
ANEMIC: Automatic Interface Enabler for
Model Integrated Computing

Steve Nordstrom, Shweta Shetty, Kumar Gaurav Chhokra , Jonathan Sprinkle,
Brandon Eames, and Akos Ledeczi

Institute for Software Integrated Systems, Vanderbilt University
2015 Terrace Place, Nashville, TN 37235

{steve.nordstrom, shweta.shetty, kg.chhokra,

jonathan.sprinkle, b.eames, akos.ledeczi}@vanderbilt.edu
http://www.isis.vanderbilt.edu

Abstract. A domain-specific language provides domain experts with a
familiar abstraction for creating computer programs. As more and more
domains embrace computers, programmers are tapping into this power
by creating their own languages fitting the particular needs of the do-
main. Graphical domain-specific modeling languages are even more ap-
pealing for non-programmers, since the modeling language constructs
are automatically transformed into applications through a special com-
piler called a translator. The Generic Modeling Environment (GME)
at Vanderbilt University is a meta-programmable model-ing environ-
ment. Translators written to interface with GME models typically use
a domain-independent API. This paper presents a tool called ANEMIC
that generates a domain-specific API for GME translators using the same
metamodel that generates the language.

1 Introduction

One of the disadvantages of low-level coding is that a small change in the re-
quirements of the program could necessitate drastic changes in the code. Con-
sider the Y2K challenge of the late 1990s: the size of the requirement change -
change the year representation from two digits to four - was small, yet a vast
amount of effort was needed to correct this change. One solution that helps to
alleviate the disparity between requirements change and implementation change
is to generate the code of the final system from a centralized set of models. This
technique, called Model-Integrated Program Synthesis (MIPS), is an application
of Model-Integrated Computing (MIC) [1].

In order to generate final system code, several transformations take place.
Typically, the set of models are examined and interrogated using a specialized
high-level compiler (referred to in this paper as a translator) and the output of
that translator is the final system code. However, the process of creating this
translator is currently heavily dependent on the programmer and little advantage
is taken of code generation. A great deal of the work that the programmer does
can be streamlined and automated using user-defined macros and traditional

“code-cloning”, but this process is error prone, and inconsistent across users.
Furthermore, the macros operate on the individual class level, and do not have
a global view of the software architecture.

This paper presents a tool that automatically generates an appropriate domain-
specific API from the metamodels that describe the domain specific modeling
language.

2 Background

MIC is a framework for developing domain artifacts for computer-based systems.
MIC depends on a model-based definition of the target system, and it integrates
the created models when generating domain-specific artifacts. The same models
are often used by external analysis and simulation tools to verify properties of
the system under development. Example uses for MIC are the generation of real-
time schedules from software models, creation of a configuration file to integrate
distributed systems, or the generation of source code that is later compiled to
execute within an embedded system.

MIC relies heavily on the use of domain-specific languages to describe the
final system implementation. A domain-specific language allows a modeler to
describe the system in terms of the domain rather than in terms of traditional
computer languages. Domain-specific modeling environments (DSME’s) are the
interface for domain experts to program using a domain-specific modeling lan-
guage (DSML). The DSME provides domain-specific constructs that are associ-
ated with one another to describe a computer-based system. For further expla-
nation of this process please refer to [2].

However, modeling language development is not a trivial task. In addition to
the development of the language ontology, syntax, well-formedness and seman-
tics, there is also the question of representation and implementation.

2.1 Metamodeling

A technique called metamodeling can be used to rapidly describe the syntax and
static semantics (well-formedness) of a language. The artifact of the metamodel-
ing process - called the metamodel - is generally retained in an object database
for further manipulation, and can later be modified to generate a new version of
the domain-specific language.

The metamodel is a formalized description of a particular modeling language
and is used to configure the Generic Modeling Environment (GME) (GME is a
configurable toolset that supports the easy creation of domain-specific modeling
and program-synthesis environments [3]). Here, we provide a brief overview of
the metamodeling concepts. For a more in depth discussion, see [4].

