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Abstract. Designing embedded systems that 
guarantee some form of reasonable behavior in the 
presence of failure is a difficult task, and the 
addition of scalability and real-time constraints 
only serve to exacerbate the problem. In large-scale 
systems such as those used in high-energy physics 
experiments, the necessary conditions to ensure 
complete and reliable operation of the system can 
not be guaranteed. Moreover, typical methods of 
fault tolerance can not be applied to these systems 
given their size and budgetary constraints. As the 
performance, size, and inherent complexity of these 
systems increase, it becomes necessary to develop 
increasingly advanced tools and techniques to help 
manage their design, implementation, and 
configuration. This paper outlines an approach 
toward designing large-scale embedded systems by 
leveraging concepts of Model Integrated 
Computing to configure a scalable Reflex and 
Healing architecture to implement model-based 
user-defined fault-mitigation strategies within the 
system.   
 
Keywords: Fault-mitigating -- Fault-tolerant -- 
Reflex -- Healing -- Model -- Integrated 
 
 
 
1 Introduction and Problem Motivation 
 
As high performance computing grows more 
prominent and accessible, system designers 
leverage the commoditization of components by 
designing increasingly complex embedded 
computers not from scratch but by composing 
collections of existing components to form larger, 
more elaborate systems. This activity places 
considerable strain on both the design process and 

the systems engineering process, and serves to add 
complexity to the design; both of which can 
adversely affect reliability. 

Reliable operation of a high performance 
distributed computer system is dependant upon 1.) 
the proper operation of each system component, 
and 2.) a proper interaction between components in 
the composition. In systems with many thousands 
of components, neither of these conditions can be 
guaranteed. Proper consideration must be given to 
the occurrence of failure in both the physical 
components as well as in software; one must 
anticipate that failures will occur sometime within 
the operational lifetime of the system.  

Acceptance of possible component failures 
should be evident in every aspect of system design. 
Complex embedded systems should behave such 
that some degree of component or subsystem 
malfunction does not result in catastrophic system 
failure. Ensuring reliable and predictable system 
behavior in the presence of failure is a difficult and 
costly task, and the addition of real-time constraints 
only serves to exacerbate the problem. Internal 
knowledge of the system structure (past and 
present) may be required to reason not only about 
possible failure mitigation actions, but also about 
the effects of undergoing such adaptations. This 
becomes especially true in systems where real-time 
constraints affect the time allowed for such 
reasoning processes. Determination of when to 
perform adaptation, in what ways may the system 
be reconfigured, the amount of time used to 
perform the adaptation, and what benefit or 
increased utility these actions will yield are all 
important design decisions that must be evaluated 
when building a system under such constraints. 
 
1.1 Problem Motivation 
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Of particular interest to us are the embedded 
systems used to perform online phenomena capture, 
signal processing, and data collection for high 
energy physics (HEP) experiments. Physicists and 
engineers collaborate to build massive real-time 
embedded systems which perform the necessary 
data acquisition and signal processing required for 
capturing, processing, and recording the various 
physical phenomena that occur inside a particle 
accelerator. HEP experiments have a physical 
process interaction periodicity as high as ~25 
nanoseconds yielding aggregate front-end data rates 
on the order of several Terabytes/second with ~1 
Petabyte/year in permanent storage needs [1] [2]. 
Typical hardware architectures for HEP 
computation are composed of several thousands of 
processors. Given that there can exist only a 
minimal amount of redundant resources, designers 
of these systems face considerable difficulty when 
applying traditional techniques for fault tolerance 
[3].  

Typical baseline criteria for these systems are 
the following:  

• Data must not be lost 
• Maximum latency between phenomena 

detection and storage must be guaranteed  
• The system must be scalable (on the order 

of several thousand processors) 
• The system must exhibit reasonable 

behavior in the presence of failures 
• Redundancy must be kept to a minimum 

(<10% overhead) 
• Operator intervention should be minimal 

for all but the most critical tasks 
• Development and maintenance costs 

should be minimized  
 
A reasonable behavior is one which is 

predictable, stable, and meets the criteria set forth at 
design time regarding minimum system 
performance and graceful degradation during 
conditions of failure. Clearly, these concerns can be 
conflicting; a reduction in development costs may 
prohibit the implementation of customized fault 
mitigating tasks and behaviors; Likewise, if 
redundancy is minimized the ability to exhibit 
reasonable fault tolerant behavior clearly suffers.  

