP HEP

L L L L L L L L

M M

G

Code Generators

Model Translators

Reflex and Healing Hierarchy Model Specifications
Managed Applications

Global Manager
Behavior ModuleReflex Engine

Mid-Tier Manager
Reflex Engine

Middleware

Local Manager
Reflex Engine

Notifications

Behavior Module

Execution Hardware

Behavior Module

Commands

NotificationsCommands

High Speed Data Bus

HEP HEP HEP HEP HEP HEP HEP HEP

L L L L L L L L

M M

G

High Speed Data BusHigh Speed Data Bus

HEP HEP HEP HEP HEP HEP HEP HEP

L L L L L L L L

M M

G

Code Generators

Model Translators

Code Generators

Model Translators

Reflex and Healing Hierarchy Model Specifications
Managed Applications

Global Manager
Behavior ModuleReflex Engine

Mid-Tier Manager
Reflex Engine

Middleware

Local Manager
Reflex Engine

Notifications

Behavior Module

Execution Hardware

Behavior Module

Commands

NotificationsCommands

Managed ApplicationsManaged Applications

Global Manager
Behavior ModuleReflex Engine

Mid-Tier Manager
Reflex Engine

Middleware

Local Manager
Reflex Engine

Notifications

Behavior Module

Execution Hardware

Behavior Module

Commands

NotificationsCommands

Fig. 4. A set of reflex engines whose behavior are synthesized

from FMML models help form the Reflex and Healing
architecture

Each reflex engine has a modular behavioral
component which is loaded at runtime. Source code
to implement each reflex engine’s behavioral
module is automatically generated during the
FMML model interpretation process. Software to
instantiate the Reflex and Healing network and load
each reflex engine’s behavior is generated during
the SIML model interpretation process (see fig. 4).

4.3 Scalability

A hierarchy of reflex engines can be used to
monitor a vast number of nodes given that peer-
level communication between reflex engines is
strictly forbidden. That is, any reflex engine will
never communicate with reflex engines other than
its governor or direct subordinates.

For example, consider a cluster of commodity
computers used to implement a Reflex and Healing
hierarchy consisting of one global manager, two
levels of mid-tier management, and one level of
local management. Also consider that each global
or mid-tier manager is directly responsible for 20
subordinates, and that all managers reside on
unique machines. This architecture would support
up to 8000 instances of a managed application with
~5% redundancy overhead (8421 total nodes with
8000 nodes utilized for target applications and 421
nodes utilized for fault management).

Designing increasingly larger Reflex and
Healing networks is simply a matter of creating a
more elaborate SIML model of the system, and
modeling the behavior of additional reflex engines
to implement the management hierarchy. Simple
copy and paste operations are largely used to
perform this task. For example, one can double the
size of a Reflex and Healing network model by
simply making a duplicate copy of the existing
network and creating a new global node to manage
the two sub-trees.

This technique has been demonstrated to create
the Reflex and Healing network described in
Chapter 5 scaling a four node configuration to an 8-
, 16-, 32-, then 64-node configuration. This process
was completed within a matter of minutes. Due to

the extensive use of model-based tools, all artifacts
necessary to implement and deploy each of these
system configurations were automatically generated
from the models.

5 Case Study: The RTES 2004 capstone
demonstration system

The Real-Time Embedded Systems (RTES) group
is a collaboration of physicists, electrical engineers,
and computer scientists from Fermi National
Accelerator Lab, Vanderbilt University, University
of Illinois Urbana-Champaign, University of
Pittsburg, and Syracuse University. The RTES
group was formed to address design, integration
and fault tolerant issues associated with large-scale
embedded systems for upcoming HEP experiments.

To demonstrate new tools and techniques, the
RTES group formed an initiative in 2003 to build
and test a capstone demonstration system that
embodies all the areas of our research regarding the
design of large-scale embedded systems. This case
study is of our second generation of tools which
were demonstrated at the Second Workshop on
High Performance, Fault Adaptive, Large Scale
Embedded Real-Time Systems (FALSE-II) co-
located with the 11th IEEE Real-Time and
Embedded Technology and Applications
Symposium (RTAS 2005).

