
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

Cent. Eur. J. Comp. Sci. • 1-22
Proofreading version

Central European Journal of Computer Science

Automated software and hardware evolution analysis
for distributed real-time and embedded systems

Research Article

Brian Dougherty1∗, Jules White2† , Douglas C. Schmidt1‡

1 Vanderbilt University,
1025 16th Ave S, Suite 102, 37212 Nashville, USA

2 Virginia Tech,
302 Whitemore Hall, 24060 Blacksburg, USA

Received 30 Dec 2010; accepted 03 Mar 2011

Abstract: Software evolution is critical to extending the utility and life of distributed real-time and embedded (DRE) systems.
Determining the optimal set of software and hardware components to evolve that (1) incorporate cutting-edge
technology and (2) satisfy DRE system resource constraints, such as memory, power, and CPU usage is an
NP-Hard problem. This article provides four contributions to evolving legacy DRE system configurations. First,
we present the Software Evolution Analysis with Resources (SEAR) technique for converting legacy DRE system
configurations, external resource availabilities, and candidate replacement components into multiple-choice multi-
dimension knapsack problems (MMKP). Second, we present a formal methodology for assessing the validity of
evolved system configurations. Third, we apply heuristic approximation algorithms to determine low-cost, high
value evolution paths in polynomial time. Finally, we analyze results of experiments that apply these techniques
to determine which technique is most effective for given system parameters. Our results show that constraint
solvers can only evolve small system configurations, whereas approximation techniques are needed to evolve
larger system configurations.

Keywords: distributed real-time and embedded systems • system evolution • COTS components • system configuration •
MMKP
© Versita Sp. z o.o.

1. Introduction
1.1. Current trends and challenges
Distributed real-time and embedded (DRE) systems (such as automotive, avionics, and automated manufacturing systems)are typically mission-critical and often remain in production for years or decades. As these systems age, however, thesoftware and hardware that comprise them become increasingly obsolete as new components with enhanced functionality
∗ E-mail: briand@dre.anderbilt.edu
† E-mail: jules.white@vt.edu
‡ E-mail: schmidt@dre.vanderbilt.edu

1

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

Automated software and hardware evolution analysis for distributed real-time and embedded systems

are developed. It is time consuming and expensive to completely re-build new systems from scratch to incorporate newtechnology. Instead of building replacement systems from the ground up, legacy systems can be evolved to include newtechnology by replacing older, obsolete components with newer, cutting-edge components as they become available.This evolution accounts for a large portion of the cost of supporting DRE systems [1].Software evolution is particularly vital to ensure DRE systems continue to meet the changing needs of customers andremain relevant as markets evolve. For example, in the automotive industry, each year the software and hardware fromthe previous year’s model car must be upgraded to provide new capabilities, such as automated parking or wirelessconnectivity. In the avionics industry, new flight controllers, targeting computers, and weapons systems are constantlybeing developed. DRE systems are often designed to squeeze the most resources out of the latest hardware and maynot be compatible with hardware that is only a few years old. Many avionics systems have a lifespan of over 20 years,making this problem particularly daunting.
Software evolution analysis [2] is the process of updating a system with new software and hardware so that newtechnology can be utilized as it becomes available. Each component provides its own distinct functionality and effectsthe overall value of the system. Each component also generates various amounts of heat, consumes various amounts ofresources (such as weight, power, memory, and processor utilization), and incurs a financial cost.This analysis involves several challenges, including (1) creating a model for producing a cost/benefit analysis of differentevolution paths, (2) determining the financial cost of evolving a particular software component [3], and (3) generatingan evolved system configuration that satisfies multiple resource constraints while maximizing system value. This paperexamines software evolution analysis techniques for automatically determining valid DRE system configurations thatsupport required new capabilities and increase system value without violating, cost constraints resource constraints, orother domain-specific constraints, such as weight, heat generation, and power consumption.As shown in prior work [4, 5], the cost/benefit analysis for software evolution is partially simplified by the availabilityof commercial-off-the-shelf (COTS) software/hardware components. For example, automotive manufacturers know howmuch it costs to buy windshield wiper hardware/software components, as well as electronic control units (ECUs) withspecific memory and processing capabilities/costs. Likewise, avionics system developers know the precise weight ofhardware components, the resources they provide, the power they consume, and the amount of heat they generate. Ifcomponents are custom-developed (i.e., non-COTS), profiling and analysis can be used to determine the cost/benefitsand resource requirements of utilizing a component [6].Even if the impact of including a component in an evolving DRE system is known, deciding which components wouldyield the best overall system value, is an NP-Hard problem [7]. The knapsack problem [8] can be used to model thesimplest type of evolution problem. In this well-known problem, items of discrete size and value are selected to fill aknapsack of finite size, so that the collective value of the items in the knapsack is maximized.This article uses a variation of the knapsack problem to represent DRE system configuration evolution options. Inparticular, items are used to represent the components available to evolve the system. The goal is to determine the bestsubset of hardware and software components to include in the final DRE system configuration without exceeding theproject budget while maximizing the system value [9]. In the simplest type of evolution problem, there are no restrictionsconcerning which components can be used to evolve the system, and thus no additional restrictions on which items canbe placed in the knapsack. Since the knapsack problem is NP-Hard, an exponential amount of time would be requiredto determine the optimal set of components to evolve the system even in the simplest scenario.Unfortunately, this type of component evolution problem is too simplistic to represent actual DRE system evolutionscenarios adequately. In particular, it may not be appropriate to augment DRE system configurations with componentsthat fill the same basic need. For example, if the goal is to evolve the DRE system configuration of a smart car, it wouldusually not make sense to purchase and install two automated parking components. While installing a single automatedparking component would increase the value of the system, a second would be superfluous and consume additionalsystem resources without providing benefits.To prevent adding excessive, repetitive components, each new potential DRE system capability is modeled as a pointof design variability with several potential implementations, each incurring a distinct cost and value [10]. Modeling theoption of adding an automated parking system as a point of variability prohibits multiple components that perform thesame function from being implemented. It also simplifies cost/benefit analysis between potential candidate componentsthat provide this functionality.DRE systems are also subject to tight resource constraints. As a result, a tight coupling often exists between softwareand hardware, creating a producer/consumer interaction [11]. Each piece of hardware provides resources (such as memory,

