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ABSTRACT

Cache-related preemption delay (CRPD) analysis is crucial
when designing embedded control systems that employ pre-
emptive scheduling. CRPD analysis for single-level caches
has been studied extensively based on useful cache blocks
(UCBs). As high-performance embedded processors are in-
creasingly used, which are often equipped with multi-level
caches, CRPD analysis for cache hierarchies also needs to be
investigated. Recently, an approach has been proposed to
estimate CRPD for multi-level non-inclusive caches. Since
multi-level inclusive caches are also commonly used, espe-
cially in some multi-core processors, it becomes important to
study how to analyze CRPD for inclusive cache hierarchies.
However, as shown in this paper, new challenges appear due
to the strict inclusion enforcement in the multi-level inclu-
sive caches, which make the traditional UCB concept hard to
use. In this paper, we propose a new concept of useful pos-
itive references (UPRs) to replace the UCB concept. Based
on UPRs, we propose an approach to bound the additional
cache misses due to a preemption in a two-level inclusive
cache hierarchy. We present theoretical analysis to show the
approach is safe, and we evaluate the proposed approach on
a set of benchmarks to demonstrate its effectiveness. To the
best of our knowledge, this is the first attempt to analyze
CRPD for multi-level inclusive caches.
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1. INTRODUCTION
Worst-case execution time (WCET) estimation is required

by schedulability analysis when designing embedded control
systems. Usually, WCET estimation is performed under the
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assumption that tasks being analyzed are non-preemptive.
However, many embedded control systems use preemptive
scheduling strategies, in which, the execution of a task can
be frequently interrupted by other tasks with higher priori-
ties. When such an interruption occurs, the states of many
underlying micro-architectural components (such as caches,
pipelines, and branch predictors) are often changed. There-
fore, after the preempted task resumes, there will be some
additional overhead on its execution time due to the “pol-
luted” hardware states. Since caches usually have the most
significant impact on the variation of execution time, most
of the overhead is related to cache state changes, which is
often referred to as cache-related preemption delay (CRPD).

The importance of CRPD in schedulability analysis has
been shown in [2, 11, 17]. Over the past two decades, CRPD
analysis for single-level caches has been studied extensively
[14, 18, 3]. However, as mentioned in [7], CRPD analysis for
multi-level caches becomes much harder since the amount
of intra-task interference can vary at lower cache levels after
a preemption. Consequently, the existing analysis methods
for single-level caches cannot be directly used for multi-level
caches. As embedded processors are increasingly equipped
with cache hierarchies, CRPD analysis for multi-level caches
becomes a significant problem.

There are three cache hierarchy types: inclusive, exclusive,
and non-inclusive. Multi-level inclusive caches require that
the contents at upper cache levels must be a subset of the
contents at lower levels. Multi-level exclusive caches require
that the contents at a cache level should not be duplicated at
any other cache level. Multi-level non-inclusive caches allow
duplicated contents existing at any cache level, but they do
not strictly enforce the inclusion property.

In [7], CRPD analysis for multi-level non-inclusive caches
has been investigated. Since cache hierarchies of different
types may have different behaviors even for the same mem-
ory reference sequence, CRPD analysis for multi-level non-
inclusive caches may be not fit for multi-level inclusive caches.
Therefore, in this paper, we study the distinctions between
non-inclusive and inclusive cache hierarchies in the context
of CRPD analysis, and we propose an approach which can
safely analyze CRPD for multi-level inclusive caches. To the
best of our knowledge, this is the first time to analyze CRPD
in terms of multi-level inclusive caches.

The main contributions of this paper are: (1) We identify
the challenges of analyzing CRPD for multi-level inclusive
caches, especially those that do not appear in multi-level
non-inclusive caches; (2) We propose a new concept of useful
positive references, and based on this new concept we pro-



pose an approach to analyze CRPD for a two-level inclusive
cache; (3) We prove the proposed approach is safe, namely it
can conservatively bound the additional cache misses due to
a preemption; (4) We evaluate the proposed approach on a
set of benchmarks showing the effectiveness of the method.

The rest of this paper is organized as: Section 2 describes
the system model under consideration; Section 3 briefly sets
the background; Section 4 states why CRPD analysis for
multi-level inclusive caches is a hard problem; Section 5
presents the proposed approach to CRPD analysis for multi-
level inclusive caches; Section 6 evaluates the proposed ap-
proach; Section 7 gives the related work; and Section 8 con-
cludes this paper and states some future work.

2. SYSTEM MODEL & ASSUMPTIONS
Similar to [7], in this paper, we also focus on a two-level

cache hierarchy (i.e. L1 and L2) and consider only instruc-
tion references. Different from [7], the second cache level of
our model maintains the strict inclusion property. Although
data references are not considered, this work can serve as a
basis for any future work on CRPD analysis for multi-level
inclusive data/unified caches.

In our system model, we assume L1 and L2 caches are both
set associative, and they use LRU (Least Recently Used)
replacement policy. The size of a L1 cache block can be
smaller than or equal to the size of a L2 cache block.

Since inclusive cache hierarchies are often used in multi-
core architectures [4], the inclusive L2 cache is usually shared
by multiple processor cores. In this work, we only focus on
a single processor core without considering inter-core inter-
ferences. We also assume the time to access L2 is bounded
and predictable, which can be achieved by using some de-
terministic interconnect to connect the caches, like TDMA
buses [12]. For example, Fig. 1 shows a model of interest
focusing on the first core and the two cache levels that can
be affected by this core.

L2 (inclusive)

L1 Y...L1 L1 

P P P

Figure 1: An example of the system model

We assume the estimated CRPD is used together with the
estimated WCET for schedulability analysis, which is almost
every use case of CRPD in practice. Thus, we only need to
guarantee that the combination of the estimated WCET and
CRPD over-approximates the overall task execution time
under preemptions [1]. In addition, we assume there are no
timing anomalies [16]. Thus, an upper bound on additional
L1 and L2 cache misses (which are those that do not appear
in WCET estimation) can be used to estimate CRPD for a
preemption.

3. BACKGROUND
Cache analysis for WCET estimation usually only takes

into account intra-task interference to assign a cache hit/miss
classification (CHMC) to each reference according to the ab-
stract cache states (ACSs) derived by three different analy-
ses [23]. At a program point, a must analysis determines a

set of memory blocks that are definitely in the cache, so a
reference to a block being in the set is classified as always

hit (AH ); a may analysis determines a set of memory blocks
that are possibly in the cache, so a reference to a block not
being in the set is classified as always miss (AM ); a persis-

tence analysis determines a set of memory blocks that stay
in the cache once they are loaded, and a reference to such
a block is classified as persistent (PS); and, if a reference
cannot be classified as AH, AM, or PS, it is non-classified

(NC ). The analyses are usually performed on the control-
flow graph (CFG) reconstructed from the low-level code of
the program. In each of the analyses, an update function is
defined to account for the effect of a memory reference on
the ACS, and a join function is defined to safely combine
ACSs at a merge point.