Using essentially the UML class diagram and OCL syntax, metamodels de-
scribe the entities, their attributes, and inter-relationships that are available in
the target modeling environment [5] [6] [7]. The DSML may be specified in terms

Meta-Metamodels (Meta)

Metamodels
(Paradigm/Domain)

Domain Models
(Instance)

Computer Based System
(Execution models)

describe

describe

describe

Fig. 1. The four layers of metamodeling

of Models, Atoms, Connections, References, and Sets. Models are the center-
pieces of the MIC environment. They are hierarchically decomposable objects
that may contain parts and inner structure. Atoms cannot be further decom-
posed. Associations between objects are captured by Connections, References,
and Sets. References can be used to associate objects in different parts of the
model hierarchy. All objects may be qualified by one or more Attributes: key-
value pairs that capture non-structured information.

The metamodel in Figure 2 captures a language used to model the compo-
sition of neighborhoods. It shows that each Neighborhood may contain zero or
more Buildings, where each Building may either be a House or a Store. Each
House may contain Residents, and each Store may contain Patrons. The Neigh-
borhood may also contain Walkways that connect the Buildings to each other.

Once a metamodel has been created and the domain-specific language gen-
erated, only a portion of the overall domain-specific environment is complete.
Without a compiler, the domain-specific language is just pictures - the compiler
gives semantics to the syntax specified by the metamodel. With respect to Figure
2, if we want to find all the instances of Walkways that connect one Building to
another we would need to write a special kind of translation program to extract
this information from the model.

In order to provide the semantics, syntax patterns are transformed into a
domain artifact (e.g., glue code, configuration files) with a special compiler
called a translator [1]. The translator provides the mapping from the domain-
specification in the language to the domain-use in the application.

2.2 Language Translation

It is the translator that releases the full power of a domain-specific language.
The translator abstracts away the mundane details of the implementation by

Fig. 2. A UML description of a domain-specific modeling language, used to model
Neighborhoods. A Neighborhood may be modeled as one or more Buildings, connected
by Walkways. The Houses or Stores (both being Buildings) may contain Residents or
Patrons, respectively.

encoding domain details that can be automatically generated rather than bur-
dening the modeler with the task of manually implementing them. In this way,
models can be interpreted (translated) in more than one way, while the meaning
of the models is captured only once. A good example of this is the generation of
either C++ or Java classes from the same UML class diagram [8] or executable
code from Statecharts [9].

The creation of the translator is strongly connected to the domain-specific
modeling language that the translator compiles. Since the translator is the con-
nection between the domain-specific implementation of the models and the (usu-
ally) domain-independent implementation of the computer based system (i.e.,
many computer-based systems are implemented in a programming language,
such as C++ or Java, which require the management of details not important
to the high-level design of the system) a great deal of domain knowledge must
be present in the translator. For the GME, a translator is created in a standard
language (VB, C++, C#, etc.) and operates on the models through a public
interface that utilizes COM.

The translator takes as input a model database, and produces as output the
appropriate domain-specific artifact. The translator can make execution deci-
sions for generation through the types of models that it encounters by querying
the runtime-types of the objects. These types are the same as those described
by the metamodel of this domain-specific language. The next two sections de-
scribe the existing framework for interfacing with domain-independent model
types, and the new framework for automatically generating specialized classes
that extend these domain-independent model types to create domain-specific
classes.

3 The Builder Object Network (BON)

As mentioned in the preceding section, the process of translation involves query-
ing the model database for the types of entities defined and their relation (hierar-
chy, aggregation, association etc.). Figure 3 shows a schematic of GME’s modular
COM-based architecture; the GME core components (GModel and GMeta) ex-
pose a set of COM interfaces that facilitate model interrogation (For a more
in-depth discussion of the architecture, refer to [2]).

While the COM interface provides the translator writer with all the function-
ality needed to access and manipulate the models, it entails using repetitious
COM-specific querying, error checking and handling. To abstract these issues
from the translator writer, GME provides a collection of C++ wrapper classes:
the Builder Object classes.