2

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

Brian Dougherty, Jules White, Douglas C. Schmidt

CPU, power, and heat dissipation) required for the software of a DRE system to run. One naive approach is to purchasesuperfluous hardware to ensure that the resource consumption needs of software are satisfied. Unfortunately, additionalhardware also carries additonal weight and cost that may make a DRE system infeasible. For example, to maximize flightdistance and speed, avionics systems must attempt minimize size and weight. Although adding superfluous hardwarecan ensure that more than enough resources exist for software to function, the additional weight and cost resulting fromits implementation can render a system infeasible.As a result, it is critical that sufficient resources exist to suppport any software variability selected for inclusion inthe evolved DRE system without consuming unnecessary space, weight, and cost. Determining the subset of softwarecomponents that maximize system valuewhile concurrently selecting the subset of hardware components to provide thenecessary computational resources to support themis an optimization problem. Cost constraints specifying that thetotal cost of all components must also not exceed that total financial exacerbates this problem.Due to these constraints, the knapsack problem representation of component evolution problems must be augmented withhardware/software co-design restrictions that realistically represent actual DRE systems. Since there are an exponentialnumber of hardware and software component subsets that could be used in the final evolved configuration, this type ofhardware/software co-design problem is NP-Hard [12], where the vast solution space prohibits the use of exhaustivestate space exploration for non-trivial DRE systems.For example, consider an avionics system with 20 points of software variability with 10 component options at each point.Assume only the flight deck electronic control unit hardware can be replaced with one of 20 candidate components withdifferent resource production values, heat generation, weight and power consumption. To determine the optimal solutionby exhaustively searching every possible evolution configuration would require examining 2011 evolution configurations.This explosion in solution space size would therefore require years to solve with exhaustive search techniques.
1.2. Solution approach→ System evolution with heuristic optimization techniques
This article presents and evaluates a methodology for simplifying the evolution of DRE systems based on multidimen-
sional multiple-choice knapsack problems (MMKP) [13]. MMKP problems extend the basic knapsack problem by addingconstraints, such as multiple resource and cross-tree constraints, Similarly to the basic knapsack problem, items ofdifferent value and size are chosen for the knapsack to maximize total value. Two additional constraints are added tocreate an MMKP problem. First, each item consumes multiple resources (such as weight, power consumption, processingpower) provided by the “knapsack” instead of space alone. Second, the items are divided into sets from which only asingle item can be chosen.For example, assume an MMKP problem in which the goal is to build the best home entertainment system, while notexceeding a given budget. In this case, the items are various types of televisions, game systems, and surround soundsystem. It would not make sense to choose two surround systems and a game system as the entertainment systemrequires a television and an extra surround system would be effectively useless. To represent this scenario as an MMKPproblem, the items would be divided into a set of game systems, a set of surround sound systems, and a set of televisions.Any valid solution to this MMKP problem would enforce the constraints that exactly one television, game system, andsurround system would be chosen and that the collective cost of the components would be under budget.It should be noted that the MMKP problem model also allows the same component to be present in multiple sets.Continuing this entertainment system example, assume a gaming console that can also serve as a DVD player. Thepurchase cost is deducted by buying the video game console to fill the gaming system requirement. Since the componenthas already been purchased, however, the cost of using the gaming system as the DVD player component is 0. In futurework, optimizations should be investigated for evolution algorithms that give higher priority to components that satisfymultiple functional requirements.MMKP problems are appropriate for representing software evolution analysis problems for the following reasons:

• MMKP problem constraints are appropriate for enforcing the multiple resource and functional constraints ofsoftware evolution problems.
• Extensive study of MMKP problems has yielded approximation algorithms that can be applied to determine validnear-optimal solutions in polynomial time [14].
• Multiple MMKP problems can been used to represent the complex resource consumption/production relationshipof tightly coupled hardware/partitions [12].

3

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

Automated software and hardware evolution analysis for distributed real-time and embedded systems

These problems can also be extended to include additional hardware restrictions, such as power consumption, heatproduction and weight limits.Transforming software evolution analysis scenarios into MMKP problems, however, is neither easy nor intuitive. Thischallenge is exacerbated by complex production/consumption relationships between hardware and software components.This article illuminates the process of using MMKP problem instances to represent software evolution analysis problemswith the following contributions:
• We present the Software Evolution Analysis with Resources (SEAR), which is a technique that represents multiplesoftware evolution analysis scenarios with MMKP problems,
• We provide heuristic approximation techniques that can be applied to these MMKP problems to yield valid,high-value evolved system configurations,
• We provide a formal methodology for assessing the validity of complex, evolved DRE system configurations,
• We present empirical results of comparing the solve times and solution value of three algorithms for solving MMKPrepresentations of software evolution scenarios,
• We analyze these results to determine a taxonomy for choosing the best technique(s) to use based on system size.

1.3. Paper organization
The remainder of this paper is organized as follows: Section 2 outlines an avionics system evolution case study usedto motivate the need forand applicability ofour SEAR technique; Section 3 describes several challenge problems towhich SEAR can be applied; Section 4 qualitatively evaluates applying SEAR to these challenge problems; Section 5formally defines validation criteria of evolved system configurations; Section 6 quantitatively evaluates applying SEARto these challenge problems; Section 7 compares SEAR with related work; and Section 8 summarizes our findings andpresents lessons learned.
2. Motivating Case Study Example
It is hard to upgrade the software and hardware in a DRE system to support new software features and adhere toresource constraints. For example, avionics system manufacturers that want to integrate new targeting systems into anaircraft must find a way to upgrade the hardware on the aircraft to provide sufficient resources for the new software. Eachtargeting system software package may need a distinct set of controllers for image processing and camera adjustmentas well as one or more Electronic Control Units (ECU). ECUs are hardware that provide processing capabilities (suchas memory and processing power) to support the software of a system [15].Figure 1 shows a segment of an avionics software and hardware design that we use as a motivating case study examplethroughout the paper. This legacy configuration contains two software components: a targeting system and a flight

Figure 1. Software evolution progression.