The challenges then become the following:  
• How does one design and manage a 

system such that these goals can be met 
with some degree of certainty? 

• What architectures are suited for these 
classes of systems and do they scale to 
thousands nodes? 

• Do existing tools and techniques exist 
which can be used to reduce the 
complexity of the design process? 

• What levels of time, expertise, and risk are 
associated with customizing the system to 
suit ones specific needs? 

 
This paper outlines our proposed and tested design 
tools, techniques and best principles that should be 
used when building complex, large-scale, 
embedded systems when real-time and fault-
management constraints are applied. 
 
2 Managing complexity through modeling 
 
A critical aspect of engineering large computer 
systems is the management of inherent 
complexities of the final product. Proper design, 
improved processes, and better supporting tools are 
all potent stimuli of more robust system 
construction. This chapter will cover some specific 
tools and techniques regarding the management of 
design and integration of large scale computer 
based systems. 
 
2.1 Model Integrated Computing 
 
The software engineering community has seen a 
marked increase over the last decade in the use of 
model-centric tools which aid in system design and 
complexity management [4] [5]. Early computer 
based modeling tools were confined to highly 
specialized domains whose budgets could afford 
the added costs of computer based modeling. For 
example, early and expensive CAD-CAM tools 
were being used in the 1970’s for circuit design and 
analysis, and CADD systems for modeling aircraft 
and automotive designs were becoming more 
prevalent [6]. The success of these tools and of the 
model-based design approach in general is well 
known, and over time the costs of using such tools 
has made it increasingly feasible to apply model-
based design approaches to other domains, 
including software design. 

Model Integrated Computing (MIC) [7] has 
proven itself in recent years as a sound method of 
applying computer based modeling approaches to a 
variety of problem domains. MIC incorporates the 
creation of domain-specific, model-based 
abstractions which serve to capture relevant aspects 
of a target system. These models can then be 
programmatically traversed and transformed to 
produce a variety of domain specific artifacts. 
These models are often transformed into alternate 
but equivalent representations which can be used by 
external analysis and simulation tools to verify 
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certain properties of the system [8] [9]. Examples 
of MIC uses are the generation of real-time 
schedules from a software model, the creation of 
configuration files to integrate distributed systems, 
or the generation of source code that can be 
integrated into an existing framework [10]. 

MIC relies heavily on the use of domain-
specific modeling languages to capture relevant 
characteristics of an object or system of objects. A 
domain-specific modeling language (DSML) 
allows a designer to describe objects in terms of the 
domain rather than in terms of traditional computer 
languages. The Generic Modeling Environment 
(GME) [11] [12] is a freely available tool which 
provides a platform upon which to perform MIC 
design and development. Specifically, the GME is a 
configurable and domain-independent modeling 
environment that supports the creation and 
instantiation of multiple user defined (domain-
specific) modeling languages. 

Recent and State-of-the-art technologies for 
model driven design include research into graphical 
methods of model transformations [13], and 
leveraging the OMG’s Model Driven Architecture 
(MDA) 14 for meta-level language specification 
[15]. Microsoft is bringing their .NET Software 
Factories framework to fruition for high level 
modeling of software [16]. 
 
2.2 Using models effectively 
 
Without proper analysis and translation tools, 
models are nothing but design documents; they may 
have well defined semantics, but their only role is 
that of documentation. The difference between 
traditional models (PowerPoint or Visio diagrams, 
blueprints, or CAD drawings) and MIC models is 
that in addition to capturing and documenting 
properties of an object, computer-based MIC 
models can be programmatically leveraged to 
produce something for the designer. The 
application of semantics to a model is often referred 
to as model interpretation [17], translation [18], or 
transformation [19]. 

While domain models can be interpreted and 
transformed to produce a variety of artifacts, the 

models themselves need only be defined once. A 
good example of this is the generation of either 
C++ or Java classes from the same UML class 
diagram [20] or in the creation of platform-specific 
executable code from a StateCharts model [21]. 
Similarly, a single set of system models can be used 
to drive simulations, generate source code and 
configuration files, or produce system 
documentation.   
 
3 Modeling languages for large-scale 
embedded systems 
 
A major portion of our research is motivated 
toward providing model-based design and fault 
management tools for large scale HEP systems 
[22]. There are several different aspects of these 
systems ranging from hardware, communication 
protocols, fault management, data and message 
types, run control, event logging, and deployment. 
While each individual aspect of these systems can 
be modeled, building a fully unified model which 
captures the system from all of these viewpoints 
would be an arduous and error-prone process.  