The fundamental types of entities in GME (Atoms, Models, Sets, Connections
and References) share common traits. Each modeling entity has an associated
name, kind name, metamodel and type. They may, depending on the meta-
model and the specific model being examined, each be qualified by one or more
attributes, connected to one or more objects. The operations of querying and
specifying such details are common to these entities and are thus abstracted in
to a base class called CBuilderObject.

GME Editor

Browser
Constraint
Manager

Interpreter(s)Add-On(s)

… DB #nDB #1 XML …

GModel GMeta

Generic Modeling Environment
Core

Storage Options

Fig. 3. GME Architecture provides a generic, meta-programmable modeling environ-
ment upon which domain-specific models can be created and examined

Many operations are consistent across all types of entities in the BON, which
justifies the CBuilderObject base type. This important class serves as the base
type for any BON class and provides a default implementation for the most
common tasks. The corresponding classes for Atoms (CBuilderAtom), Mod-
els (CBuilderModel), Sets (CBuilderSet), Connections (CBuilderConnection)
and References (CBuilderReference) specialize CBuilderObject via inheri-
tance to provide relevant functionality. For example, CBuilderModel adds to

CBuilderObject the ability to query or create contained entities. Figure 4 illus-
trates the inheritance relationship between the various BON classes.

When the user initiates model translation, the component interface builds a
graph mirroring the models: for each model, atom, reference, set and connection
an object of the corresponding class is instantiated. We refer to this graph as
the Builder Object Network and the infrastructure for creating it as the Builder
Object Network API (BON). While the BON implements a corpus of access and
manipulation methods, it must by design be generic: it has no knowledge of the
attribute names, kind names or other qualifiers of the entities defined by the
meta-model. Thus to access a particular attribute, say “Color”, of an Atom, the
translator writer provides the domain-specific intelligence via parameters to the
appropriate method.

CBuilderObject

CBuilderModelReference

CBuilderSet

CBuilderAtom CBuilderAtomReferenceCBuilderModel

CBuilderFolder

CBuilder

CBuilderReferencePortCBuilderConnection

Fig. 4. Builder Object class hierarchy dictates that all Models, Atoms, Connections,
and References inherit from the CBuilderObject class

To allow for domain specific information, the BON provides a mechanism for
extending the general-purpose functionality of the CBuilder classes. For more
functional components, the CBuilder classes can be extended by the programmer
with inheritance [2]. By using a pair of supplied macros, the programmer can
have the component interface instantiate these paradigm-specific classes instead
of the default ones. This allows the programmer to have the implementation
classes more closely mimic the properties of the metamodel.

Consider the metamodel presented in Figure 2. With the default BON meth-
ods, the following code would be needed to retrieve and iterate through a list of
Residents given a House.

extern CBuilderModel *pHouse;

const CBuilderAtomList*pAtomResidents =

pHouse->GetAtoms("Resident");

if(pAtomResidents && !pAtomResidents->IsEmpty()){

POSITION pos = pAtomResdients->GetHeadPosition(pos);

while(pos){

CString haircolor;

CBuilderAtom* pResident =

pAtomResidents->GetNext(pos);

VERIFY(*pResident.GetAttribute(

"haircolor", haircolor));

}

}

The programmer could specialize both House and Resident, such that the ex-
tension classes meet this requirement. Let CSBuilderHouse and CSBuilderResident

extend CBuilderModel and CBuilderAtom via inheritance respectively. Thus the
above code is transformed as follows:

extern CSBuilderHouse *pHouse;

const CSBuilderResidentList*pResidents =

pHouse->GetResidents();

if(!pResidents && !pResidents->IsEmpty()){

POSITION pos = pResidents->GetHeadPosition();

while(pos){

CSBuilderResident *pResident =

pResidents->GetNext(pos);

CString haircolor =

pResident->GetAttribute_haircolor();

}

}

From the above code, it is apparent that the extension leads to much smaller
and more intuitive code. The extension eliminates the need for the programmer
to concentrate on error checking and type manipulation code.

