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Abstract—Embedded computing is an area in which many of 

the Self-* properties of autonomic systems are desirable. Model 
based tools for designing embedded systems, while proven 
successful in many applications, are not yet applicable toward 
building autonomic or self-sustaining embedded systems. This 
paper reports on the progress made by our group in developing a 
model based toolset which specifically targets the creation of 
autonomic embedded systems.  
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INTRODUCTION 
Mission critical and safety critical systems require 

implementations that are resilient in the face of system faults. 
Autonomic systems aim to provide this resiliency by 
adaptively mitigating potential failures.  Significant design 
challenges arise when constructing a system capable of 
handling the uncertainty of multiple potential faults, occurring 
in arbitrary combinations and orders. Dynamically adapting a 
software system to meet new requirements involves far too 
many factors to be understood by humans in a reasonable time 
frame.  

When a system whose design is based on models needs to 
be adapted to a new environment, it becomes necessary that 
the system have internal knowledge of its design so that it can 
make sense of how to alter itself. Although much work has 
been in the areas of rapid design of model based systems there 
are still situations where having a human in the redesign loop 
is too costly.   

What follows in this paper is a discussion of a technique 
for allowing model-based systems to exhibit autonomic 
healing properties in order to solve the problems associated 
with large scale embedded system redesign. 

SOFTWARE MODELING 

Models are more than documentation  
Software modeling has been gaining mainstream 

recognition for being a critical task in the process of designing 
tightly integrated software systems such as real-time and 
embedded systems. System and component properties and 
related information are captured and stored as models, where 
advanced tools can make greater sense of compositions of 

model structures and associated interactions to provide many 
of the artifacts necessary to create a more reliable software 
product. Such artifacts can include (but are not limited to) 
timing simulations, control matrices, process schedules, 
additional source code, and configuration files. 

The process of modeling software allows designers to 
think about software using a familiar abstraction and provides 
a platform of understanding in a way that sharing of source 
code could never do. Much work has been done in the fields 
of computer science and electrical engineering to allow non-
programmers the ability to design software by provided these 
familiar abstractions coupled with tools that can make sense of 
the designer’s work and transform those design specifications 
into artifacts which can contribute toward an implementation.   

However, in many cases, design work is extraordinarily 
complicated; much more so than typical software design. 
Examples of such cases include designing of large-scale high 
performance systems or systems which operate in harsh 
environments. Much of the struggle in designing these 
systems stems from the uncertainty of the future and of the 
environment. In such cases the system’s operational lifetime 
and component properties necessitate the expectance of 
component failures. As components fail in various ways, 
software can become unpredictable. 

To alleviate some of these concerns, designers are using 
more advanced tools to design software systems. These tools 
use the concepts of software modeling to describe components 
and interactions of a system. More advanced tools can use 
these models for a variety of uses from validation, code 
synthesis, and deployment assistance. 

Model Integrated Computing  
Model Integrated Computing (MIC) [1], which has been 

developed at the Institute for Software Integrated Systems 
(ISIS) at Vanderbilt University, is gaining acceptance in 
embedded system design and has shown great usefulness in 
modeling variety of simple and complex systems. The flagship 
software product that enables MIC is the Generic Modeling 
Environment (GME). Model Integrated Computing allows 
designers to build domain specific modeling languages and 
then use those languages to compose models of a system’s 
objects and relationships. Model translators can then be used 
to extract a bevy of useful information from the models. This 
information can be used for verification, simulation/analysis, 
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code generation, and in other areas of a software design and 
deployment processes.    

MIC has been shown to be an effective means of managing 
complexity in large scale embedded systems [2] and is being 
shown to allow a growing variety of analyses to be performed 
on models [4] [5] [6].  

C. 

III. 

A. 

Previous work in reflex and healing architectures  
The application of biologically-based two stage reflex- 

healing (RH) models as mechanisms for autonomicity and 
fault recovery in computer systems has been discussed in [7] 
and [8]. The application of MIC toward this problem has been 
discussed in [9] and showed promise in this area because 
many design problems associated with autonomic and RH 
architectures could be alleviated with model-based techniques. 
For example, the use of integrating state machine based 
modeling formalisms with application and deployment models 
to rapidly accommodate new reflexes has been shown in [9] 
and refinements toward verification of reflexes has been 
shown in [10].  