In order to extend the best practices of large 
scale system development to MIC without 
sacrificing the benefits of designing systems from 
multiple aspects, one can create a set of modeling 
languages, each corresponding to a particular aspect 
of the system. For example, a hardware designer’s 
aspect of an embedded control system may include 
processors, busses, and sensor and actuator 
interfaces, while the control systems engineer’s 
aspect of the same system may include signal 
integrators, delays, and transfer functions.  

Merely modeling each aspect of the system, 
however, is not enough; these aspects need to be 
meaningfully incorporated through a higher level 
modeling language. As systems become more 
interconnected and diverse, the number of aspects 
from which the system is modeled increases. 
Clearly, some form of automated tool support is 
required to assist designers in managing the 
complexity of such large system models. 
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Fig. 1. A high level modeling approach supplemented with multiple narrowly focused modeling languages provides a system-level 

picture as well as access to refining models expressed in other languages 

A set of narrowly focused domain specific 
modeling languages integrated through a higher 
level language provides a modeling tool suite 
capable of specifying numerous relevant aspects of 
large-scale embedded systems. This concept is 
illustrated in Fig. 1. The following languages are 
present in the tool suite: 

• System Integration Modeling Language 
(SIML) – a language used for high level 
specification of the system 

• Fault Mitigation Modeling Language 
(FMML) – a language for specifying the 
behavior of fault management components 
in the target architecture 

• Data Type Modeling Language (DTML) – 
a language for data type modeling and 
creation of architecture specific message 
models 

• GUI Configuration Modeling Language 
(GCML) – a language used for rapid 
layout and design of control, monitoring, 
diagnostics, and fault injection user 
interfaces 

• Run-Control Modeling Language (RCML) 
– a language used to describe the behavior 
of the HEP experiment control 
components for loading the software, 
starting and stopping the experiment, etc. 

 
What follows is a brief discussion of the SIML 

and FMML languages present in the tool suite. 
Details of the remaining modeling languages in the 
suite are omitted for brevity, but can be found in 
[23] and [24]. 
 
3.1 Systems Integration Modeling Language 
 

The System Integration Modeling Language 
(SIML) is a high level systems modeling language 
that utilizes a loosely specified model of 
computation for capturing components, component 
hierarchy, and interactions within the system. SIML 
allows designers to model from a global view the 
information and components relevant for a given 
system configuration. An example SIML model is 
shown in Fig. 2. 
 

 
Fig. 2. This SIML model defines a 64-node HEP application 
configuration with Links to models refinements defined using 

other modeling languages. 

SIML is used to model the general dataflow, as 
well as the structural and communication layout of 
the system. Typical objects which are represented 
in SIML are regions or partitions of the system, 
software components, dataflow connections, and 
message routers. SIML also serves as the highest 
level language through which models of other 
languages of the systems are accessed. 

Figure. 2 shows the model of a prototype HEP 
application from a global view as expressed in 
SIML. This model defines a GlobalManager, 
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several Regions each of which contain a 
RegionalManager and several LocalNodes. Each 
LocalNode contains a LocalManager and a HEP 
application. This view of the model defines the 
dataflow between the components at global level. 
Data paths represent point-to-point communication, 
and Routers represent access points to publish-
subscribe middleware services. Models in SIML 
can be decomposed to show more detail. The 
decomposition of a SIML component is expressed 
in one of the many other languages in the tool suite. 

To address challenges of representing models in 
multiple graphical languages we introduce the 
concept of a Link type which forms a bridge 
between two graphical modeling languages. Links 
can be thought of as a conduit between layers of 
models. A Link has attributes to identify the 
modeling language of the target layer and 
properties of the linked object, and provide a 
concise interaction between different modeling 
languages. Specialized tools facilitate the process of 
link creation and link navigation, as the creation of 
a Link is non-trivial and may require an intricate 
mapping between concepts in different modeling 
languages. These tools are a benefit to the designer 
in that they place the onus of Link creation on 
language and tool developers, thereby reducing the 
possibility of error. 
 
3.2 Fault Mitigation Modeling Language 
 
There have been efforts towards decentralized 
algorithms and techniques for managing large scale 
distributed systems [25] [26]. Centralized or 
‘expert’ methods for controlling complex systems 
can become unwieldy and impractical as the 
number of components increase to those required 
by HEP systems.  