While L1 cache in a cache hierarchy is always accessed by
each memory reference, the caches at lower levels may only
be intermittently accessed. Accordingly, for each reference
at a cache level, a cache access classification (CAC) is used
to represent whether the cache at this level will be accessed:
always (A) denotes the access will always occur (so the ACS
at this level will always be updated by this reference); never
(N) denotes the access will never happen (so the ACS at this
level will never be changed by this reference); and uncertain

(U) denotes the access may occur (so the ACS becomes the
join of two possible cases corresponding to access occurring
and not occurring) [9]. Note that if a reference always/never
accesses a cache level in reality but its CAC at the level is
U in an analysis, the analysis based on this CAC is still safe
but may not be precise.

As described in [25], other than cache access filtering be-
havior, multi-level inclusive caches also have invalidation be-
havior. When a memory block is evicted from a lower inclu-
sive cache level, all the contents belonging to this memory
block need to be invalidated from its upper cache levels.
The combination of these two behaviors makes multi-level
inclusive cache analysis very challenging even only consid-
ering intra-task interference. Fortunately, there have been
several approaches proposed to analyze inclusive cache hi-
erarchies for WCET estimation [10, 26, 25]. In this paper,
the approach proposed in [25] is employed, which can derive
CAC and CHMC for each reference at each cache level more
precisely compared to others.

WCET estimation usually depends on the upper bound on
cache misses according to each reference’s CHMC on a path
in the absence of preemptions. However, when preemptions
are possible, there will also be inter-task interference which
can cause the derived CHMC not to hold so that the upper
bound on cache misses may become unsafe. Therefore, in the
presence of preemptions, CRPD analysis is needed to bound
the number of additional cache misses caused by inter-task
interference.

CRPD analysis for single-level caches relies on the con-
cepts of useful cache blocks (UCBs) and evicting cache blocks
(ECBs) [14, 24]. In the following, let us only focus on set as-
sociate caches with LRU replacement policy. At a program
point of the preempted task, a memory block is a UCB if it
may be cached at this point and it may be reused later at
some reachable program point without being evicted along
some path to its reuse. The set of ECBs consists of the mem-
ory blocks that may be accessed by the preempting tasks.
Combing UCBs and ECBs can result in a tight CRPD anal-
ysis for single-level set-associative caches [3]. Note that if



the estimated CRPD will be used with the WCET estimate
together, the UCB concept can be refined by requiring the
memory block must be cached at the program point and
along the path to its reuse [1].

At a program point, a UCB is only related to the first

reachable references to the memory block after that program
point. The number of UCBs at a program point can serve as
an upper bound on the additional cache misses when a pre-
emption happens at this program point. This upper bound
is safe because: (1) a single-level cache is always accessed,
so the amount of intra-task interference to a memory block
will not be changed by the preemption; (2) after any first

reachable reference to the memory block of a UCB beyond
the preemption point, the memory block will become the
youngest and its LRU age can only be affected by intra-task
interference which is not changed as stated above. There-
fore, in terms of single-level caches, the first reachable refer-
ences to the memory block of a UCB beyond the preemption
point can be treated as “firewalls” which prevent the inter-
task interference from affecting the LRU age of the memory
block afterwards. As a result, after the first reference to a
memory block beyond the preemption point on a path, any
further reference to this memory block would have the same
CHMC as that in the absence of the preemption.

However, as stated in [7], only considering the effect of
inter-task interference on the first reachable references to a
memory block may not be safe in terms of multi-level caches
(specifically, a two-level non-inclusive cache is studied in [7]).
While L1 is always accessed, the other lower cache levels are
usually not accessed by every memory reference. Compared
to the case where there is no preemption, some references
may need to access the lower cache levels in the presence of
a preemption. Therefore, the amount of intra-task interfer-
ence to a memory block at a lower level may be increased
due to the preemption. Because of the possibility that the
amount of intra-task interference to a memory block can
change at a lower level, we cannot treat the first references
to the memory block as “firewalls” to stop the effect of pre-
emption on the memory block’s LRU age afterwards at that
level. This phenomenon is referred to as the indirect effect

of preemption in [7].

4. PROBLEM FORMULATION
Similar to multi-level non-inclusive caches, multi-level in-

clusive caches can also suffer indirect preemption effects. To
be specific, with respect to our model, the amount of intra-
task interference at L2 may be increased after a preemption.
However, this is not the only indirect preemption effect that
makes CRPD analysis hard for multi-level inclusive caches.
There can be two new indirect preemption effects induced
by the invalidation behavior as described below.

4.1 Broken L1 “Firewalls”
As studied in [7], when analyzing CRPD for a two-level

non-inclusive cache, for any reachable reference to a specific
memory block after a preemption point, it is the first one
on a path whose L1 cache behavior needs to be checked, and
the other references to that block afterwards on the path will
have the same L1 CHMC as what they were classified in the
absence of the preemption. That is to say, we only expect
L2 cache suffers the indirect preemption effect but not the
L1 cache. In this case, L1 cache behaves like a single-level
cache, so the first reachable reference to a memory block on

a path after a preemption point acts like a L1 “firewall”.
However, when analyzing CRPD for multi-level inclusive

caches, due to the possible invalidation behavior, it may be
unsafe to consider the other references after the first one to
the same memory block will have the same L1 CHMC as
what they were classified in the absence of the preemption.
For example, a sequence of memory references is executed on
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Figure 2: L1 “firewalls” are broken by invalidation be-

havior. Invalidations are shown as dotted lines with cross

marks.

a two-level inclusive cache as shown in Fig. 2. For simplicity,
we assume the L1 and L2 cache block sizes are the same, and
the memory blocks ma, mb, mc, md, and mx are mapped to
the same cache set at each of these two levels. The left part
of the figure shows the states of the cache hierarchy when
there is no preemption, and the right part shows the states
in the presence of a preemption. From the left part of the
figure, we can observe that the second reference to ma is a
L1 cache hit. However, when a preemption happens before
the first reference to ma and introduces another memory
block mx into the cache hierarchy, the second reference to
ma cannot be L1 cache hit anymore. This is because when
md is referenced in the presence of the preemption, it evicts
ma from L2 cache, which invalidates ma in L1 cache.

4.2 Reduced Intra-Task Interference
In the case of multi-level non-inclusive caches, we can de-

duce the following invariant: For any reference whose L1/L2
CHMC is AM, its L1/L2 CHMC is always AM no matter
whether there is any preemption. The reason for this is be-
cause the amount of interference will never be reduced at
L1/L2. Due to this invariant, a L1 AM reference in a loop
remains L1 AM during all the iterations. Based on this, how
much a L2 AH reference in a loop may contribute to the
CRPD can be bounded in [7]1. However, we find this bound
may not be suitable for multi-level inclusive caches, since the
invariant may not hold due to a possibly reduced amount of
intra-task interference to a memory block at L1/L2 after a
preemption.

It may seem impossible that the amount of intra-task in-
terference can be reduced due to a preemption, but it actu-
ally can happen because of the invalidation behavior. If a
memory block is invalidated at L1 due to the eviction of its

1
Although not stated explicitly, we can find one implication in [7] is

that the L1 and L2 cache block sizes should be the same. However,
in this work, we do not impose this restriction.



super-block at L2 caused by a preemption, a “hole” will be
left in the cache; until this “hole” is filled by some memory
block, any access to the corresponding cache set will not in-
crease the LRU ages of the memory blocks that are behind
this “hole”; therefore, compared to that in the absence of the
preemption, some memory blocks may live longer at L1 such
that the subsequent references to them may not need to ac-
cess L2. For example, consider the situation shown in Fig.
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Figure 3: The amount of intra-task interference may be

reduced due to a preemption. Invalidations are shown

as dotted lines with cross marks.