4

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

Brian Dougherty, Jules White, Douglas C. Schmidt

controller as shown in Figure 1. In addition to an associated value and purchase cost, each component consumesmemory and processing power to function. These resources are provided by the hardware component (i.e., the ECU). Thisconfiguration is valid since the ECU produces more memory and processing resources than the components collectivelyrequire.Evolving the targeting system of the original design shown in Figure 1 may require software components that aremore recent, more powerful, or provide more functionality than the original software components. For example, thenew targeting system may require a flight controller with advanced movement capabilities to function. In this casestudy, the original controller lacked this functionality and must be upgraded with a more advanced implementation. Theimplementation options for the flight controller are shown in Figure 1.Figure 1 shows potential flight controller and targeting system evolution options. Three implementations are availablefor each controller. Developers installing an advanced targeting system must upgrade the flight controller via one of thetwo available implementations.Given a fixed software budget (e.g., $500), developers can purchase any combination of controllers and targeting systems.If developers want to purchase both a new flight controller and a new targeting system, however, they must purchasean additional ECU to provide the necessary resources. The other option is to not upgrade the flight controller, therebysacrificing additional functionality, but saving money in the process.Given a fixed total hardware/software budget of $700, the developers must first divide the budget into a hardware budgetand a software budget. For example, they could divide the budget evenly, allocating $350 to the hardware budget and$350 to the software budget. With this budget developers can afford to upgrade the flight controller software withImplementation A and the targeting system software with Implementation B. The legacy ECU alone, however, doesnot provide enough resources to support these two devices. Developers must therefore purchase an additional ECU toprovide the necessary additional resources. The new configuration for this segment of the automobile with upgradedcontrollers and an additional ECU (with ECU1 Implementation A) can be seen in Figure 1.Our motivating example above focused on 2 points of software design variability that could be implemented using 6different new components. Moreover, 4 different potential hardware components could be purchased to support thesoftware components. To derive a configuration for the entire avionics system, an additional 46 software components and20 other hardware components must be examined. Each configuration of these components could be a valid configuration,resulting in (5224) unique potential configurations. In general, as the quantity of software and hardware options increase,the number of possible configurations grows exponentially, thereby rendering manual optimization solutions infeasiblein practice.
3. Challenges of DRE system evolution decision analysis
Several challenges must be addressed when evolving software and hardware components in DRE systems. For example,developers must determine (1) what software and hardware components to buy and/or build to implement the new feature,(2) how much of the total budget to allocate to software and hardware, respectively, and (3) whether the selected hardwarecomponents provide sufficient resources for the chosen software components. These issues are related, e.g., developerscan either choose the software and hardware components to dictate the allocation of budget to software and hardwareor the budget distributions can be fixed and then the components chosen. Moreover, developers can either choose thehardware components and then select software features that fit the resources provided by the hardware or the softwarecan be chosen to determine what resource requirements the hardware must provide. This section describes severalupgrade scenarios that require developers to address the challenges outlined above.
3.1. Challenge 1: Evolving hardware to meet new software resource demands
This evolution scenario has no variability in implementing new functionality, i.e., the set of software resource requirementsis predefined. For example, if an avionics manufacturer has developed an in-house implementation of a new targetingsystem, the manufacturer will know the new hardware resources needed to support the system and must determine whichhardware components to purchase from vendors to satisfy the new hardware requirements. The exact budget available forhardware is known since the only purchases that must be made are for hardware. The problem is to find the least-costhardware design that can provide the resources needed by the software.

5

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

Automated software and hardware evolution analysis for distributed real-time and embedded systems