Alternative techniques for managing large scale 
distributed systems usually consist of a hierarchy of 
managing entities placed strategically in the system 
whereby control decisions are made using only 
partial knowledge of the system [27]. Corrective 
behavior embedded within these entities is 
automatically activated when fault conditions are 
observed, and certain actions will be taken in an 
attempt to mitigate the failure. The benefits of 
hierarchical behavior in large scale distributed 
systems include improved robustness and 
scalability, and the lack of centralized points of 
failure or attack.  

Often the behaviors of fault managing entities 
are intimately tied to a specific system, and 
designers will need to create custom fault-
mitigation behaviors to suit their own needs. The 
tool suite provides a general framework by which a 

designer can model the behavior of fault mitigating 
entities in a large scale embedded system using 
concepts specific to failure management within his 
or her own system architecture.  

The Fault-Mitigation Modeling Language 
(FMML) allows system designers to model the 
behavioral specification components by providing a 
general notation refined with additional domain 
specific features to support fault management 
activities. This refinement is necessary to facilitate 
complete generation of source code (object classes, 
middleware API calls, etc.) to implement the 
behavior within a software component. The 
language is general enough, however, that changes 
to the underlying middleware and execution 
platform do not necessitate a change to the 
behavioral model. 

 

 
Fig. 3. The Fault-Mitigation Modeling Language (FMML) 
allows system designers to manage specification of fault-

mitigation responses within the system 

Features of the FMML can be summarized as 
follows: 

• Blocks represent system states  
• Transition models capture the necessary 

conditions to progress between states 
• Transitions are annotated with a Trigger, 

Guard, and Action expression 
• Transitions may contain Message 

Channels to receive and dispatch 
Messages 

• Transitions may specify an incoming 
Message events from Message Channels 
as additional triggering conditions for the 
transition 

• Messages may be produced and consumed 
from within an Action 

 
FMML utilizes a basic formalism similar to 

StateCharts [28] for capturing the logical 
progression of states which define component 
behavior. As HEP systems place a large emphasis 
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on messaging and Message-Oriented Middleware 
(MOM), it is necessary that any fault managing 
entities have use of these facilities. These 
messaging systems often have complex interfaces 
and interactions which are not fully understood by 
designers of HEP systems. Therefore, state 
transitions (which in traditional formalism are 
specified using textual trigger, guard, and action 
expressions) have been refined to model 
graphically the concepts and operations common to 
message passing middleware. Such refinements 
include the modeling of event channels, message 
structures, and message creation and distribution 
operations. The benefit of a modeling language 
which can represent these facilities allows the full 
implementation of the behavior (message passing 
inclusive) to be automatically generated from the 
model.  

Figure 3 shows a custom fault behavior 
expressed in FMML. The specific behavior being 
modeled is used for reporting input data stream 
errors in a HEP application. Nominal and Bad_Data 
states are defined, and a model defining the 
transition from Nominal to Fault is shown. The 
transition model refinement shows the particular 
messages which are produced and consumed during 
the transition. 
 
4 Model-integrated frameworks for large-scale 
embedded systems 
 
The need for dependability in large scale embedded 
systems is certainly not unique to those in the high 
energy physics community. Furthermore, much 
work has been done in the areas of fault recovery, 
fault tolerance, and autonomicity of a wide range of 
distributed and embedded systems [29] [30] [31] 
[32]. Some existing approaches are geared toward 
design-time techniques; others focus primarily on 
runtime aspects of the system. Our contribution in 
the area of large scale embedded systems is the 
development of fault tolerant software architectures 
in which models are an integral part, playing an 
active role in the engineering process and during 
runtime. 
 
4.1 The Reflex and Healing Architecture 
 
In order to ensure proper operation of an embedded 
system 1) the computational hardware must be in 
physical working order, 2) any utilized 
communication channels must be intact, and 3) the 
software components must be exhibiting desired 
behavior. A Reflex and Healing architecture [33] 
employs a hierarchical network of fault 
management entities called reflex engines whose 

primary purpose is to implement a fast reflex action 
when they detect failures within their immediate 
area of observation. User applications (such as HEP 
applications) are managed locally, and coordination 
between managers is limited to adjacent levels of 
the hierarchy. 
 
4.2 Reflex Engines 
 
Customized software processes are used to perform 
monitoring, diagnostics, and implementation of 
failure mitigating actions in the Reflex and Healing 
Architecture. These processes have mechanisms by 
which they sense and affect their environment and 
can produce and consume event notifications to and 
from other processes to exhibit coordinated 
behavior. These customizable software processes 
are called reflex engines. 
 