A baseline prototype HEP data processing
system was created as a foundation to demonstrate
the effectiveness of the tools, and a number of
failure scenarios were created. The system was then
tested with respect to its ability to correctly survive
each fault scenario. Faults which may occur in the
system can be classified as being in one of the
following groups:

• Intermittent faults: Failures which are not
lasting in time or sporadic

• Persistent faults: failures which will persist
if no controlled intervention is performed
(persistent periodic faults are classified as
persistent faults)

Examples of intermittent faults include:
• Spurious data from the physical sensors,

the nature of which can be classified in
stochastic measures but is considered
temporal in nature due to the uncertainty
of the periodicity at which failures of this
type occur.

• Communication channel corruption.
Temporal errors caused by heat, radiation,
or faulty cabling may corrupt a data
channel.

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

• A data-driven process whose output
depends on integrity of input data may
exhibit temporal faulty behavior if
corrupted data occurs at the input.

• Processor hard resets (the boot sequencer
may recover and restore state to the
processes, resulting in a temporal
perturbation of system state)

Examples of persistent faults include:
• Processing hardware failure (corruption of

memory block or disk sectors)
• Task or process failure due to

programmatic error
• Communication link failure (bad I/O ports,

broken cables, etc.)

This case study details some experiments
toward applying a specific behavior to mitigate
faults in a selection of predefined failure scenarios.

5.1 RTES Demonstration Test-bed

A test-bed was created in an effort to faithfully
recreate a (small-scale) 64 node HEP Level 2/3
software and hardware architecture. Level 2/3 is a
HEP designation specifying that this system
implements the second and third stages of online
data filtering. Timing deadlines are somewhat
relaxed for Level 2/3 systems, and the filtering
algorithms run much longer and are much more
precise than of those in HEP Level 1 systems.
Figure 5 shows an overall view of the system. The
nodes run a distribution of Scientific Linux
packaged and maintained at Fermilab.

Fig. 5. A diagram of the prototype HEP data processing system

for evaluating RTES tools and technologies (courtesy of H.
Cheung, Fermilab)

This HEP application performs data distribution
and filtering within a system consisting of a data
source, 64 dual processor worker nodes, and a
command and control user interface. Two instances
of the HEP filtering application are present on each

node. A Reflex and Healing hierarchy was placed
in the system using a global manager, nine (9)
regional mangers, and six (6) local managers per
region. Faults are introduced into the system
through a fault injection interface on the command
and control GUI.

Seven (7) failure scenarios were constructed as
being representative of typical fault conditions
known to occur in HEP data processing systems.
The failure scenarios are the following:

1) General application crash (HEP or other,
with or without error)

2) Temporal corruption of the HEP
application’s input data stream

3) HEP application infinite loop (halt with no
response)

4) HEP application exponential slowdown
5) HEP application processing time violation
6) HEP application memory usage violation
7) Aggregate processing time violations

across a region

The following sections detail the process of
creating and testing custom behaviors which
attempt to mitigate faults in two (2) of the above
scenarios. Each behavior is described in more detail
below. It is important to note that contribution of
this work is not necessarily in custom failure
mitigation behaviors that were defined, but rather in
the tools, techniques, and infrastructure that allow
these custom behaviors to be easily designed and
integrated into a large scale embedded system.

5.2 Experiment 1: Temporal data stream corruption

Often times a temporal corruption can occur which
leads to a crash of the key physics data filtering
application. These failures are common in HEP
experiments, as the detection mechanisms are
extremely sensitive to environmental conditions not
under direct control of the user. However, it is
extremely important to physicists running an
experiment that the occurrence of such an error be
detected and recorded, so that the portion of the
data stream which went unfiltered may be marked
as such. The filtering algorithms used in HEP
experiments are generally provided with an ability
to detect a corrupted data stream. However, the
occurrence of such an error should be recorded at
the local fault manager level as opposed to the
filtering level. This allows a higher-level manager
to detect trends which may be present regarding
data stream corruption that are not detectable by a
single instance of a filter algorithm.

The following scenario was created to test the
system’s ability to detect and record such an event.

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

A reflex engine in the Nominal state will transition
to the Bad_Data state when it detects and event
from the HEP application that the input stream data
is corrupt. Using FMML, a model of the desired
behavior was created and placed in a reflex engine
at the local level of the Reflex and Healing
network.