The difficulty of this scenario can be shown by assuming that there are 10 different hardware components that can beevolved, resulting in 10 points of hardware variability. Each replaceable hardware component has 5 implementationoptions from which the single upgrade can be chosen, thereby creating 5 options for each variability point.To determine which set of hardware components yield the optimum value (i.e., the highest expected return on investment)or the minimum cost (i.e., minimum financial budget required to construct the system), 9,765,265 configurations of compo-nent implementations must be examined. Even after each configuration is constructed, developers must determine if thehardware components provides sufficient resources to support the chosen software configuration. Section 4.1 describeshow SEAR addresses this challenge by using predefined software components and replaceable hardware components toform a single MMKP evolution problem.
3.2. Challenge 2: Evolving software to increase overall system value
This evolution scenario preselects the set of hardware components and has no variability in the hardware implementation.Since there is no variability in the hardware, the amount of each resource available for consumption is fixed. The softwarecomponents, however, must be evolved. For example, a software component on a common model of aircraft has beenfound to be defective. To avoid the cost of a recall, the manufacturer can ship new software components to local airbases,who can replace the defective software components. The local airbases lack the capabilities required to add hardwarecomponents to the aircraft.Since no new hardware is being purchased, the entire budget can be devoted to software purchases. As long as theresource consumption of the chosen software component configuration does not exceed the resource production of existinghardware components, the configuration can be considered valid. The difficulty of this challenge is similar to the onedescribed in Section 3.1, where 10 different types of software components with 5 different available selections per typerequired the analysis of 9,765,265 configurations. Section 4.2 describes how SEAR addresses this challenge by using thepredetermined hardware components and evolution software components to create a single MMKP evolution problem.
3.3. Challenge 3: Unrestricted upgrades of software and hardware in tandem
Yet another challenge occurs when both hardware components and software components can be added, removed, orreplaced. For example, consider an avionics manufacturer designing the newest model of its flagship aircraft. Thisaircraft could either be similar to the previous model with few new software and hardware components or it could becompletely redesigned, with most or all of the software and hardware components evolved.Though the total budget is predefined for this scenario, it is not partitioned into individual hardware and softwarebudgets, thereby greatly increasing the magnitude of the problem. Since neither the total provided resources nortotal consumable resources are predefined, the software components depend on the hardware decisions and vice versa,incurring a strong coupling between the two seemingly independent MMKP problems.The solution space of this problem is even larger than the one in Section 3.2. Assuming there are 10 different types ofhardware options with 5 options per type, there are 9,765,265 possible hardware configurations. In this case, however,every type of software is eligible instead of just the types that are to be upgraded. If there are 15 types of softwarewith 5 options per type, therefore, 30,516,453,125 software variations can be chosen. Each variation must be associatedwith a hardware configuration to test validity, resulting in 30,516,453,125 * 9,765,265 tests for each budget allocation.In these worst case scenarios, the staggering size of the configuration space prohibits the use of exhaustive searchalgorithms for anything other than trivial design problems. Section 4 describes how SEAR addresses this challenge bycombining all software and hardware components into a specialized MMKP evolution problem.
4. Evolution Analysis via SEAR
This section describes the procedure for transforming the evolution scenarios presented in Section 3 into evolution
Multidimensional Multiple-choice Knapsack Problems (MMKP) [18]. MMKP problems are appropriate for representingevolution scenarios that comprise a series of points of design variability that are constrained by multiple resourceconstraints, such as the scenarios described in Section 3. In addition, there are several advantages to mapping thescenarios to MMKP problems.

6

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

Brian Dougherty, Jules White, Douglas C. Schmidt

MMKP problems have been studied extensively and several polynomial time algorithms [16–19] can provide near-optimalsolutions. This paper uses the M-HEU approximation algorithm described in [18] for evolution problems with variabilityin either hardware or software, but not both. The M-HEU approximation algorithm finds a low value solution. Thissolution is refined by incrementally selecting items with higher value using resource consumption levels as a heuristic.The multidimensional nature of MMKP problems is ideal for enforcing multiple resource constraints. The multiple-choiceaspect of MMKP problems make them appropriate for situations (such as those described in Section 3.2) where only asingle software component implementation can be chosen for each point of design variability.MMKP problems can be used to represent situations where multiple options can be chosen for implementation. Eachimplementation option consumes various amounts of resources and has a distinct value. Each option is placed intoa distinct MMKP set with other competing options and only a single option can be chosen from each set. A validconfiguration results when the combined resource consumption of the items chosen from the various MMKP sets doesnot exceed the resource limits. The value of the solution is computed as the sum of the values of selected items.For ease of explanation, we assume that there are no compatibility issues between software components and hardware.As a result, the software components are portable and may be allocated to any appropriate hardware component. Infuture work, we will examine extending the M-HEU algorithm to account for constraints that prohibit the allocation ofcertain software components to specific hardware devices.
4.1. Mapping Hardware Evolution Problems to MMKP
Below we show how to map the hardware evolution problem described in Section 3.1 to an MMKP problem. Thisscenario can be mapped to a single MMKP problem representing the points of hardware variability. The size of theknapsack is defined by the hardware budget. The only additional constraint on the MMKP solution is that the quantitiesof resources provided by the hardware configuration exceeds the predefined consumption needs of software components.To create the hardware evolution MMKP problem, each hardware component is converted to an MMKP item. For eachpoint of hardware variability, an MMKP set is created. Each set is then populated with the MMKP items correspondingto the hardware components that are implementation options for the set’s corresponding point of hardware variability.Figure 2 shows a mapping of a hardware evolution problem for an ECU to an MMKP.

Figure 2. MMKP representation of hardware evolution problem.

In Figure 2 the software does not have any points of variability that are eligible for evolution. Since there is no variabilityin the software, the exact amount of each resource consumed by the software is known. The M-HEU approximationalgorithm (or an exhaustive search algorithm, such as a linear constraint solver) uses this hardware evolution MMKPproblem, the predefined resource consumption, and the predefined external resource (budget) requirements to determinewhich ECUs to purchase and install. The solution to the MMKP is the hardware components that should be chosen toimplement each point of hardware variability.