Definition 1. A reflex engine is a software-based 
failure management process whose behavior can be 
configured by an external source. A reflex engine 

re can be defined as a quad-tuple 

coir RZZQe ,,,=  

where 

Q :  The set of all possible states of re  

iZ :  A set of inputs accepted by re  

Zo :  A set of all outputs produced by re  

cR :  The current set of reflex actions performed 

by re , where ZQRRc ×⊆⊂  
given 
R :  The complete set of possible reflex actions 

which can be performed by re . 
 

Reflex engines can be organized hierarchically 
to form a Reflex and Healing network. This 
network has tree structure to define hierarchical 
level of a reflex engine. Each reflex engine is 
responsible for mitigating failures which occur in 
descendant portions of the tree. This structure 
defines the various management levels within the 
hierarchy. A global manager resides at the top node 
of the tree structure, local managers reside at the 
leaf nodes of the tree structure, and mid-tier or 
regional managers reside at all other nodes. The 
specific structural specification of this hierarchy 
(number of management levels, number of branches 
of each node, etc.) is defined within the SIML 
model, and the behavioral specification of each 
reflex engine is defined using the FMML modeling 
language. 

 



Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

High Speed Data Bus

HEP HEP HEP HEP HEP HEP HEP HEP

L L L L L L L L

M M

G

Code Generators

Model Translators

Reflex and Healing Hierarchy Model Specifications
Managed Applications

Global Manager
Behavior ModuleReflex Engine

Mid-Tier Manager
Reflex Engine

Middleware

Local Manager
Reflex Engine

Notifications

Behavior Module

Execution Hardware

Behavior Module

Commands

NotificationsCommands

High Speed Data Bus

HEP HEP HEP HEP HEP HEP HEP HEP

L L L L L L L L

M M

G

High Speed Data BusHigh Speed Data Bus

HEP HEP HEP HEP HEP HEP HEP HEP

L L L L L L L L

M M

G

Code Generators

Model Translators

Code Generators

Model Translators

Reflex and Healing Hierarchy Model Specifications
Managed Applications

Global Manager
Behavior ModuleReflex Engine

Mid-Tier Manager
Reflex Engine

Middleware

Local Manager
Reflex Engine

Notifications

Behavior Module

Execution Hardware

Behavior Module

Commands

NotificationsCommands

Managed ApplicationsManaged Applications

Global Manager
Behavior ModuleReflex Engine

Mid-Tier Manager
Reflex Engine

Middleware

Local Manager
Reflex Engine

Notifications

Behavior Module

Execution Hardware

Behavior Module

Commands

NotificationsCommands

 
Fig. 4. A set of reflex engines whose behavior are synthesized 

from FMML models help form the Reflex and Healing 
architecture 

Each reflex engine has a modular behavioral 
component which is loaded at runtime. Source code 
to implement each reflex engine’s behavioral 
module is automatically generated during the 
FMML model interpretation process.  Software to 
instantiate the Reflex and Healing network and load 
each reflex engine’s behavior is generated during 
the SIML model interpretation process (see fig. 4). 
 
4.3 Scalability 
 
A hierarchy of reflex engines can be used to 
monitor a vast number of nodes given that peer-
level communication between reflex engines is 
strictly forbidden. That is, any reflex engine will 
never communicate with reflex engines other than 
its governor or direct subordinates.  

For example, consider a cluster of commodity 
computers used to implement a Reflex and Healing 
hierarchy consisting of one global manager, two 
levels of mid-tier management, and one level of 
local management. Also consider that each global 
or mid-tier manager is directly responsible for 20 
subordinates, and that all managers reside on 
unique machines. This architecture would support 
up to 8000 instances of a managed application with 
~5% redundancy overhead (8421 total nodes with 
8000 nodes utilized for target applications and 421 
nodes utilized for fault management). 

Designing increasingly larger Reflex and 
Healing networks is simply a matter of creating a 
more elaborate SIML model of the system, and 
modeling the behavior of additional reflex engines 
to implement the management hierarchy. Simple 
copy and paste operations are largely used to 
perform this task. For example, one can double the 
size of a Reflex and Healing network model by 
simply making a duplicate copy of the existing 
network and creating a new global node to manage 
the two sub-trees.  