More challenging and still undiscovered are the aspects of 
model-based RH architectures that are associated with system 
healing after the initial reflexes have been enacted. Model 
Integrated Computing places a considerable emphasis on 
information capture at design time and in the use of this 
information to synthesize a final set of system artifacts from 
an integrated system model. If one were to examine the 
resulting system, much of the information regarding the 
relationships of the components is removed, as for any number 
of reasons (memory footprints, timeliness factors, and various 
optimization techniques) this information is no longer needed 
or deemed superfluous.  However, in cases where a system 
must undergo redesign (such as autonomic embedded 
systems), this information is of utmost importance. 

Rather than attempt to design systems where this higher 
level knowledge is pushed down into the running system, we 
chose to integrate our design tools by feeding information 
about the running system back into the modeling tools 
themselves. The modeling tools are coupled to the running 
system using a model synchronizer; this allows an existing 
model translator to be invoked on a model which accurately 
represents the current state of the system. Work has been done 
in [11] to allow feedback from a live system to be included in 
the modeling tool. Such feedback can be used to keep the 
model synchronized with the system; the author recognizes the 
tasks of fault diagnosis and temporal model accuracy are non-
trivial but beyond the scope if this particular work. 

HEALING THROUGH MODEL-BASED REDESIGN  
This investigation of complex information about a system is 

completely necessary in the case of adaptive systems, as there 
are a considerable number of events which could happen to 
necessitate an adaptation; perhaps far too many events to be 
handled by the system at a given time. What happens when the 

system needs to adapt to an environmental change but is 
limited by the events it can handle? Designers work very 
diligently to rule out such cases, but they are not un-avoidable.  

In the case where the system is unable to adapt to its new 
environment the designer must re-visit the models using the 
modeling tools, add the necessary event handling, fault 
scenarios, or fault mitigation rules, and then redeploy the 
system. Clearly, this can be done, but at a cost; the designer 
must have the knowledge and time to perform the necessary 
modifications and the system must be in a state where is can 
wait for the necessary modifications.  

What happens over time is that the designers oscillate 
between design and re-deployment cycle after the system has 
been initially deployed. In the vein of adding autonomicity, it 
becomes desirable to have modeling tools which are capable 
of supporting a more automated redesign process. The 
following guidelines are put forth to bind a solution for 
autonomic embedded systems to a set of criteria. The 
autonomic redesign process must: 

1) Require minimal human interaction, as subject to the 
guidelines of autonomic computing [12]. 

2) Retain the benefits of MIC, using the same model 
formats and model transformations available to a designer 
executing a manual redesign  

3) Retain the system’s ability to perform healing operations 
in the future 

4) Include the ability to accommodate human-in-the-loop 
control of healing (allowing a human to evaluate the decisions 
of the redesign process before changes to the system are 
enacted) 

In order that one might automate the process of redesign it 
is necessary to understand the manual redesign process to a 
degree that one can automate it in software. In order to do this 
we must attempt to describe the design effort in a way that 
makes sense algorithmically.  

Arriving at a healed model 
The term healer is used to describe the model 

transformation engine which performs the task of finding a 
new model which is most suited to operate in the new 
environment. A designer has a limited set of operations she is 
able to perform on the model. We will consider as atomic only 
the operations which lead to healing. (There are many non-
essential operations a designer can perform using a modeling 
tool; the changing of a model’s color or name or other trivial 
operations which do not lead to healing are not considered by 
the automated healing tool.)  

A set of allowable operations for this tools set are those 
which lead to healing, namely: Promote, Demote, Transfer 
(lateral transfer), Create, Destroy, Reassociate, EnableTask, 
and DisableTask. Work is ongoing to provide not just healing 
operations but healing strategies which can be treated as 
atomic operations to the Healer. This in turn will reduce the 
explosion of candidate healed models for a given failed model. 
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Figure 1. The determination of candidate models from an initially 
failed model through healing action sequences. 