3. In this example, we suppose L2 cache is fully associative
and L1 cache is 2-way set associative with 4 cache sets. The
cache block size at L1 is a quarter of the cache block size at
L2. Since the cache block size at L1 is smaller than that at
L2, given a memory block m in terms of L2 cache, we use
mi to denote the ith sub-block of m in terms of L1 cache.
Therefore, each sub-block of a L2 memory block is mapped
to the corresponding L1 cache set (e.g., m1

a is mapped to the
first L1 cache set and so forth). Let us also assume after a
preemption one extra memory block mx is introduced into
the cache hierarchy. As shown in the first state on the right,
the introduction of mx evicts me from L2 cache, which in-
validates both m1

e and m2
e in L1 cache. Thus, two“holes”are

left in the first and second cache sets of L1 cache. Compared
with the counterparts on the left, we can observe that refer-
ences to m1

a and then m2
b do not evict m1

c and m2
d because of

the “holes”; and, the following references to m1
c and then m2

d

do not need to access L2, since the needed sub-blocks can
be found in L1 cache. As a consequence, after references to
m1

e and m2
f , ma is not evicted from L2 cache in the presence

of the preemption, but ma is evicted from L2 cache in the
absence of the preemption. In other words, the introduced
mx causes less amount of intra-task interference to ma in
L2 cache. The result of this phenomenon is: Even if the last
reference to m4

a is classified as L1 AM and L2 AM in the
absence of the preemption, the reference can surprisingly hit
both caches in the presence of the preemption.

Therefore, CRPD analysis for multi-level inclusive caches
becomes a very challenging problem due to all these possible
indirect preemption effects. In the next section, we propose
an approach that can derive a safe CRPD estimate with
respect to inclusive cache hierarchies.

5. CRPD ANALYSIS
As observed in Section 4, when analyzing CRPD for multi-

level inclusive caches, it becomes really difficult to rely on
the traditional UCB concept to capture the potential CRPD
contributors. Taking that in consideration, we devise a new
concept of useful positive references (UPRs) to replace UCBs
as the basis of our work. The new concept intends to capture
which references beyond a program point may be influenced
by a preemption directly or indirectly such that they may
contribute more to the execution time. As mentioned above,
we only focus on how to make the combination of WCET
and CRPD sound, so the references of interest should be
“positively” classified by the WCET analysis, and these ref-
erences can be categorized into 7 types as shown in Tab.
1. In the following, we call the references of these types as
positive references (i.e. their referenced memory blocks are
definitely/persistently in L2 cache when the references oc-
cur). Note that due to the inclusion property, there are no
such CHMC pairs like “L1 is AH but L2 is not AH ” and “L1
is PS but L2 is not AH nor PS”.

Table 1: Seven types of positively classified references
Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7

L1 AH AM NC PS PS AM NC

L2 AH AH AH AH PS PS PS

Note: PS classification implies the reference is located in a loop.

At a program point, if a reachable positive reference can
lead to additional cache misses after a preemption, we call
this reference a useful positive reference (UPR) at that pro-
gram point. Specifically, there are two UPR types: if a UPR
can contribute only one additional L1 cache miss, we call it
an L1-UPR; and if a UPR can contribute either one addi-
tional L1 cache miss with one additional L2 cache miss or
just one additional L2 cache miss, we call it an L2-UPR.
Note that if a positive reference is inside a loop, it may oc-
cur several times; even it is considered as a UPR at some
point, it may not always contribute additional cache misses
for all iterations. Thus, when we say a positive reference is
a UPR, we actually mean this positive reference can act as
a UPR at least once.

Clearly, at a program point, if we can conservatively de-
rive a set of reachable positive references that can be consid-
ered as UPRs and bound the number of times each of them
may act as a UPR, we can bound the CRPD for multi-level
inclusive caches safely.



5.1 UPR Derivation
First, the approach proposed in [25] is used to analyze the

inclusive cache hierarchy for WCET estimation and also we
can obtain which references are positive references. Then,
we propose a backward-flow analysis to conservatively derive
a set of UPRs at each program point. In order to facilitate
the presentation, given a reference r, we assume r has the
following attributes, as shown in Tab. 2, among which r.cL1,
r.cL2, and r.aL2 are all set by the cache hierarchy analysis
in the first step.

Table 2: Attributes of a reference r
Attribute Description
r.mL1 memory block accessed by r w.r.t. L1 cache block size
r.mL2 memory block accessed by r w.r.t. L2 cache block size
r.cL1 r’s L1 cache hit/miss classification
r.cL2 r’s L2 cache hit/miss classification
r.aL2 r’s L2 cache access classification

Note: Since r’s L1 CAC is always A, we do not show r.aL1.

Before presenting the detailed analysis, let us discuss the
following question: Suppose there is a positive reference ṙ

that is reachable from a program point p; how can we safely
decide whether or not to consider ṙ as a UPR at p?

Although ṙ may be of either type shown in Tab. 1, when
ṙ is inside a loop with L1/L2 PS, we can treat PS as AH to
focus only on the first three types, namely if ṙ is of type 4
or 5, then ṙ is treated as if it is of type 1; if ṙ is of type 6,
then ṙ is treated as if it is of type 2; and if ṙ is of type 7,
then ṙ is treated as if it is of type 3. This is because “AH

implies PS”, namely “not PS implies not AH ”, which means
ṙ is more likely considered UPR with L1/L2 AH than PS.
Thus, we can always conservatively derive the set of UPRs
at a program point.

In the following, let us use a notation πx❀y to represent a
control flow path from a program point x to a program point
y. Since a reference is associated with a program point, we
also allow x and/or y to represent references as long as there
is no ambiguity.

Clearly, if there is a path πp❀ṙ without any reference to
ṙ.mL2 (except for ṙ), ṙ.mL2 must be always in L2 cache at p;
otherwise, ṙ cannot be classified as L2 AH by the cache hi-
erarchy analysis in the first place. In this case, a preemption
occurring at p can possibly evict ṙ.mL2 out of L2 cache to
make ṙ’s L2 AH not hold, so it means we should consider ṙ
as a UPR at p (to be specific, it is considered as an L2-UPR).
Thus, the interesting scenario is that on every path πp❀ṙ, in
addition to ṙ, there is at least one reference to ṙ.mL2: Given
such a path πp❀ṙ, let the sequence of references to ṙ.mL2 be
represented as 〈r̂1, · · · , r̂k, ṙ〉 where k ≥ 1.

In order to facilitate the discussion, let us define a few no-
tations. Let u be a reference and v be a reference reachable
from u. Given a path πu❀v, we use Θ(πu❀v) to represent
the set of references in between u and v on this path:

Θ(πu❀v) = {w|w ∈ πu❀v ∧ w 6= u ∧ w 6= v}

We also use ∆(πu❀v) to represent the set of L2 memory
blocks accessed by the references in between u and v on the
path that are mapped to the same L2 cache set as v.mL2:

∆(πu❀v) =
⋃

w∈Θ(πu❀v)

{w.mL2|σ(w.mL2) = σ(v.mL2)}

where σ(m) gives the L2 cache set that the memory block

m is mapped to. Based on these notations, let us define a
predicate ϕ(πu❀v) on the path πu❀v as:

ϕ(πu❀v) : ∀m ∈ ∆(πu❀v),∃w ∈ Θ(πu❀v),

w.mL2 = m ∧ (w.aL2 = A ∨ w.aL2 = U)

namely if ϕ(πu❀v) is true, for any memory block in ∆(πu❀v)
there is at least one reference to this block on the path whose
L2 CAC is A or U.