This technique has been demonstrated to create 
the Reflex and Healing network described in 
Chapter 5 scaling a four node configuration to an 8-
, 16-, 32-, then 64-node configuration. This process 
was completed within a matter of minutes. Due to 

the extensive use of model-based tools, all artifacts 
necessary to implement and deploy each of these 
system configurations were automatically generated 
from the models. 
 
5 Case Study: The RTES 2004 capstone 
demonstration system 
 
The Real-Time Embedded Systems (RTES) group 
is a collaboration of physicists, electrical engineers, 
and computer scientists from Fermi National 
Accelerator Lab, Vanderbilt University, University 
of Illinois Urbana-Champaign, University of 
Pittsburg, and Syracuse University. The RTES 
group was formed to address design, integration 
and fault tolerant issues associated with large-scale 
embedded systems for upcoming HEP experiments. 

To demonstrate new tools and techniques, the 
RTES group formed an initiative in 2003 to build 
and test a capstone demonstration system that 
embodies all the areas of our research regarding the 
design of large-scale embedded systems. This case 
study is of our second generation of tools which 
were demonstrated at the Second Workshop on 
High Performance, Fault Adaptive, Large Scale 
Embedded Real-Time Systems (FALSE-II) co-
located with the 11th IEEE Real-Time and 
Embedded Technology and Applications 
Symposium (RTAS 2005).  

A baseline prototype HEP data processing 
system was created as a foundation to demonstrate 
the effectiveness of the tools, and a number of 
failure scenarios were created. The system was then 
tested with respect to its ability to correctly survive 
each fault scenario. Faults which may occur in the 
system can be classified as being in one of the 
following groups: 

• Intermittent faults: Failures which are not 
lasting in time or sporadic 

• Persistent faults: failures which will persist 
if no controlled intervention is performed 
(persistent periodic faults are classified as 
persistent faults) 

 
Examples of intermittent faults include: 
• Spurious data from the physical sensors, 

the nature of which can be classified in 
stochastic measures but is considered 
temporal in nature due to the uncertainty 
of the periodicity at which failures of this 
type occur. 

• Communication channel corruption. 
Temporal errors caused by heat, radiation, 
or faulty cabling may corrupt a data 
channel.  
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• A data-driven process whose output 
depends on integrity of input data may 
exhibit temporal faulty behavior if 
corrupted data occurs at the input. 

• Processor hard resets (the boot sequencer 
may recover and restore state to the 
processes, resulting in a temporal 
perturbation of system state) 

 
Examples of persistent faults include: 
• Processing hardware failure (corruption of 

memory block or disk sectors) 
• Task or process failure due to 

programmatic error 
• Communication link failure (bad I/O ports, 

broken cables, etc.) 
 

This case study details some experiments 
toward applying a specific behavior to mitigate 
faults in a selection of predefined failure scenarios. 
 
5.1 RTES Demonstration Test-bed 
 
A test-bed was created in an effort to faithfully 
recreate a (small-scale) 64 node HEP Level 2/3 
software and hardware architecture. Level 2/3 is a 
HEP designation specifying that this system 
implements the second and third stages of online 
data filtering. Timing deadlines are somewhat 
relaxed for Level 2/3 systems, and the filtering 
algorithms run much longer and are much more 
precise than of those in HEP Level 1 systems. 
Figure 5 shows an overall view of the system. The 
nodes run a distribution of Scientific Linux 
packaged and maintained at Fermilab. 

 
Fig. 5. A diagram of the prototype HEP data processing system 

for evaluating RTES tools and technologies (courtesy of H. 
Cheung, Fermilab) 

This HEP application performs data distribution 
and filtering within a system consisting of a data 
source, 64 dual processor worker nodes, and a 
command and control user interface. Two instances 
of the HEP filtering application are present on each 

node. A Reflex and Healing hierarchy was placed 
in the system using a global manager, nine (9) 
regional mangers, and six (6) local managers per 
region.  Faults are introduced into the system 
through a fault injection interface on the command 
and control GUI. 

Seven (7) failure scenarios were constructed as 
being representative of typical fault conditions 
known to occur in HEP data processing systems. 
The failure scenarios are the following: 

1) General application crash (HEP or other, 
with or without error) 

2) Temporal corruption of the HEP 
application’s input data stream 

3) HEP application infinite loop (halt with no 
response) 

4) HEP application exponential slowdown 
5) HEP application processing time violation 
6) HEP application memory usage violation 
7) Aggregate processing time violations 

across a region 
 

The following sections detail the process of 
creating and testing custom behaviors which 
attempt to mitigate faults in two (2) of the above 
scenarios. Each behavior is described in more detail 
below. It is important to note that contribution of 
this work is not necessarily in custom failure 
mitigation behaviors that were defined, but rather in 
the tools, techniques, and infrastructure that allow 
these custom behaviors to be easily designed and 
integrated into a large scale embedded system. 
 