Figure 2. Determination of the most resilient model involves 
applying potential failures to candidate models and evaluating the 

resulting set of healed models. 
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In order to arrive at a suitable model the healer will first 
produce a set of candidate models in accordance with a set of 
healing actions which are allowed to be performed.  A model 
is considered healed when it passes a testing function to 
determine if any faults are still present in the model. After one 
round of healing, a number of the resulting model may be 
considered healed, while a number may not. The procedure 
will continue until all the candidate models are considered 
healed. Fig. 1 shows this process for a failed model with three 
possible healing actions. 
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Choosing the best candidate model 
Once the set of candidate models is formed, the healer must 

then chose which of the set is the most appropriate to be used 
on the redesign. We have shown in [13] that this process is 
multi-objective in nature and that the process is dependant on 
the factors which drive the evaluation criteria. Some examples 
of suitable evaluation criteria include 1) Raw predicted 
performance of the model with respect to its data processing 
capability (number of packets processed per unit time), 2) the 
cost to migrate the system from the existing state toward 
compliance with candidate healed model, or 3) the models 
suitability to handle future failures.  

Figure 3. The best choice model is the one whose future failed and 
healed models are the most desirable. 
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The special criteria of resilience 
As proponents of fault tolerant design, we would prefer at 

this time to study more closely the process of finding a 
model’s suitability to endure future faults. We use the term 
resilience describe a measure of the candidate model’s ability 
to withstand single a component failure at some future time 
with respect to it’s set of possible failures and evaluation 
criteria. 

The measure of resilience is made by applying all known 
failures to a candidate model to arrive a set of possible failure 
states. For each of these states the healer can perform the 
healing operation to form the resulting next generation of 
candidate models. These models are in turn evaluated for their 
suitability. One can see that the process is unending, so a 
determination must be made as to how far into the future the 
healer can look to determine the next healed model.  

For this last stage, the healer omits the resilience criteria and 
evaluates with remaining models with no further 
failure/healing propagation. Fig. 2 shows this process in 

general, while Fig. 3 shows a more complete application of the 
look-ahead process to determine the new set of candidate 
models to be evaluated. Some work has been done in this area 
[13]; however, more clarification is needed about how a 
designer adapts an existing software model to accommodate 
change in the system.  

TOOLS FOR MODEL BASED HEALING 
Building on our previous work, we present our modeling 

framework and toolset which is progressing toward a complete 
MIC toolset for designing, building and deploying autonomic 
embedded systems. The tools consist of two major 
components, a domain specific modeling language for 
autonomic embedded systems, and a healing model translator 
to determine how best to redesign the system in the event of 
component failures. 

Domain specific modeling language 
First, the Guided Healing and Optimization Search 

technique Modeling Language (GHOSTML) is a domain 
specific modeling language (DSML) used for specifying the 
components and interactions of the system. This is done by 
using three distinct aspects in which the components of the 



Figure 4. The modeling tools allow the capture of components in both operational and failed states. The Allocation aspect of the model is shown. 

system are modeled. The aspects are the following: 
• Tasks: A hierarchy of management tasks is created in 

the Tasks aspect, which determines the structure of 
the reflex-healing hierarchy. Containment and 
hierarchical decomposition of tasks are both 
modeling techniques which are used to manage 
complexity in the Tasks Aspect (e.g. managed tasks 
are contained inside their governing manager). 

• Networking: Computational resources as well as data 
visualization and interconnect resources are modeled 
in the networking aspect.  

• Allocation: The mapping of tasks onto assigned 
resources is done through associations modeled in the 
allocation aspect. Tasks are mapped onto resources in 
a many-to-one fashion. 

 Models expressed in GHOSTML can be used to indicate 
the presence of failures in the system. This is done through the 
use of a Fault object. All aspects of GHOSTML allow the 
specification of a Fault object. Fault objects can be associated 
with any component of the GHOSTML language (through 
containment or through an isFaulty association). Fig. 5 shows 
a view of the Allocation aspect in GME. Since GHOSTML 
task models also specify the set of reflex behaviors inside each 
component of the management hierarchy, the presence of 
faulty reflex actions can also be modeled.  Models which 

contain isFaulty associations and/or Fault objects are said to 
be Failed models. 

B. The Healer: An autonomic model translator 
Secondly, a specialized model transformation tool called a 

Healer is used to perform the action of healing a failed model. 
The Healer uses a technique detailed in section III which 
explores all possible healing actions which produce a 
candidate healed system model. These candidates are then 
evaluated against a set of performance criteria, one of which is 
the resilience criteria, also described in section III. To 
determine the resilience of a given candidate model, it is 
transformed in all possible ways into a failed model (using 
only single failures), and each failed model is subjected to 
further healing and evaluation. Algorithms for healing and 
failing a models during the search are shown in Fig. 5. 