The following lemma states when we can safely treat ṙ as
no additional L2 cache miss contribution.

Lemma 1. Given any path πp❀ṙ, if there are multiple ref-

erences to ṙ.mL2, i.e. 〈r̂1, · · · , r̂k, ṙ〉 where k ≥ 1, and the

condition ϕ(πr̂1❀r̂2)∧ϕ(πr̂2❀r̂3)∧· · ·∧ϕ(πr̂k❀ṙ) also holds,

ṙ does not need to be considered as an L2-UPR at p.

Proof. For a path πp❀ṙ, we know ṙ is a positive reference,
but with respect to r̂1, · · · , r̂k there are two cases: (1) all of them
are positive references; or (2) at least one of them is not a posi-
tive reference. If it is the first case, a preemption occurring at
p may make any of them suffer an L2 cache miss (including ṙ).
(I) Suppose the first one suffering an L2 cache miss after a pre-
emption is r̂i ∈ 〈r̂1, · · · , r̂k〉 where 1 ≤ i ≤ k. When there is no
preemption, after r̂i occurs, ṙ.mL2’s LRU age is upper bounded
by α. Let AL2 denote the associativity of L2 cache, so we have
1 ≤ α ≤ AL2. Since ϕ(πr̂i❀r̂i+1

) holds, each memory block

in ∆(πr̂i❀r̂i+1
) has been considered as an interference to ṙ.mL2

during the cache analysis (as described in Section 3 in terms of A
and U CACs). Since r̂i+1 is also a positive reference when there
is no preemption, we have β = α+ |∆(πr̂i❀r̂i+1

)| ≤ AL2 where β

is the upper bound on ṙ.mL2’s LRU age when r̂i+1 occurs. Since
r̂i suffers an L2 cache miss in the presence of the preemption,
ṙ.mL2 becomes the youngest in the corresponding L2 cache set,
i.e. its LRU age α′ = 1 ≤ α. Note that the amount of intra-
task interference to ṙ.mL2, denoted as ξ, on the path πr̂i❀r̂i+1

is at most |∆(πr̂i❀r̂i+1
)| no matter whether there is a preemp-

tion. Therefore, when r̂i+1 occurs, the LRU age of ṙ.mL2 is
β′ = α′ + ξ ≤ α + |∆(πr̂i❀r̂i+1

)| = β, namely ṙ.mL2 is still in
L2 cache. By mathematical induction, we can prove ṙ still has an
L2 hit, namely ṙ does not contribute additional L2 cache misses.
(II) It is also possible ṙ is the first one in the sequence suffering
an L2 cache miss after a preemption. However, since there is no
reference to ṙ.mL2 on πp❀r̂1 , we know r̂1 is always considered as
an L2-UPR at p. Therefore, it is still safe not to consider ṙ as an
L2-UPR at p, since r̂1’s compensation makes the amount of addi-
tional L2 cache misses not underestimated. On the other hand, if
it is the second case, then we have a subsequence 〈r̂j , · · · , r̂k, ṙ〉
where 1 ≤ j ≤ k and r̂j is the closest one to ṙ that is not a posi-
tive reference (i.e. the rest of them are all positive). If r̂j misses
L2, ṙ.mL2 will become the youngest in the cache set. Based on
the discussion above, we know ṙ will not suffer an L2 cache miss.
However, due to the indirect preemption effect shown in Section
4.2, even r̂j .cL2 was AM, it is possible that r̂j does not suffer an
L2 cache miss after a preemption but ṙ.mL2 may have a relatively
high LRU age. Under this scenario, any one of the rest of the ref-
erences r̂j+1, · · · , r̂k, ṙ may suffer an L2 cache miss if ṙ.mL2 is
evicted in the process. However, similar to the discussion for the
first case, we can prove there is at most one L2 cache miss, which
can be compensated by r̂j if we do not count it: r̂j hits L2 cache
but it is treated as an L2 cache miss by the WCET estimation.
Thus, no matter which case it is, ṙ does not need to be considered
as an L2-UPR at p.

Note that “ṙ does not need to be considered as an L2-
UPR” does not mean “ṙ may not suffer an L2 cache miss
after a preemption”. It is just that: Either ṙ does not suffer
an L2 cache miss, or when it does there is always some ref-
erence that has an L2 cache hit but has been accounted for
as an L2 cache miss such that the compensation makes the
number of L2 cache misses not underestimated. Thus, even



ṙ does not need to be considered as an L2-UPR, it may still
need to be considered as an L1-UPR in some cases (due to
the indirect preemption effect shown in Section 4.1). The
following theorem answers the question we have asked.

Theorem 1. Given a positive reference ṙ reachable from

a program point p, we can decide whether or not to consider

ṙ as a UPR at p according to three cases in sequential order.

Case A: If the condition of Lemma 1 for ṙ does not hold,

ṙ is considered as an L2-UPR at p.

Case B: Otherwise, if ṙ.cL1 is AH and on some path πp❀ṙ

there is no other reference to ṙ.mL1, ṙ is considered as

an L1-UPR at p.

Case C: Otherwise, ṙ is not considered as a UPR at p.

Proof. Considering ṙ as an L2-UPR is the most conservative
decision, so Case A holds. If ṙ does not need to be considered as
an L2-UPR and ṙ.cL1 is AH, as discussed above, ṙ may still suffer
an L1 cache miss, it is also conservative to consider ṙ as an L1-
UPR at p. Therefore, Case B holds. However, when on any path
πp❀ṙ there is at least one reference to ṙ.mL1 in 〈r̂1, · · · , r̂k〉, even
ṙ.cL1 is AH, we can prove that ṙ does not need to be considered
as a (L1-)UPR at p (it is straightforward to see if ṙ.cL1 is not
AH and ṙ does not need to be an L2-UPR, ṙ does not need to be
considered as a UPR at all). Let r̂i ∈ 〈r̂1, · · · , r̂k〉 where 1 ≤ i ≤ k
be the first reference to ṙ.mL1 on a given path πp❀ṙ. (I) If r̂i.cL1

is AH, according to Case B, r̂i will be considered as at least an
L1-UPR (if i = 1, r̂i will also be considered as an L2-UPR). If r̂i
suffers an L1 cache miss, after it occurs, ṙ.mL1 and ṙ.mL2 will
become the youngest in their cache sets. According to the proof
of Lemma 1, ṙ.mL2 will be in L2 cache when ṙ occurs, so ṙ.mL1

will not be invalidated (it will not be evicted neither, since the
amount of intra-task interference on L1 will never be increased,
although it may be reduced). Therefore, ṙ will not suffer an L1
cache miss. If r̂i does not suffer an L1 cache miss, any one of
the following references to ṙ.mL1 (including ṙ) may suffer an L1
cache miss. As just argued, once such an L1 cache miss occurs,
the rest of them whose L1 CHMC is AH will always hit L1 cache.
Therefore, even there is such an additional L1 cache miss that
we do not count, the total number will be compensated, since we
always treat r̂i as an additional L1 cache miss contributor. (II)
If r̂i.cL1 is not AH, it may still hit L1 cache, even r̂i.cL1 is AM
(Note that if r̂i.cL1 suffers an L1 cache miss when it occurs, ṙ will
not suffer an L1 cache miss as discussed above). When r̂i.cL1 hits
L1 cache, any one of the following references to ṙ.mL1 (including
ṙ) may suffer an L1 cache miss. As we have argued, there will be
at most one such additional L1 cache miss, which we do not need
to count due to the compensation made by r̂i.cL1 (it is always
treated as an L1 cache miss). Thus, Case C also holds.