Moreover, the default access methods being generic in BON, do not pro-
vide specific type checking. For example, for the GetInConnections(Cstring&

name, CBuilerObjectList &list) method, if the wrong name is provided or
if the string name provided is case-incongruent with the name defined by the
metamodel, the function returns an unexpected false. The translator writer must
pay close attention to the correctness of the name and return value by either
memorizing the metamodel, or constantly referring back to it. Such discrepan-
cies manifest themselves as run-time errors (VERIFY failures), which are difficult
to detect and debug. Furthermore, once a list of connections is retrieved, the
programmer must manually implement repetitious code to distinguish the vari-
ous connections found. By extending the default CBuilder classes, this onus of
checking details may be moved from the programmer to the compiler by imple-
menting a function GetWalkwayInConnections()that returns a valid list of only
CSBuilderWalkway objects.

This ability to augment the default implementation with the desired func-
tionality can be exploited by generating paradigm-specific extensions of the

BON. The translator writer typically generates customized BON classes using
the metamodel as a source for architecture, naming convention, and as a refer-
ence for parameters to the generic BON. The automatic generation of such a
class hierarchy directly from the metamodel would, therefore, facilitate creation
of the language translator by decreasing the time spent in class construction,
ensuring correctness of the extensions, and allowing the programmer to devote
his creative energies towards the specification of semantics.

4 Domain Specific API Generation

The ANEMIC (Automatic Interface Enabler for Model Integrated Computing)
tool was created to perform the automatic generation of the domain specific
API used to create a language translator. ANEMIC generates C++ classes to
implement this specialized BON class structure directly from the metamodel.
The ANEMIC tool is itself a model translator that traverses the metamodel to
produce a code framework for the domain translator, consisting of classes and
methods corresponding to the entities captured in the metamodel, as well as the
methods for traversing the domain models.

4.1 ANEMIC Translator Approach

The ANEMIC translator is a transformation program that traverses the network
of objects in the metamodel. Figure 5 shows the decomposition of the ANEMIC
translator. In [10] and [11], algorithms for writing structured model translators
are discussed in detail.

Model
Structure

Traversal

Visitor

traverse

visits

Fig. 5. Design of the ANEMIC translator includes automated visitor and traversal
patterns for navigating the BON and collecting specialization information

– Model Structure: The model structure specification defines what classes of
objects are available, and their inter-relations (compositions, hierarchies, as-
sociations, etc.). This information is captured in the metamodel being ex-
amined.

– Traversal: Traversal captures how the models should be traversed. The spec-
ification addresses the order of traversal, which can vary based on the type of
entities encountered. A breadth-first search strategy is used here, which is a
graph search algorithm that tries all one step extensions of current paths be-
fore trying the larger extensions. The root is examined first, followed by the
children of the root, and then the children of those nodes are examined, etc.
This helps in keeping the class dependencies and also preserves the hierarchy
information.

– Visitor: Visitors capture the actions to be taken when visiting an object of
particular type. The different types of objects would be “Model”, “Atom”,
“Reference”, “Connection”, “Attribute”, “Inheritance” etc. The visitor con-
siders - based on the type of the current object - what state information
should be stored to produce an accurate architecture. ANEMIC gathers the
structural (containment, hierarchy, connection, inheritance, etc.) and type
(kind name, role name, attributes etc.) information for each entity defined.

For each entity defined, ANEMIC generates a corresponding extension class
from the appropriate CBuilder class. ANEMIC preserves the inheritance rela-
tionships captured in the metamodel through the use of C++ inheritance struc-
ture in the generated output. If an object in the metamodel is defined abstract
then, a corresponding abstract C++ class is created. This affords the program-
mer the ability to exploit, in code, the hierarchical relationships existing in the
metamodel.

The attributes belonging to a particular entity (for example a Model or an
Atom), appear as protected data members of the respective extension class. The
following section elucidates this process with an example.