7

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

Automated software and hardware evolution analysis for distributed real-time and embedded systems

4.2. Mapping software evolution problems to MMKP
We now show how to map the software evolution problem described in Section 3.2 to an MMKP problem. In this case, thehardware configuration cannot be altered, as shown in Figure 3. The hardware thus produces a predetermined amount

Figure 3. MMKP representation of software evolution problem.

of each resource. Similar to Section 4.1, the fiscal budget available for software purchases is also predetermined. Onlythe software evolution MMKP problem must therefore be solved to determine an optimal solution.As shown in the software problem portion of Figure 3, each point of software variability becomes a set that containsthe corresponding controller implementations. For each set there are multiple implementations that can serve as thecontroller. This software evolution problemalong with the software budget and the resources available for consumptionas defined by the hardware configurationcan be used by an MMKP algorithm to determine a valid selection of throttleand brake controllers.It should be noted that the resource requirements of software components may differ based on the hardware to which theyare allocated. We assume that the resource consumption values of the software components represent the worst-case.Therefore, any valid solution guarantees that the resource consumption of the software will not exceed the resourceproduction of the hardware. In future work we will examine alternatives to the M-HEU algorithm such that the resourceconsumption of a software component is a function of the hardware to which it is deployed.
4.3. Hardware/Software co-design with ASCENT
Several approximation algorithms can be applied to solve single MMKP problems, as described in Sections 4.1 and 4.2.These algorithms, however, cannot solve cases in which there are points of variability in both hardware and software thathave eligible evolution options. In this situation, the variability in the production of resources from hardware and theconsumption of resources by software requires solving two MMKP problems simultaneously, rather than one. In priorwork we developed the Allocation-baSed Configuration Exploration Technique (ASCENT) to determine valid, low-costsolutions for these types of dual MMKP problems [12].ASCENT is a search-based, hardware/software co-design approximation algorithm that maximizes the software value ofsystems while ensuring that the resources produced by the hardware MMKP solution are sufficient to support the softwareMMKP solution [12]. The algorithm can be applied to system design problems in which there are multiple producer/-consumer resource constraints. In addition, ASCENT can enforce external resource constraints, such as adherence to apredefined budget.The software and hardware evolution problem described in Section 3.3 must be mapped to two MMKP problems soASCENT can solve them. The hardware and software evolution MMKP problems are prepared as shown in Figure 4.This evolution differs from the problems described in Section 4.1, since all software implementations are now eligiblefor evolution, thereby dramatically increasing the amount of variability. These two problemsalong with the totalbudgetare passed to ASCENT, which then searches the configuration space at various budget allocations to determinea configuration that optimizes a linear function computed over the software MMKP solution. Since ASCENT utilizes

8

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

Brian Dougherty, Jules White, Douglas C. Schmidt

Figure 4. MMKP representation of unlimited evolution problem.

an approximation algorithm, the total time to determine a valid solution is usually small. In addition, the solutions itproduces average over 90% of optimal [12].
5. Formal validation of evolved DRE systems
There are many complex constraints that make it hard to determine the validity of a DRE system configuration. Theseconstraints include the resource production/consumption relationship of tightly coupled hardware/software, the presenceof multiple external resource constraints (such as component cost and power consumption) consumed by hardware and/orsoftware components, and functional constraints that restrict which components are required/disallowed for implemen-tation due to other component selections.This section presents a formal model that can be used to determine the validity of a system based on the selectionof hardware and software components. The model takes into account the presence of external resources, such as totalproject budget, power consumption, and heat production, the complex hardware/software resource production/consumptionrelationship, and functional constraints between multiple components. Section 6 uses this model to define experimentparameters and determine the validity of generated final system configurations.
5.1. Top-level definition of an evolved DRE system
A goal of evolving DRE systems is often to produce a new system configuration that meets all system-wide constraintsand increases system value. The final system configuration produced by software evolution analysis can be describedas a 4-tuple:

F = 〈H,S,B, V 〉,
where
• H is a set of variables describing the hardware portion of the final system configuration, including the set of hardwarecomponents selected, their external resource consumption and computational resource production.
• S defines the software portion of the systems consisting of the a set of software components, their total cost, and thetotal value added to the system.
• B represents the total project budget of evolving a system. The project budget is the total funding available forpurchasing hardware and software components. If the total project budget is exceeded, then system designers will notbe able to purchase required components resulting in an incomplete final system configuration.
• V is the total value of the hardware and software components comprising the final system configuraiton.