We can observe that if ṙ do not need to be considered as
a UPR or only needs to be considered as an L1-UPR at a
set of program points {p1, · · · , pi} where i ≥ 1 according to
Theorem 1, ṙ can also be considered as such at another point
q, as long as ṙ is always reached from q through some point
in {p1, · · · , pi}. This observation is not difficult to see since
Theorem 1 holds no matter what disturbance is caused by a
preemption, namely ṙ can be considered as such under any
state at a point in {p1, · · · , pi}. Thus, given a program point
p, if at all p’s immediate following points we do not need to
consider ṙ as a UPR or just need to consider ṙ as an L1-
UPR, it is safe to consider ṙ as the same at p. Accordingly,
we formulate a backward-flow analysis to derive a set of
UPRs at each program point.

Let R denote the set of all the references, Ṙ ⊆ R denote
the set of all the positive references, and M denote the set of
all the L2 memory blocks (namely the memory blocks w.r.t.

the L2 cache block size). The domain D of the analysis is
defined as:

D = (Ṙ → (P(M)× P(M))⊤⊥)× P(Ṙ)

where P constructs the power set of a given set and we use
(P(M) × P(M))⊤⊥ to mean the product domain is lifted by
adding two elements ⊥ and ⊤. Thus, a value in D will be a
tuple 〈̺, τ 〉, where the first component ̺ ∈ Ṙ → (P(M) ×

P(M))⊤⊥ is a mapping, and the second component τ ∈ P(Ṙ)
is a set of positive references.

Starting from the exit point of the program with a value
〈̺⊥, ∅〉 ∈ D where ∀ṙ ∈ Ṙ, ̺⊥(ṙ) = ⊥, the analysis goes
backwards against the control flow to derive a value in D at
each program point. Such a value is computed by reaching a
fixed point through iterations. Given a derived value 〈̺, τ 〉 ∈

D at a program point p and a positive reference ṙ ∈ Ṙ, if we
have ̺(ṙ) = ⊥, then ṙ does not need to be considered as a
UPR at p; otherwise, ṙ should be considered as a UPR at p.
If we have ̺(ṙ) = ⊤, it means there is some path πp❀ṙ on
which ϕ(πr̂k❀ṙ) does not hold where r̂k is the last reference
to ṙ.mL2 before ṙ; otherwise, ̺(ṙ) = 〈η, γ〉, it means there
is some path πp❀ṙ without any other reference to ṙ.mL2,
where η keeps track of ṙ.mL2’s conflicting L2 memory blocks
to which all the references on some path πp❀ṙ have L2 CAC
as N, and γ keeps track of ṙ.mL2’s conflicting L2 memory
blocks to which at least one reference on each path πp❀ṙ

has L2 CAC as A or U. Therefore, we can compute the set of
UPRs at p as {ṙ|ṙ ∈ R+ ∧̺(ṙ) 6= ⊥}. For a UPR ṙ, if ṙ ∈ τ ,
it is treated as an L1-UPR at p; otherwise, it is treated as
an L2-UPR at p.

Algorithm 1: Definition of the update function U

Input: 〈̺, τ〉 ∈ D, r ∈ R

Output: 〈̺, τ〉 ∈ D

1 foreach positive reference ṙ ∈ Ṙ that satisfies
̺(ṙ) 6= ⊤ ∧ ̺(ṙ) 6= ⊥ ∧ σ(r.mL2) = σ(ṙ.mL2) do

2 〈η, γ〉 ← ̺(ṙ)
3 if r.mL2 6= ṙ.mL2 then

4 if r.aL2 = A ∨ r.aL2 = U then

5 ̺
[

ṙ 7→ 〈η\{r.mL2}, γ ∪ {r.mL2}〉
]

6 else if r.mL2 6∈ γ then

7 ̺
[

ṙ 7→ 〈η ∪ {r.mL2}, γ〉
]

8 else

9 if η 6= ∅ then

10 ̺
[

ṙ 7→ ⊤
]

11 else if ṙ.cL1 6= AH ∧ ṙ.cL1 6= PS then

12 ̺
[

ṙ 7→ ⊥
]

13 else if r.mL1 = ṙ.mL1 then

14 ̺
[

ṙ 7→ ⊥
]

15 τ ← τ\{ṙ}

16 else

17 τ ← τ ∪ {ṙ}

18 if r.cL2 = AH ∨ r.cL2 = PS then

19 ̺
[

r 7→ 〈∅, ∅〉
]

The update function U : D×R → D is employed to take
into account the effect of a reference on a value in D. This
function is applied sequentially from the last instruction to
the first one of a basic block. Given a value 〈̺, τ 〉 ∈ D and a
reference r ∈ R, the update function is defined by Alg. 1. For
a positive reference ṙ ∈ Ṙ, if we have ̺(ṙ) = 〈η, γ〉 and ṙ.mL2

is mapped to the same cache set as r.mL2, namely ṙ satisfies
the condition given in line 1, we update the value 〈̺, τ 〉
depending on whether r accesses the same L2 memory block



as ṙ: If we have r.mL2 6= ṙ.mL2, namely r.mL2 conflicts with
ṙ.mL2 in the same L2 cache set, we keep track of r.mL2

according to r’s L2 CAC and whether r.mL2 has been in γ

(lines 3–7); otherwise, we consider ṙ according to Theorem
1 (lines 8–17). If we have η 6= ∅, it means on some path
πr❀ṙ the condition ϕ(πr❀ṙ) does not hold, so we set ̺(ṙ)
as ⊤ that implies ṙ will always be considered as a UPR at
a program point that can reach r (lines 9–10 correspond to
Case A of the theorem); otherwise, lines 11–15 correspond
to Case C where line 15 ensures ṙ will not be considered
as an L1-UPR in case ṙ has been considered before; and
lines 16–17 correspond to Case B (but we still keep tracking
〈η, γ〉 in this case until Case A or Case C is met). If r is also
a positive reference, we need to record it for analyzing the
following program points (lines 18–19).