5.2 Experiment 1: Temporal data stream corruption 
 
Often times a temporal corruption can occur which 
leads to a crash of the key physics data filtering 
application. These failures are common in HEP 
experiments, as the detection mechanisms are 
extremely sensitive to environmental conditions not 
under direct control of the user. However, it is 
extremely important to physicists running an 
experiment that the occurrence of such an error be 
detected and recorded, so that the portion of the 
data stream which went unfiltered may be marked 
as such. The filtering algorithms used in HEP 
experiments are generally provided with an ability 
to detect a corrupted data stream. However, the 
occurrence of such an error should be recorded at 
the local fault manager level as opposed to the 
filtering level. This allows a higher-level manager 
to detect trends which may be present regarding 
data stream corruption that are not detectable by a 
single instance of a filter algorithm. 

The following scenario was created to test the 
system’s ability to detect and record such an event. 
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A reflex engine in the Nominal state will transition 
to the Bad_Data state when it detects and event 
from the HEP application that the input stream data 
is corrupt. Using FMML, a model of the desired 
behavior was created and placed in a reflex engine 
at the local level of the Reflex and Healing 
network.  

 

 
Fig. 6. An FMML model for detecting and reporting errors in the 

target physics application 

 
To evaluate this behavior, the 64-node HEP 

system was instantiated and the Data Source was 
directed to produce corrupt data packets at random 
intervals. The reflex engines were instructed to log 
all of their events regarding fault management. 
Figure 6 shows a model of the behavior as created 
in FMML. 

Table 1. Event legend for Experiment 1 

LM1 Received processing time report from HEP 
application  

LM2 Detected HEP application encountered corrupt 
input data 

LM3 Notification to Regional Manager of fault 
detection 

 
Table 1 details each class of events raised and 

Fig. 7 shows the event timeline during the handling 
of this fault scenario. Recall that two (2) instances 
of the HEP application are running on each node. 

Clearly, model based techniques are effective 
for specifying a simple behavior to handle this fault 
scenario. One might argue, though, that this fault 
scenario could easily be handled with minimal risk 
by writing a small number of lines of code. 
However, scenarios such as the detection of 
localized failures across an entire region of the 
hierarchy are not as simple to implement, and 
require modeling of the interaction between 
management levels in the Reflex and Healing 
architecture. The next experiment illustrates how 
the tools facilitate the design and deployment of a 
more challenging hierarchical behavior. 
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Fig. 7. Events raised during the successful mitigation of a fault 

scenario 

 
5.3 Experiment 2: Hierarchical mitigation of 
regional HEP timing violations 
 
Another typical occurrence in HEP Level 2/3 data 
systems is that the HEP application runs too long, 
causing a decrease in overall system throughput. 
This may be caused by a change in the 
characteristics of the incoming data. HEP 
applications employ algorithms whose execution 
times are data dependent. Therefore, as conditions 
in the particle accelerator change (e.g. a higher 
density of particle collisions is occurring) the 
behavior of the filtering applications will change. If 
this condition is detected, physicists may want to 
reconfigure certain parameters of the HEP 
application such that they have shorter execution 
times as not to overflow the system buffers. Recall 
that HEP experiments run at a constant physical 
periodicity, so slowing down the data acquisition is 
not considered a reasonable option. 

Implementing the behavior to detect such a 
condition is not as trivial. Local Managers have 
only a small view of the entire system; they do not 
know the state of other components in the system. 
Regional managers have no knowledge of local 
HEP applications or other regions of the system, 
nor do they have the authority to initiate a global 
HEP application reconfiguration. Therefore, some 
degree of coordination must occur between local, 
regional, and global management levels in order to 
handle this type of scenario. Although this 
experiment details only the reflex action performed 
to handle this fault scenario, once an action is 
taken, the system state is re-evaluated and an 
iterative process of optimization and refinement can 
begin which serves to heal the system.  
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Fig. 8. A set of coordinated FMML models for detecting and 

reporting long physics application processing times using three 
levels of hierarchy 

 
Local Managers send periodic notification 

regarding the processing time of the HEP data 
filtering application to their governing manager. 
When a regional manager detects that the average 
HEP processing time reported by each Local 
Managers exceeds a predetermined threshold, it 
requests a reconfiguration of the HEP application 
from the Global Manager. If the Global Manager 
determines a reconfiguration is in order, it will 
issue a command to each of its subordinate 
Regional Managers to perform the reconfiguration. 
Each Regional Manager then issues a command to 
each of its Local Manager to perform the actual 
HEP filter reconfiguration. Notification of the 
reconfiguration eventually propagates up the 
hierarchy and the scenario is considered complete.  
 