Fig. 6. An FMML model for detecting and reporting errors in the

target physics application

To evaluate this behavior, the 64-node HEP

system was instantiated and the Data Source was
directed to produce corrupt data packets at random
intervals. The reflex engines were instructed to log
all of their events regarding fault management.
Figure 6 shows a model of the behavior as created
in FMML.

Table 1. Event legend for Experiment 1

LM1 Received processing time report from HEP
application

LM2 Detected HEP application encountered corrupt
input data

LM3 Notification to Regional Manager of fault
detection

Table 1 details each class of events raised and

Fig. 7 shows the event timeline during the handling
of this fault scenario. Recall that two (2) instances
of the HEP application are running on each node.

Clearly, model based techniques are effective
for specifying a simple behavior to handle this fault
scenario. One might argue, though, that this fault
scenario could easily be handled with minimal risk
by writing a small number of lines of code.
However, scenarios such as the detection of
localized failures across an entire region of the
hierarchy are not as simple to implement, and
require modeling of the interaction between
management levels in the Reflex and Healing
architecture. The next experiment illustrates how
the tools facilitate the design and deployment of a
more challenging hierarchical behavior.

176 178 180 182 184 186 188 190 192 194

LM1

LM2

LM3

Time (milliseconds)

E
ve

nt
 C

at
eg

or
y

Fig. 7. Events raised during the successful mitigation of a fault

scenario

5.3 Experiment 2: Hierarchical mitigation of
regional HEP timing violations

Another typical occurrence in HEP Level 2/3 data
systems is that the HEP application runs too long,
causing a decrease in overall system throughput.
This may be caused by a change in the
characteristics of the incoming data. HEP
applications employ algorithms whose execution
times are data dependent. Therefore, as conditions
in the particle accelerator change (e.g. a higher
density of particle collisions is occurring) the
behavior of the filtering applications will change. If
this condition is detected, physicists may want to
reconfigure certain parameters of the HEP
application such that they have shorter execution
times as not to overflow the system buffers. Recall
that HEP experiments run at a constant physical
periodicity, so slowing down the data acquisition is
not considered a reasonable option.

Implementing the behavior to detect such a
condition is not as trivial. Local Managers have
only a small view of the entire system; they do not
know the state of other components in the system.
Regional managers have no knowledge of local
HEP applications or other regions of the system,
nor do they have the authority to initiate a global
HEP application reconfiguration. Therefore, some
degree of coordination must occur between local,
regional, and global management levels in order to
handle this type of scenario. Although this
experiment details only the reflex action performed
to handle this fault scenario, once an action is
taken, the system state is re-evaluated and an
iterative process of optimization and refinement can
begin which serves to heal the system.

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

Fig. 8. A set of coordinated FMML models for detecting and

reporting long physics application processing times using three
levels of hierarchy

Local Managers send periodic notification

regarding the processing time of the HEP data
filtering application to their governing manager.
When a regional manager detects that the average
HEP processing time reported by each Local
Managers exceeds a predetermined threshold, it
requests a reconfiguration of the HEP application
from the Global Manager. If the Global Manager
determines a reconfiguration is in order, it will
issue a command to each of its subordinate
Regional Managers to perform the reconfiguration.
Each Regional Manager then issues a command to
each of its Local Manager to perform the actual
HEP filter reconfiguration. Notification of the
reconfiguration eventually propagates up the
hierarchy and the scenario is considered complete.

Table 2. Event Legend for Experiment 2

LM1 Notification of average HEP application
processing times

LM2 Detection of Regional command to reconfigure
the HEP application

LM3 Notification that HEP application has been
successfully reconfigured

RM1 Detection of slow regional processing times
RM2 Notification to request Global HEP

reconfiguration
RM3 Detection of Global command to reconfigure

the region
RM4 Command to initiate Local HEP

reconfiguration
RM5 Detection of first local reconfiguration
RM6 Detection of last local reconfiguration
GM1 Detection of regional reconfiguration request
GM2 Command to initiate HEP reconfiguration

Table 2 provides an explanation of each event (for
brevity, the final notification event propagations are
omitted) and the timeline in Fig. 9 shows the

sequence of events raised during the handling of
this fault scenario.