Algorithm 2: Definition of the join function J

Input: 〈̺1, τ1〉 ∈ D, 〈̺2, τ2〉 ∈ D

Output: 〈̺, τ〉 ∈ D

1 foreach positive reference ṙ ∈ Ṙ do

2 if ̺1(ṙ) = ⊤ ∨ ̺2(ṙ) = ⊤ then

3 ̺
[

ṙ 7→ ⊤
]

4 else if ̺1(ṙ) = 〈η1, γ1〉 ∧ ̺2(ṙ) = ⊥ then

5 ̺
[

ṙ 7→ 〈η1, γ1〉
]

6 else if ̺1(ṙ) = ⊥ ∧ ̺2(ṙ) = 〈η2, γ2〉 then
7 ̺

[

ṙ 7→ 〈η2, γ2〉
]

8 else if ̺1(ṙ) = 〈η1, γ1〉 ∧ ̺2(ṙ) = 〈η2, γ2〉 then
9 ̺

[

ṙ 7→ 〈η1 ∪ η2, γ1 ∩ γ2〉
]

10 else

11 ̺
[

ṙ 7→ ⊥
]

12 τ ← τ1 ∩ τ2

The join function J : D×D → D is used to merge values
in D at a join point. In the backward-flow analysis, a join
point corresponds to a branching point in the CFG. Given
two values 〈̺1, τ1〉 ∈ D and 〈̺2, τ2〉 ∈ D, the join function is
defined by Alg. 2. Since we need to overestimate the set of
UPRs at each program point, for a positive reference ṙ ∈ Ṙ,
it is not considered as a UPR at the join point only if it is
not considered as a UPR in both given values (lines 10–11);
otherwise, ṙ should be considered as a UPR at the join point,
even if it is not considered as a UPR in one given value (lines
4–7). Likewise, if ṙ is mapped to ⊤ in either value, it should
also be mapped to ⊤ in the joined value (lines 2–3); and
if ṙ is mapped to 〈η1, γ1〉 and 〈η2, γ2〉 respectively in these
two values, in the joined value ṙ should be mapped to 〈η, γ〉
where η overestimates the set of L2 memory blocks that may
lead to ⊤ (i.e. η = η1 ∪ η2) and γ underestimates the set
of L2 memory blocks that may lead to ⊥ (i.e. γ = γ1 ∩ γ2)
(lines 8–9). Moreover, we take the intersection of τ1 and τ2
to safely obtain L1-UPRs (line 12).

5.2 Bound on Number of Times Being A UPR
In order to calculate CRPD from the derived set of refer-

ences that are considered as UPRs at a program point, we
need to bound the number of times a reference may act as a
UPR. If a reference is not in a loop, it is straightforward to
see it may act as a UPR at most once. The problem emerges
when a reference considered as a UPR is inside a loop, in
which case the reference can execute many times.

First, let us discuss the necessary conditions on a loop
when a reference inside the loop is positively classified. In
the following, we use AL2 to denote the associativity of L2
cache.

Lemma 2. If a reference ṙ in a loop is a positive refer-

ence, then one of the following two cases holds.

Case A: There are fewer than AL2 conflicting L2 memory

blocks of ṙ.mL2 accessed on any cyclic path πṙ❀ṙ.

Case B: If there is a cyclic path πṙ❀ṙ on which there are

at least AL2 conflicting L2 memory blocks of ṙ.mL2

accessed, there is at least one reference to ṙ.mL2 clas-

sified as L1 AM in between ṙ on the cyclic path.

Proof. We prove this lemma by contraposition, namely we
are to prove

¬Case A ∧ ¬Case B =⇒ r is not a positive reference

We have ¬Case A as “there are at least AL2 conflicting L2 mem-
ory blocks of ṙ.mL2 accessed on some cyclic path πṙ❀ṙ”. Also,
we have ¬Case B as “given any cyclic path πṙ❀ṙ on which there
are at least AL2 conflicting L2 memory blocks of ṙ.mL2 accessed,
there is no reference to ṙ.mL2 classified as L1 AM in between ṙ
on the path”. Combining ¬Case A and ¬Case B, on such a cyclic
path πṙ❀ṙ, we can deduce that at least AL2+1 distinct L2 mem-
ory blocks need to appear in the corresponding L2 cache set due
to the inclusion property. As a result, at least one L2 memory
block, say m, among these distinct L2 memory blocks is not def-
initely/persistently in L2 cache at the end of this path (i.e. ṙ is
met again since the path is cyclic). Therefore, we have: (1) If m is
ṙ.mL2, it means ṙ.mL2 is not definitely/persistently in L2 cache
when ṙ occurs, so ṙ is not a positive reference. (2) If m is not
ṙ.mL2, since m is not in L2 cache at the beginning of this cyclic
path, after m is first referenced on this path, m will become the
youngest in the cache set, namely it is possible that m is younger
than ṙ.mL2 at that point. Since the must and persistence analy-
ses are safe, in the ACSs of these two analyses, ṙ.mL2 should not
be younger than m at that point (see Section 3). Since there is no
reference to r.mL2 classified as L1 AM in between ṙ on the cyclic
path, ṙ.mL2 cannot be put into the first position in the ACSs.
Therefore, at the end of this cyclic path, ṙ.mL2 is still treated as
possibly older than m, which means ṙ.mL2 should be classified as
“not definitely/persistently in L2 cache when ṙ occurs”. Thus, ṙ
is not a positive reference.

As shown in Section 4.2, in the presence of a preemption,
we can no longer guarantee that L1/L2 AM remains valid,
which implies Case B in Lemma 2 may not hold when there
exists inter-task interference. On the contrary, if Case A in
Lemma 2 holds, it will always hold whether or not there is
a preemption. Therefore, we have the following theorem:

Theorem 2. Given a positive reference ṙ ∈ Ṙ in a loop,

if Case A in Lemma 2 holds, it can suffer L2 cache misses

at most once after a preemption.

Proof. We prove this theorem by contradiction. Let us as-
sume ṙ can suffer at least two L2 cache misses in the presence of
a preemption. After ṙ’s first L2 cache miss, ṙ.mL2 becomes the
youngest memory block in the corresponding cache set. Since ṙ
can suffer at least another L2 cache miss, it means ṙ.mL2 will
be evicted from L2 cache. Therefore, there are at least AL2 con-
flicting L2 memory blocks of r.mL2 accessed on some cyclic path
πṙ❀ṙ , which means Case A does not hold. Therefore, we reach a
contradiction.

Note that if ṙ is also classified as L1 AH /PS, it may also
suffer L1 cache misses after a preemption; but it is straight-
forward to see if Case A holds, it will also suffer at most one
L1 cache miss since, when it does, it will bring both ṙ.mL1

and ṙ.mL2 to their youngest positions and no invalidation
and eviction would happen to them later on. Therefore, the
number of times that a positive reference ṙ in a loop L may



act as a UPR can be bounded by κ(L, ṙ), which is defined
as:

κ(L, ṙ) =

{

1 if µ(L, ṙ) < AL2

lb(L) otherwise

where µ(L, ṙ) over-approximates the number of conflicting
L2 memory blocks of ṙ.mL2 accessed on any cyclic path πṙ❀ṙ

in the loop L, and lb(L) gives the loop bound of L. While
lb(L) can be manually input or derived by other techniques
(which is not in the scope of this paper), µ(L, ṙ) is defined
as:

µ(L, ṙ) =

|{m|∃r ∈ L,m = r.mL2 ∧m 6= ṙ.mL2 ∧ σ(m) = σ(ṙ.mL2)}|

which calculates in the loop how many memory blocks other
than ṙ.mL2 are mapped to the same L2 cache set as ṙ.mL2.
Since only a subset of these memory blocks is accessed on
any path in the loop, µ(L, ṙ) over-approximates the number
of distinct L2 conflicting memory blocks of ṙ.mL2 accessed
on any cyclic path πṙ❀ṙ.