The best choice candidate is the model which provides the 
highest degree of satisfaction in the evaluation criteria. For the 
criteria of resilience, the best choice candidate is the model 
whose descendant failed models after healing show the best 
suitability with respect to the evaluation criteria.  

The healer proceeds by conducting an adversarial search 
game using two players [14] to explore portions of the game’s 
search space. The players are Heal and Fail, and alternate 
turns building a state space game tree similar to the tree shown 
in Fig. 3. The game proceeds in a minimax-like [15] fashion 
using the multi-objective heuristic described in [13] to 



evaluate the utility of each node of the tree. Since the game is 
too complex to search to completion, a depth cutoff (referred 
to as the number of plies) is used to limit the scope of the 
look-ahead. The value of this cutoff is dependant on the move 
set (which therefore limits to the branching factor of the 
search tree) and the computational resources available to the 
Healer. 

As in other deterministic game searches such as chess or 
checkers, full knowledge about the game can be observed by 
both players and the moves allowed by each player is known. 
Each player is allowed to make a single legal move (in reality 
the move can be constructed as a composition of atomic 
operations but for some special reasons which will discussed 
later we will can consider these operation chains as a single 
move).  

The Heal player’s allowable moves consist of the set of 
model transformation chains which, when applied to the 
current model, result in a model containing no faults, as 
discussed in section III. The Fail players set of allowable 
moves consist of all model transformations which introduce 
single failure associated with any component in the model.  

In reality, the game is being played while the embedded 
system is running, the Heal player acting as the healer and the 
Fail player acting as the uncertainty in the environment. The 
situation is similar to that of a chess program playing a human 
opponent in that the set of moves allowed by the human is 
known so the computer is able to compute its best move given 
the rules of the game but it must wait for the human to make 
move before it can proceed with a new search [16] [17]. In the 
same way the Healer must wait for a failure to occur before it 
can calculate its best move to heal the system. This is similar 
to a game against Nature [18] in which a uniform random 
variable is used to predict the moves of a disinterested 
opponent. 

Once a move is chosen by the Healer, it is applied to the 
model where the tools then use a special translator to 
implement the healing of the failed system. For the time being 
it is assumed that the model on which the game is based is an 
accurate reflection of the currently running system for the 
duration of the healer’s turn.. It is assumed that the rate of 
failures occurring in the environment is sufficiently slow as to 
allow a search to be conducted (as limited of depth as it may 
be) before the next failure occurs. 

Some questions arise from this regarding the fitness of the 
guided search. How far into the future can the Healer look and 
still produce both a timely and meaningful result? Do 
descendants whose ancestors show high resilience to failure 
necessarily inherit this high resilience? These questions will 
soon be investigated as more statistical analyses of a running 
healer are performed.  

V. CONCLUSION AND FUTURE WORK 
The process of finding an appropriate healed model for a 

given failed model can be a difficult decision. There may exist 
a large set of evaluation criteria as well as healing strategies to 
be considered, and different designers may choose different 
healed models. The strategy put forth in this paper is an 
attempt to integrate an entire spectrum of strategies and 
criteria into a single solution. This solution can then be used to 
automate the process of healing a failed model. 

As embedded systems grow more pervasive, distributed, 
and autonomic, the advancement tools such as these are going 
to have a significant impact in the way embedded software 
systems are designed, built, and maintained.   

Our work will progress in the areas of distributed 
computation of and evaluation of candidate models in 
embedded supercomputing environments, as well as in a 
scientific evaluation of how far into the future a healer can 
look for a given problem and still arrive at a meaningful 
solution in acceptable time.  

function Heal(Model m): 

   H := set of all healing operations 

max := Empty{Model, Xfm} 

Mh := {Empty{Model,Xfm}} 

plies := plies + 1 

for all h in H 

   mc := ApplyXfm(h, m) 

   if (plies <= maxplies) 

      Mf := Fail(mc) 

         for all mf in Mf     

            if (Eval(Heal(mf)) > Eval(max)) 

               max := mc 

   else  

      if (Eval(mc) > Eval(max)) 

         max := mc 

   return max; 

function Fail(Model m): 

   F := set of all fail operations 

   Mf := Empty{}; 

   for all f in F 

      append ApplyXfm(m, f) to Mf 

return Mf 

Figure 5. A recursive algorithm for determining resilience of candidate 
models is used by the Healer. 
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