0. 35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Local

Regional

G lobal

Time (milliseconds)

Management Level

E
ve

nt
 C

at
eg

o
ry

LM3

LM1

LM2
RM1

RM3
RM4

RM6

G M1

G M2

RM2

RM5

Fig. 9. Events raised during the successful mitigation of a fault

scenario in Experiment 2

6 Conclusions and Future Work

This work shows that by combining scalable
software architectures such as the Reflex and
Healing Architecture with a model-integrated
approach, one can more easily design large scale
embedded systems which exhibit reasonable
behavior in the presence of intermittent and
persistent faults. By using a Reflex and Healing
architecture, this behavior can be achieved with a
minimum of redundancy and operator intervention.

A model-integrated approach towards designing
high-performance fault-tolerant large-scale systems
is certainly desirable for system integration,
behavior modeling, and complexity management.
This work has furthered the development of
scalable modeling languages and fault tolerant
architectures, and was demonstrated to show
benefit. The tools allow a designer to model custom
behaviors of the components in a fault management
hierarchy, and provide automated integration those
behaviors into an existing architecture. This reduces
the complexity and risk associated with the design
and evolution of large-scale systems. An added
benefit of our work is that the supporting tools and
techniques are general, such that they may be
reused in other applications not specific to HEP
systems.

Future work includes the application of these
technologies to other HEP experiments and larger
systems. An initiative has begun to develop a ~500
node HEP data processing system using the
Vampire Cluster at Vanderbilt University’s
Advanced Computing Center for Research and
Education [34]. Research is also continuing in the
area of model replicators to provide modeling

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

scalability and further alleviate the designer from
the complexities of creating such large models.

Many of the tools used in this research effort are
freely available and may be downloaded from the
following sites:

Generic Modeling Environment (GME) –
http://www.escherinstitute.org/Tools/GME.asp
UDM Linux tool suite –
http://www.escherinstitute.org/Downloads/Downlo
ads.asp
Scientific Linux Fermi –
http://www.oss.fnal.gov/projects/fermilinux/lts304/i
ndex.html

References

1. J. Gutleber, et. al, “Clustered Data Acquisition for

the CMS experiment”, International Conference on
Computing in High Energy and Nuclear Physics
(CHEP 2001), Beijing, China, September 3-7, 2001.

2. Kwan S., “The BTeV Pixel Detector and Trigger
System”, FERMILAB-Conf-02/313-E, December
2002.

3. Buttler J.N., et. al, “Fault Tolerant Issues in the
BTeV Trigger”, FERMILAB-Conf-01/427,
December 2002.

4. Robert France, Bernhard Rumpe, In search of
effective design abstractions, Software and Systems
Modeling, Volume 3, Issue 1, Mar 2004, Pages 1 - 3

5. Ivar Jacobson, Use cases – Yesterday, today, and
tomorrow, Software and Systems Modeling, Volume
3, Issue 3, Aug 2004, Pages 210 - 220

6. Marian Bozdoc, “The History of CAD”, MB
Solutions web publication, Auckland, NZ 2000-
2004, url: http://mbinfo.mbdesign.net/CAD-
History.htm

7. Sztipanovits, J., Karsai, G.: “Model-Integrated
Computing”, IEEE Computer, pp. 110-112, April,
1997.

8. Abdelwahed S., W. M. Wonham, "Interacting DES:
Modeling and Analysis", IEEE International
Conference on Systems, Man & Cybernetics,
Washington, D.C., October 2003.

9. Ledeczi A., Davis J., Neema S., Agrawal A.:
Modeling Methodology for Integrated Simulation of
Embedded Systems, ACM Transactions on
Modeling and Computer Simulation, vol. 13, 1, pp.
82-103, January, 2003.

10. Gray J., Sztipanovits J., Schmidt D., Bapty T.,
Neema S., Gokhale A, “Two-Level Aspect Weaving
To Support Evolution In Model-Driven Software”,
Aspect-Oriented Software Development, Addison
Wesley, 2004, pp. 681-705, August, 2004.