5.3 CRPD Calculation
After the backward-flow analysis, we derive a set of UPRs

at each program point. If a preemption occurs at some pro-
gram point, we can safely estimate the corresponding CRPD
using the derived set of UPRs at that point. Since the execu-
tion can be at an arbitrary point when a preemption occurs,
the maximum CRPD among all the possible ones is regarded
as the task’s CRPD due to a single preemption.

Algorithm 3: CRPD calculation at a program point

Input: 〈̺, τ〉 ∈ D, p ∈ P

Output: crpd
1 crpd ← 0

2 foreach positive reference ṙ ∈ Ṙ that satisfies ̺(ṙ) 6= ⊥ do

3 if ṙ is in a loop L then

4 n← κ(L, ṙ)
5 if ṙ.cL1 = AH then

6 crpd ← crpd + T1 × n

7 else if ṙ.cL1 = PS then

8 if p is not in loop L then

9 crpd ← crpd + T1 × (n− 1)
10 else

11 crpd ← crpd + T1 ×max(1, n− 1)

12 if ṙ 6∈ τ then

13 if ṙ.cL2 = AH then

14 crpd ← crpd + T2 × n

15 else if ṙ.cL2 = PS then

16 if p is not in loop L then

17 crpd ← crpd + T2 × (n− 1)
18 else

19 crpd ← crpd + T2 ×max(1, n− 1)

20 else

21 if ṙ.cL1 = AH then

22 crpd ← crpd + T1

23 if ṙ 6∈ τ then

24 crpd ← crpd + T2

Let P denote the set of all the program points, T1 denote
L1 cache reload time, and T2 denote L2 cache reload time.
Given the derived value 〈̺, τ 〉 ∈ D at a program point p ∈ P ,
we overestimate CRPD at p by applying Alg. 3. For each
positive reference ṙ that can act as a UPR at p, we consider
whether ṙ is inside a loop. If ṙ is not in a loop, it can only

be of type 1, 2, or 3 shown in Tab. 1, and it can act as a
UPR at most once. In this case, no matter whether ṙ acts as
an L1-UPR or an L2-UPR, as long as it is of type 1, a T1 is
added to the CRPD (lines 21–22). If ṙ is an L2-UPR, we also
need to add a T2 to the CRPD (lines 23–24). On the other
hand, if ṙ is inside a loop L, ṙ can be of either type shown
in Tab. 1. The number of times n that ṙ can act as an UPR
is obtained by applying κ(L, ṙ) (line 4). If ṙ is of type 1, 2,
or 3, accounting for ṙ is similar to that when ṙ is outside of
loops, but we need to consider it n times instead of just one
time (lines 5–6 and lines 13–14). If ṙ has L1/L2 PS CHMC,
we also need to consider whether p is in the same loop as ṙ.
If they are not in the same loop, we only need to take into
account n− 1 times that ṙ acts as a UPR, since the WCET
estimation already considers the first time as a cache miss
for PS CHMC (lines 8–9 and lines 16–17). Thus, if we have
n = 1, ṙ will contribute nothing to additional cache misses.
If ṙ and p are in the same loop, we should consider ṙ as a
UPR at least once even we have n = 1 (lines 10–11 and lines
18–19). This is because when a preemption occurs at p, the
loop may have already passed its first iteration.

Note that in the current work we do not consider preempt-
ing tasks, namely any cache hierarchy state is regarded as
possible after a preemption. In addition, we do not consider
whether the derived UPRs at a program point can all occur
after a preemption, e.g., two UPRs derived at a point may
be not reachable from each other when the execution passes
this program point. Although the precision may be reduced,
it is a safe CRPD analysis for multi-level inclusive caches.
How to improve the precision is our future work.

6. EXPERIMENTAL RESULTS
In this section, we evaluate the proposed approach on a set

of benchmarks. The benchmarks are shown in Tab. 3 that
are maintained by the Mälardalen WCET research group [8].
For each benchmark, we estimate its CRPD for only one pre-
emption (if there are multiple preemptions, we can simply
adopt the method used in [14] to construct a table whose ith

entry corresponds to the ith biggest possible CRPD, which is
always safe although may be not precise). Each benchmark
is compiled for MIPS R3000 using gcc-3.4.4.

Table 3: Cache capacity configs for each benchmark

Benchmark Code Size
Config. 1 Config. 2

L1 L2 L1 L2
fibcall 220B 256B 1KB 32B 128B
bs 320B 512B 2KB 64B 256B

janne 324B 512B 2KB 64B 256B
insertsort 440B 512B 2KB 64B 256B
bsort100 564B 1KB 4KB 128B 512B

ns 588B 1KB 4KB 128B 512B
fir 600B 1KB 4KB 128B 512B

expint 888B 1KB 4KB 128B 512B
matmult 932B 1KB 4KB 128B 512B

cnt 944B 1KB 4KB 128B 512B
qurt 1328B 2KB 8KB 256B 1KB
select 1580B 2KB 8KB 256B 1KB
ludcmp 2276B 4KB 16KB 512B 2KB
jfdctint 2580B 4KB 16KB 512B 2KB
lms 2588B 4KB 16KB 512B 2KB

minver 3052B 4KB 16KB 512B 2KB
compress 3564B 4KB 16KB 512B 2KB

edn 3576B 4KB 16KB 512B 2KB
statemate 10296B 16KB 64KB 2KB 8KB
nsichneu 40036B 64KB 256KB 8KB 32KB



As described in Section 5, the proposed CRPD analysis for
two-level inclusive caches is based on the multi-level inclusive
cache analysis proposed in [25]. We implement both analyses
in our research tool which first constructs a context-sensitive
call graph for the program and CFGs for all the procedures
from the compiled binary. Thus, we can have multiple differ-
ent references to the same memory block, which correspond
to an instruction belonging to a procedure reached by dif-
ferent contexts.

In our experiments, we only consider a two-level inclusive
cache but do not consider other micro-architectural features.
As stated in our system model, both L1 and L2 caches are
set associative, and LRU replacement policy is used in them.
Some basic parameters for this two-level cache hierarchy are
not changed in different experiments: L1 cache is 2-way set
associative, its cache block size is 8-byte, and its access la-
tency is 1-cycle. L2 cache is 4-way set associative, its cache
block size is 16-byte, and its access latency is 5-cycle. For
every needed information, we assume it can be found in the
main memory with a 20-cycle latency.

We perform two experiments on each benchmark by chang-
ing L1 and L2 cache capacities. In the first configuration, we
require that L1 cache size is bigger than (but not bigger than
twice of) the code size, and L2 cache size is bigger than four
times that of L1 cache size. In the second configuration, we
require that L2 cache size is smaller than (but not smaller
than half) the code size, and L1 cache size is smaller than
four times that of L2 cache size. The two configurations for
each benchmark with its code size are shown in Tab. 3.