4.2 Class and Method Generation Using the ANEMIC Translator

Figure 6 shows the UML class diagram that represents a Resident, which has
haircolor as an attribute. Notice that Resident is of type Atom. Consequently,
the generated class CSBuilderResident extends CBuilderAtom. The extension
is facilitated by the use of a pair of BON extension macros: DECLARE CUSTOMATOM

and IMPLEMENT CUSTOMATOM. BON provides such extension macros for all entities
defined in the GME meta-metamodel.

To enable easy identification of the generated class and eliminate naming
conflicts with existing BON objects, the generated C++ class code adheres to a
nomenclature where the generated classes are named as

CSBuilder{Name}

where Name is the name of the object in the metamodel. All default BON access
methods, except those dealing with Connections, are specialized as

{return_value} {FUNCTION NAME}_{name}({parameters})

where FUNCTION NAME is the default BON method, parameters are appropri-
ate arguments to the new method, and return value is the data type of the
corresponding attribute. Figure 7 shows the specialization of

bool CBuilderAtom::GetAttribute(CString &name, CString &value)

as

CString GetAttribute_haircolor() const

 Resident
 <<Atom>>

haircolor:field

IMPLEMENT_CUSTOMATOM(CSBuilderResident,CBuilde
rAtom,"Resident")
CString CSBuilderResident::GetAttribute_ haircolor ()const
{
 CString name("haircolor ");
 CString retValue;
 VERIFY(GetAttribute(name,retValue));
 return retValue;
}

class CSBuilderResident: public CBuilderAtom
{
DECLARE_CUSTOMATOM (CSBuilderResident,
CBuilderAtom);
public:
 CString GetAttribute_haircolor() const;
};

Fig. 6. ANEMIC exploits the generic GetAttribute(name, value) method to specif-
ically access the attribute haircolor

BON methods dealing with Connections are specialized as

{terminator_list*}{Get|Set}{In|Out}{name}Connection()

where terminator list is a typed list as specified by the metamodel and name
is the name of this Connection.

 Resident
 <<Atom>>

haircolor:field

CString GetAttribute_haricolor() const;

Fig. 7. Specialized methods for each attribute are generated by the ANEMIC translator
using a predefined naming convention. Proper implementations for parent-class method
wrappers are generated as well.

The attributes of the specialized class can be of type int, bool or CString

depending on the type specified by the user in the metamodel. Table 1 shows
the mapping between GME attribute types and C++ data types.

5 Example Metamodel and Generation

Creation of a translator for the modeling language described in Figure 2 is pos-
sible with the domain independent BON API, but is now streamlined by using

Table 1. A mapping between GME attributes and generated C++ member variable
types is generated by ANEMIC

Attribute Type C++ type

<<FieldAttribute>> CString

<<EnumAttribute>> int

<<BoolAttribute>> bool

the architecture of customized classes created by ANEMIC. By executing the
API generation tool on the metamodel this required specialization takes place
automatically resulting in a variety of specialized objects and methods. Two
such objects are given below:

class CSBuilderBuilding : public CBuilderModel{

DECLARE_CUSTOMMODEL(CSBuilderBuilding, CBuilderModel)

public:

virtual void Initialize();

virtual ~CSBuilderBuilding();

CSBuilderWalkwayList * GetOutWalkwayConnections();

CSBuilderWalkwayList * GetInWalkwayConnections();

};

class CSBuilderHouse : public CSBuilderBuilding{

DECLARE_CUSTOMMODEL(CSBuilderHouse, CSBuilderBuilding) public:

virtual void Initialize();

virtual ~CSBuilderHouse();

CSBuilderResidentList * GetResidents();

CSBuilderResident * CreateNewResident();

};

These class definitions define the specialized BON interface to be used by the
domain specific translator. Class hierarchy from the metamodel is preserved, and
forward declarations are created. Also, typed lists for storing the new specialized
objects and are generated. List types for containing specialized objects are also
created.