11. Ledeczi A., Maroti M., Bakay A., Karsai G., Garrett
J., Thomason IV C., Nordstrom G., Sprinkle J.,
Volgyesi P, “The Generic Modeling Environment”,
Workshop on Intelligent Signal Processing,
accepted, Budapest, Hungary, May 2001.

12. The Generic Modeling Environment at the ESCHER
Research Institute, url:
http://www.escherinstitute.org/Tools/GME.asp

13. Karsai G., Agrawal A., Shi F, Sprinkle, J., “On the
Use of Graph Transformations for the Formal
Specification of Model Interpreters”, Journal of
Universal Computer Science, Volume 9, Issue 11,
pp. 1296-1321, November 2003.

14. Richard Soley et. al, "Model Driven Architecture"
url: http://www.omg.org/mda/

15. Emerson M., Sztipanovits J., Bapty T, “A MOF-
Based Metamodeling Environment”, Journal of
Universal Computer Science, 10, 10, pp. 1357-1382,
October 9, 2004.

16. Jack Greenfield, Keith Short, Software Factories:
Assembling Applications with Patterns, Models,
Frameworks and Tools, John Wiley and Sons,
August 2004.

17. Nordstrom G., “Metamodeling – Rapid Design and
Evolution of Domain-Specific Modeling
Environments”, Proceedings of the IEEE ECBS ’99
Conference, 1999.

18. S. Nordstrom, S. Shetty, Kumar Guarav Chhokra,
Jonathan Sprinkle, Brandon Eames, Akos Ledeczi,
“ANEMIC: Automatic Interface Enabler for Model
Integrated Computing", Lecture Notes in Computer
Science, vol. 2830, pp. 138--150, November, 2003.

19. G. Karsai, A. Agrawal, “Graph Transformations in
OMG’s Model-Driven Architecture”, Applications
of Graph Transformations with Industrial
Relevance, Charlottesville, VA, USA, Springer
LNCS, 2003.

20. Jürjens J, “Formal Semantics for Interacting UML
subsystems”, Fifth International Conference on
Formal Methods for Open Object-Based Distributed
Systems (FMOODS 2002), Twente, March 20-22,
2002.

21. Harel D., Gery E, “Executable Object Modeling
with Statecharts”, IEEE Computer, vol. 30, no. 7,
pp. 31-42, July 1997.

22. S.Neema, Ted Bapty, S.Shetty, S.Nordstrom,
“Developing Autonomic Fault Mitigation Systems”,
Journal of Engineering Applications of Artificial
Intelligence Special Issue on Autonomic Computing
and Grids, Elsevier, 2004.

23. Shetty S., Nordstrom S., Ahuja S., Yao D., Bapty T.,
Neema S., “Systems Integration of Autonomic
Large Scale Systems Using Multiple Domain
Specific Modeling Languages”, 12th IEEE
International Conference on ECBS ,Engineering of
Autonomic Systems, 0-7695-2306-0/05 pp481,
Greenbelt, MD , USA, April 2005

24. Ahuja S., Yao D., Neema S., Bapty T., Shetty S.,
Nordstrom S, “Dynamically Reconfigurable
Monitoring in Large Scale Real-Time Embedded
Systems”, IEEE SoutheastCon, pp. 327, CD-Rom,
Fort Lauderdale, Florida, April 8, 2005.

25. D. Daly, D. D. Deavours, J. M. Doyle, P. G.
Webster, and W. H. Sanders., "Möbius: An
Extensible Tool for Performance and Dependability
Modeling", Lecture Notes in Computer Science No.
1786, pp. 332-336., B. R. Haverkort, H. C.

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

Bohnenkamp, and C. U. Smith (Eds.), Berlin,
Springer, 2000.

26. Mitchel Resnick, “Decentralized Modeling and
Decentralized Thinking”, Modeling and Simulation
in Science and Mathematics Education (pp. 114-
137), edited by W. Feurzeig and N. Roberts,
Springer, New York. 1999.

27. D. Garlan, S. Cheng, and B. Schmerl, “Increasing
System Dependability through Architecture-based
Self-repair”, Architecting Dependable Systems, R.
de Lemos, C. Gacek, A. Romanovsky (Eds),
Springer-Verlag, 2003.