Table 4: Experimental results – WCET and CRPD

Benchmark
Config. 1 Config. 2

WCET CRPD Ratio WCET CRPD Ratio
fibcall 1225 205 16.7% 2860 125 4.4%
bs 1052 485 46.1% 1152 265 23.0%

janne 1448 395 27.3% 4327 185 4.3%
insertsort 4329 385 8.9% 21374 125 0.6%
bsort100 269254 460 0.2% 1466629 265 <0.1%

ns 26895 390 1.5% 92425 225 0.2%
fir 8193 630 7.7% 42096 265 0.6%

expint 9957 520 5.2% 40427 305 0.8%
matmult 508737 505 0.1% 4214252 245 <0.1%

cnt 12856 560 4.4% 79948 150 0.2%
qurt 12004 1560 13.0% 52835 140 0.3%
select 8767 2395 27.3% 43199 400 0.9%
ludcmp 15835 760 4.8% 22410 720 3.2%
jfdctint 14965 2230 14.9% 22265 1465 6.6%
lms 450970 1330 0.3% 3067340 1245 <0.1%

minver 15240 885 5.8% 24299 505 2.1%
compress 40151 1505 3.7% 353129 470 0.1%

edn 154948 1985 1.3% 287438 520 0.2%
statemate 23638 5480 23.2% 33130 290 0.9%
nsichneu 147848 76525 51.8% 264308 4970 1.9%

The experimental results are given in Tab. 4. Under each
capacity configuration, both estimated WCET and CRPD in
terms of clock cycles are reported. We can observe that for
each benchmark the estimated WCET under the first config-
uration is always lower that under the second one, whereas,
the estimated CRPD under the first configuration is always
higher than that under the second one. The reason for this
is: Under the first configuration, most likely, the code seg-
ment of the program can all be loaded into L1 cache without
eviction2. Thus, many references can be positively classified

2
For some benchmarks, e.g. bsort100, some unused procedures may

by the cache hierarchy analysis, and most of them are of type
1, 4, and 5, which implies not even too many L1 cache misses
are taken into account in the WCET estimation; but many
of these positive references may be considered as UPRs at
some program points, especially the points in some big loops
(e.g. in the cases of statemate and nsichneu benchmarks).
On the contrary, under the second configuration, either the
references are not positively classified, or the positive refer-
ences are of type 2, 3, 6, and 7. Therefore, most of the cache
misses are taken into account in the WCET estimation; and
most of the positive references can be classified according to
Case C of Theorem 1, so they do not need to be considered
as UPRs. We can also observe that the sum of WCET and
CRPD under the first configuration is much smaller than
that under the second configuration in most cases.

In addition, the ratio of CRPD to WCET (i.e. CRPD
WCET

) is
also computed. From the results, we can see the estimated
CRPD can be in large proportion to the estimated WCET in
some cases. On one hand, this justifies the purpose of CRPD
analysis when designing embedded control systems. On the
other hand, this also implies sometimes the approach may be
too conservative to analyze CRPD for multi-level inclusive
caches.

The experiments are all carried out on a machine with
a 3.4GHz quad-core processor and 16GB memory. Most of
the analysis time is spent on the cache hierarchy analysis,
which can up to a few thousand seconds in some cases. The
proposed CRPD analysis runs fast, which is always in the
range of a few seconds.

7. RELATED WORK
CRPD analysis for single-level caches has been studied ex-

tensively in the past two decades: In [14], the important con-
cept of UCB is proposed to bound the CRPD conservatively
at a program point of the preempted task. Later in [1], a
new notion of UCB is defined, which takes into account only
the definitely-cached UCBs (DC-UCB). Using this concept
of DC-UCB may under-approximate the CRPD itself, but
over-approximation is ensured when the estimated CRPD is
used together with the estimated WCET. Since the CRPD
of the preempted task also depends on how much “damage”
a preempting task can cause, the concept of ECB is used to
bound the CRPD in [24].

Compared to the approaches that rely on only either UCBs
or ECBs in isolation, the methods that combine them to-
gether can result in more precise analyses, e.g. such meth-
ods are proposed in [15, 18] to analyze the CRPD for direct-
mapped caches. However, as stated in [6], a simple strategy
to combine UCBs and ECBs may result in an unsafe CRPD
analysis for set-associative caches, such as the approach pro-
posed in [22] which simply counts on the minimum number
of UCBs, ECBs, and associativity in each set to bound the
impact of a preemption. For set-associative caches, there is
often deferred impact on UCBs after a preemption, and a
method to compute how resilient an UCB can be is proposed
in [3], which gives rise to a safe and precise CRPD analy-
sis for LRU set-associative caches [13]. For set-associative
caches using other replacement policies, some preliminary
work has also been done [6, 5].

be in between the used procedures in the code segment of the binary.
This makes instruction addresses non-consecutive, which may cause
some cache set having much more conflicting memory blocks mapped
than others.



Under preemptive scheduling, a task can be preempted
multiple times. A method proposed in [20] tries to reduce
CRPD overestimation when considering multiple preemp-
tions, and later this method is used in [21] which takes into
account the estimated CRPD to analyze the response time
of a task in a much efficient way under fixed-priority pre-
emptive scheduling. Schedulability analysis accounting for
CRPD is further studied in [2] for fixed-priority preemp-
tive scheduling. For dynamic priority preemptive schedul-
ing, several approaches have also been proposed to test the
schedulability with the awareness of CRPD [11, 17].

The first approach analyzing CRPD in term of multi-level
caches is proposed in [7]. That work focuses on CRPD anal-
ysis for multi-level non-inclusive caches, which relies on the
cache behavior analysis for non-inclusive cache hierarchies
that is proposed in [9]. In this paper, our approach is for
multi-level inclusive caches, which is based on the cache be-
havior analysis for inclusive cache hierarchies that is pro-
posed in [25]. The approaches proposed in [7] and in this
paper only focus on multi-level instruction caches. While
there have been some approaches proposed to analyze CRPD
for single-level data caches (e.g. a method based on data
cache access patterns rather than UCBs is proposed in [19]),
CRPD analysis for multi-level data/unified caches remains
an open research problem, especially for multi-level inclusive
caches, the existing methods only focus on instruction cache
behavior analysis [10, 26, 25].

8. CONCLUSION & FUTURE WORK
In this paper, we investigate how to analyze CRPD for

multi-level inclusive caches, which has not been studied be-
fore. First, we identify some indirect preemption effects due
to the strict inclusion enforcement in inclusive cache hierar-
chies. These indirect preemption effects make the traditional
UCB concept difficult to use for CRPD analysis in terms of
multi-level inclusive caches. We propose a new concept of
UPRs, and based on this new concept we propose an ap-
proach to conservatively analyze CRPD for a two-level in-
clusive cache hierarchy.

In order to measure CRPD empirically to compare with
the analysis results, we plan to use and integrate some cycle-
accurate instruction set simulator like gem5 in our research
tool. The simulation results can serve as a baseline to inves-
tigate the analysis precision.

There are multiple known sources of pessimism in the cur-
rent approach, which we need to address in the future. For
example, we do not analyze preempting tasks, so we assume
the cache hierarchy can be in any state after a preemption.
By integrating the traditional concept of ECBs into our ap-
proach, the analysis precision should be improved. Another
instance is that we do not consider if two UPRs can occur
in the same execution. Implicit path enumeration technique
(IPET) should be helpful, but it may incur too much com-
putational overhead if it is used at every program point. At
last, we also need to study how to improve the precision in
the case of multiple preemptions.
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