typedef CTypedPtrList<CPtrList,

CSBuilderWalkway *>CSBuilderWalkwayList;

typedef CTypedPtrList<CPtrList,

CSBuilderResident *>CSBuilderResidentList;

Implementation of the specialized API is also generated from the metamodel
by the ANEMIC tool. The following is an example method implementation from
a specialized Store object, showing the generation of a proper wrapper for parent
methods:

CSBuilderPatron * CSBuilderStore::CreateNewPatron(){

return BUILDER_CAST(CSBuilderPatron,

CBuilderModel::CreateNewModel("Patron"));

}

The automatic generation of the class definitions and method implementa-
tions now allow the domain-specific model translator to be created with much
ease. For example,

CBuilderConnectionList GetInConnections("Walkway");

can be written using domain-specific methods and objects as

CSBuilderWalkwayList GetInWalkways();

By using the interface generated by ANEMIC, a translator can now be cre-
ated with domain-specific objects and methods, using only a small amount of
hand-written code.

6 Conclusions and Future Work

The work described in this paper significantly decreases the amount of overhead
required to create an translator for a domain-specific modeling language. The
domain-specific API generator can generate code that would take several days for
one programmer to create, by using the metamodel that describes the language.
It should be noted that the domain-specific API was typically hand created for
every C++ translator before this generator was available.

In addition to the creation of the class structures, ANEMIC also takes ad-
vantage of the definition of abstract classes and inheritance hierarchies when
generating the output classes. This allows translator programmers to maximize
code reuse and minimize code duplication by using the same object-oriented
approaches used to create the metamodels.

Future versions of this tool can be configurable by the user to follow naming
conventions and personal preferences for class definition. Also, other versions of
the tool that could generate an API for other languages would greatly reduce
the amount of overhead for users that prefer an implementation language other
than C++.

References

1. Sztipanovits J., Karsai G.: Model-Integrated Computing, IEEE Computer, vol. 30,
no. 4, pp. 110-112, April (1997)

2. Ledeczi A., Maroti M., Bakay A., Nordstrom G., Garrett J., Thomason IV C.,
Sprinkle J., Volgyesi P.: GME 2000 Users Manual (v2.0), ISIS document, December
18, (2001)

3. Ledeczi A., Maroti M., Bakay A., Karsai G., Garrett J., Thomason IV C., Nord-
strom G., Sprinkle J., Volgyesi P.: The Generic Modeling Environment, Workshop
on Intelligent Signal Processing, accepted, Budapest, Hungary, May 17, (2001)

4. Sprinkle J., Karsai G., Ledeczi A., Nordstrom G.: The New Metamodeling Gener-
ation, IEEE Engineering of Computer Based Systems, Proceedings p.275, Wash-
ington, D.C., USA, April, 2001.

5. Karsai G., Nordstrom G., Ledeczi A., Sztipanovits J.: Specifying Graphical Model-
ing Systems Using Constraint-based Metamodels, IEEE Symposium on Computer
Aided Control System Design, Conference CD-Rom, Anchorage, Alaska, Septem-
ber 25, (2000)

6. UML Summary, ver. 1.0.1, Rational Software Corporation, et al., Sept. (1997)
7. Object Constraint Language Specification, ver. 1.1, Rational Software Corporation,

et al., Sept. (1997)
8. Jrjens J.: Formal Semantics for Interacting UML subsystems, Fifth Interna-

tional Conference on Formal Methods for Open Object-Based Distributed Systems
(FMOODS 2002), Twente, March 20-22, (2002)

9. Harel D., Gery E.: Executable Object Modeling with Statecharts, IEEE Computer,
vol. 30, no. 7, pp. 31-42, July (1997)

10. Karsai G.: Structured Specification of Model Interpreters, ECBS, pp 84-91,
Nashville, TN, March, (1999)

11. Gamma E., Helm R., Johnson R.,Vlissides J.: Design Patterns: Elements of
Reusable Object- Oriented Software, Addison-Wesley, (1995)