28. D. Harel, "Statecharts: A visual Formalism for
complex systems", The Science of Computer
Programming, vol. 8, pp.231-274, 1987.

29. Broadwell, P., N. Sastry and J. Traupman., “FIG: A
Prototype Tool for Online Verification of Recovery
Mechanisms”, Workshop on Self-Healing, Adaptive
and self-MANaged Systems (SHAMAN), New
York, NY, June 2002.

30. D. Garlan, B. Schmerl, “Model-Based Adaptation
for Self-Healing Systems”, Workshop on Self-
healing systems (WOSS), Proceedings of the first
workshop on Self-healing systems, Charleston,
South Carolina, 2002.

31. R. Sterritt, “Autonomic Computing”, Innovations in
Systems and Software Engineering, A NASA
Journal, vol. 1, No.1, ISSN-1614-5046, Springer,
April 2005.

32. J. Kephart and D. Chess, The Vision of Autonomic
Computing. IEEE Computer, 2003 0018-9162/03

33. S. Nordstrom, S. Shetty, S. Neema, and T. Bapty,
"Modeling Reflex-Healing Autonomy for Large
Scale Embedded Systems", IEEE Transactions on
Systems, Man, and Cybernetics, Special Issue on
Autonomic Computing (accepted for publication),
2004.

34. ACCRE: Advanced Computing Center for Research
and Education, Vanderbilt University, USA, url:
http://www.accre.vanderbilt.edu/accre/

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

Fig. 10. A high level modeling approach supplemented with narrowly focused modeling languages
provides a system-level picture as well as access to refining models expressed in other languages

Fig. 11. This SIML model defines a 64-node HEP application configuration with Links to models
refinements defined using other modeling languages.

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

Fig. 12. The Fault-Mitigation Modeling Language (FMML) allows system designers to manage
specification of fault-mitigation responses within the system

High Speed Data Bus

HEP HEP HEP HEP HEP HEP HEP HEP

L L L L L L L L

M M

G

Code Generators

Model Translators

Reflex and Healing Hierarchy Model Specifications
Managed Applications

Global Manager
Behavior ModuleReflex Engine

Mid-Tier Manager
Reflex Engine

Middleware

Local Manager
Reflex Engine

Notifications

Behavior Module

Execution Hardware

Behavior Module

Commands

NotificationsCommands

High Speed Data Bus

HEP HEP HEP HEP HEP HEP HEP HEP

L L L L L L L L

M M

G

High Speed Data BusHigh Speed Data Bus

HEP HEP HEP HEP HEP HEP HEP HEP

L L L L L L L L

M M

G

Code Generators

Model Translators

Code Generators

Model Translators

Reflex and Healing Hierarchy Model Specifications
Managed Applications

Global Manager
Behavior ModuleReflex Engine

Mid-Tier Manager
Reflex Engine

Middleware

Local Manager
Reflex Engine

Notifications

Behavior Module

Execution Hardware

Behavior Module

Commands

NotificationsCommands

Managed ApplicationsManaged Applications

Global Manager
Behavior ModuleReflex Engine

Mid-Tier Manager
Reflex Engine

Middleware

Local Manager
Reflex Engine

Notifications

Behavior Module

Execution Hardware

Behavior Module

Commands

NotificationsCommands

Fig. 13. A set of reflex engines whose behavior are synthesized from FMML models help form the
Reflex and Healing architecture

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

Fig. 14. A diagram of the prototype HEP data processing system for evaluating RTES tools and
technologies (diagram courtesy of H. Cheung, Fermilab)

Fig. 15. An FMML model for detecting and reporting errors in the target physics application

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

176 178 180 182 184 186 188 190 192 194

LM1

LM2

LM3

Time (milliseconds)

E
ve

nt
 C

at
eg

or
y

Fig. 16. Events raised during the successful mitigation of a fault scenario

Fig. 17. A set of coordinated FMML models for detecting and reporting long physics application
processing times using three levels of hierarchy

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Local

Regional

Global

Time (m illiseconds)

Management Level

E
ve

nt
 C

at
eg

o
ry

LM3

LM1

LM2
RM1

RM3
RM4

RM6

G M1

G M2

RM2

RM5

Fig. 18. Events raised during the successful mitigation of a fault scenario in Experiment 2