Table 2. Event Legend for Experiment 2 

LM1 Notification of average HEP application 
processing times 

LM2 Detection of Regional command to reconfigure 
the HEP application 

LM3 Notification that HEP application has been 
successfully reconfigured 

RM1 Detection of slow regional processing times 
RM2 Notification to request Global HEP 

reconfiguration 
RM3 Detection of Global command to reconfigure 

the region 
RM4 Command to initiate Local HEP 

reconfiguration 
RM5 Detection of first local reconfiguration 
RM6 Detection of last local reconfiguration 
GM1 Detection of regional reconfiguration request 
GM2 Command to initiate HEP reconfiguration 

 
Table 2 provides an explanation of each event (for 
brevity, the final notification event propagations are 
omitted) and the timeline in Fig. 9 shows the 

sequence of events raised during the handling of 
this fault scenario. 
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Fig. 9. Events raised during the successful mitigation of a fault 

scenario in Experiment 2 

 
6 Conclusions and Future Work 
 
This work shows that by combining scalable 
software architectures such as the Reflex and 
Healing Architecture with a model-integrated 
approach, one can more easily design large scale 
embedded systems which exhibit reasonable 
behavior in the presence of intermittent and 
persistent faults. By using a Reflex and Healing 
architecture, this behavior can be achieved with a 
minimum of redundancy and operator intervention. 

A model-integrated approach towards designing 
high-performance fault-tolerant large-scale systems 
is certainly desirable for system integration, 
behavior modeling, and complexity management. 
This work has furthered the development of 
scalable modeling languages and fault tolerant 
architectures, and was demonstrated to show 
benefit. The tools allow a designer to model custom 
behaviors of the components in a fault management 
hierarchy, and provide automated integration those 
behaviors into an existing architecture. This reduces 
the complexity and risk associated with the design 
and evolution of large-scale systems. An added 
benefit of our work is that the supporting tools and 
techniques are general, such that they may be 
reused in other applications not specific to HEP 
systems.  

Future work includes the application of these 
technologies to other HEP experiments and larger 
systems. An initiative has begun to develop a ~500 
node HEP data processing system using the 
Vampire Cluster at Vanderbilt University’s 
Advanced Computing Center for Research and 
Education [34]. Research is also continuing in the 
area of model replicators to provide modeling 
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scalability and further alleviate the designer from 
the complexities of creating such large models.  

Many of the tools used in this research effort are 
freely available and may be downloaded from the 
following sites: 
 
Generic Modeling Environment (GME) –  
http://www.escherinstitute.org/Tools/GME.asp  
UDM Linux tool suite –   
http://www.escherinstitute.org/Downloads/Downlo
ads.asp   
Scientific Linux Fermi – 
http://www.oss.fnal.gov/projects/fermilinux/lts304/i
ndex.html  
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Fig. 10. A high level modeling approach supplemented with narrowly focused modeling languages 
provides a system-level picture as well as access to refining models expressed in other languages 

 

  

Fig. 11. This SIML model defines a 64-node HEP application configuration with Links to models 
refinements defined using other modeling languages. 
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Fig. 12. The Fault-Mitigation Modeling Language (FMML) allows system designers to manage 
specification of fault-mitigation responses within the system 
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Fig. 13. A set of reflex engines whose behavior are synthesized from FMML models help form the 
Reflex and Healing architecture 
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Fig. 14. A diagram of the prototype HEP data processing system for evaluating RTES tools and 
technologies (diagram courtesy of H. Cheung, Fermilab) 

 

Fig. 15. An FMML model for detecting and reporting errors in the target physics application 
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Fig. 16. Events raised during the successful mitigation of a fault scenario 

 

Fig. 17. A set of coordinated FMML models for detecting and reporting long physics application 
processing times using three levels of hierarchy 
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Fig. 18. Events raised during the successful mitigation of a fault scenario in Experiment 2 

 