9

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

Automated software and hardware evolution analysis for distributed real-time and embedded systems

5.2. Definition of hardware partition
The hardware partition of system provides the computational resources, such as memory and processing power, tosupport the software components of the system. To provide these resources, the hardware of the system must alsoconsume physical resources, such as weight, power, and heat. Unlike software components, however, some hardwarecomponents can increase the availability of these resources. The hardware partition of a system is represented by thefollowing 5-tuple:

H = 〈HC, α(HC), ρ(HC), Ex, V (HC)〉,where
• HC is the set of hardware components that make up the hardware of the system. These components support one ormore software components or add additional resources, such as power, to support other hardware components.
• α(HC) is a tuple containing the total resource consumption values of the set of hardware components HC .
• ρ(HC) defines the total hardware resources, such as power and heat dissipation, produced by the set of hardwarecomponents HC .
• Ex specifies the predetermined hardware resource limitations, such as available weight capacity and power, providedby the system environment. In some cases purchasing hardware components can increase these values, as defined by
ρ(HC). For example, purchasing a battery can increase the power availability of the system, but may increase systemcost, weight, and heat generation.
• V (HC) is the total value added to the system by the set of hardware components HC .
5.2.1. External resource limitationsThe hardware partition of a system must meet several external resource constraints that are predetermined based on theapplication of the system. For example, avionics systems, such as unmanned aerial vehicles, do not remain perpetuallyconnected to an external power source. Instead, on-board batteries provide a finite power source. The following 4-tuplerepresents the external resources available for consumption by the hardware H:

Ex = 〈BH , PH , HHWH〉,where
• BH is the hardware budget, which is the maximum amount of money available to purchase Hardware components.Once BH is exhausted, no additional hardware components can be added to the system. No hardware components canbe purchased to augment BH .
• PH is the total amount of external power available to the system. For systems in which power is unlimited, this valuecan be set to ∞. Some evolution scenarios may allow the purchase of batteries or other hardware to increase theavailable power past PH , though this is usually at the expense of BH , WH , and/or HH .
• HH defines the maximum amount of heat that can be generated by the hardware H of the system. In certain applications,such as automated manufacturing systems, exceeding predefined temperature limits can cause hardware to fail or corruptthe product being manufactured. Additional hardware components, such as heat sinks, can be purchased to counteractheat produced by hardware and thereby increase the heat capacity of they system.
• WH represents the weight limit of the final system configuration as a result of H. Each additional hardware increasesthe weight of the system by a distinct amount. Many DRE systems have strict requirements on the total weight ofthe system. For example, each pound of hardware added to avionics systems requires roughly 4 additional supportingpounds of infrastructure and fuel. No hardware components are capable of reducing the weight capacity of a system.
5.2.2. Hardware componentsThe hardware component selection HC of the hardware partition determines the computational resources, such as memoryand processor utilization, that are available to support the software partition of the system. Hardware components canalso produce other resources (such as power and heat dissipation) to validate the selection of additional hardware andincrease elements of Ex beyond their initial capacities. The set of N chosen hardware components is by the followingN-tuple:

HC = 〈Hc0, Hc1 . . . Hcn〉,
10

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

Brian Dougherty, Jules White, Douglas C. Schmidt

where
• Hci is a hardware component included in the final configuration. Each hardware component consumes multiple externalresources. The total resource consumption of a hardware component Hc is defined by the following 4-tuple:

Rc(Hc) = 〈Cost(Hc), Pow(Hc),W (Hc), He(Hc)〉,
where
• Cost(Hc) is the cost of purchasing hardware component Hc.
• Pow(Hc) is the power consumed by Hc.
• W (Hc) is the weight added to the final configuration by including Hc.
• He(Hc) is the heat generated by Hc.Hardware components will either support one or more software components or add additional hardware resources, suchas power to the system. The following equation defines the set of software components that are deployed to hardwarecomponent Hc:

Dep(Hc) = 〈Sc0, Sc1 . . . Scn〉,
Hardware components (such as heat sinks and batteries) provide additional resources (such as heat capacity and power)to the system. These components, however, do not produce any computational resources and may consume other externalresources (such as project budget and weight). The total resource production of hardware component Hc is defined bythe following tuple:

Rp(Hc) = 〈r0, r1, r2, . . . rn〉,
where ri is a resource produced by component Hc.Hardware components must also consume several resources (such as project budget and weight capacity) to function.The resource consumption of hardware component Hc is defined as:

Rc(Hc) = 〈r0, r1, r2 . . . rn〉,
where ri represents a distinct hardware resource (such as power or cost). The total resource consumption of all hardwarecomponents HC is defined by the following 4-Tuple:

α(HC) = 〈β(HC), δ(HC), τ(HC), m(HC)〉,
where
• β is the total cost of all hardware components HC .
• δ is the total power consumption of all hardware components HC .
• τ is the total weight of all hardware components HC .
• m is the total heat consumption of hardware components HC .The total resource consumption of each type of resource in α is determined by the summation of each type of resource riacross all hardware components HC . If we assume that r0 is the cost of a hardware component, r1 represents the powerconsumption, r2 the weight of the component, and r3 the heat generation of the component, the resource consumptiontotals is given by the following equations:

β(HC) = |HC |∑
i=0 Rc(HCi)0,

δ(HC) = |HC |∑
i=0 Rc(HCi)1,

τ(HC) = |HC |∑
i=0 Rc(HCi)2,

11

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

Automated software and hardware evolution analysis for distributed real-time and embedded systems

m(HC) = |HC |∑
i=0 Rc(HCi)3.

Finally, each hardware component adds a discrete amount of value to the system. The amount of value added to thesystem by hardware components HC is defined by the following equation:
V (HC) = |HC |∑

i=0 v(HCi),where v(HCi) gives the value of including hardware component HCi in the final system configuration.
5.3. Definition of software partition
The software partition consists of software components that provide functionality and add value to the system. Thesoftware partition is comprised of a set of software components that consume the computational resources of the hardwarecomponents to which they are deployed. Each software component consumes multiple resources, carries a purchase cost,and adds a discrete amount of value to the system. The software partition S of a final configuration is defined by thefollow 3-tuple:

S = 〈θ(SC), V (SC), SC〉,
where
• θ(SC) is the total cost of the software components SC of the final configuration.
• V (SC) is the total value of the software components SC comprising the final system configurations.
• SC is the set of software components that make up the final system configuration.The set of software components SC consists of one or more individual software components, each costing differentamounts of money to purchase and adding distinct amounts of value to the system. The total cost of the softwarecomponents SC is determined by taking the sum of the values of all software components in the system:

θ(SC) = |SC |∑
i=0 Rc(SCi)0.

The value added by all components, V (SC), is calculated with the following equation:
V (SC) = |SC |∑

i=0 v(SCi).Each software component also consumes one or more computational resources. These resources (such as memory andprocessing power) are provided by the hardware component to which the software component(s) are deployed. A softwarecomponent that consumes n resources is defined by the following n-tuple:
Rc(Sc) = 〈r0, r1, r2, . . . rn〉,

where ri is the amount of the resource consumed.
5.4. Determining if a final system configuration is valid
The hardware H and software S that are selected for a final system configuration F must satisfy several constraints tobe considered valid. The first constraint is that external resources, such as weight and power, must not be over consumedby the hardware. Second, the purchase price of all components must not exceed the total project budget. Finally, noset of software components can consume more resources than provided by the hardware component to which they aredeployed.

12

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

Brian Dougherty, Jules White, Douglas C. Schmidt

5.4.1. External resource consumption does not exceed productionThe following equation determines if the total external resource consumption exceeds external resource availability:
σ (HC) = |HC |∑

i=0 Rp(HCi) + Ex

− |HC |∑
i=0 Rp(HCi).

This equation adds the total hardware resource production to the predefined external resource limits to give the totalexternal resource availability. The total resource consumption of the hardware components HC is then subtracted fromthe total external resource availability. If no elements in σ are negative the external resources are not over consumedby the hardware. This constraint is violated, however, if the following equation yields a negative value:
ExCon(F) = min(0, σ (HC)).

If ExCon is less than zero the available external resources are not sufficient to support the external resource consumptionof the hardware.
5.4.2. Project budget exceeds component costsEach final system configuration F has a project budget B defining the maximum amount of money that can be spentpurchasing hardware and software components. If this amount is exceeded, however, sufficient funds will not be availableto purchase all HC and SC of H and S, thereby invalidating the final configuration F . The total cost of the system canbe calculated with the following equation:

TotCost(HC,SC) = β(HC) + θ(SC),
CostCon(F) = min(0, B − TotCost(HC,SC)).

If the value of CostCon(F) is less than zero, then insufficient funds are available to purchase components HC and SC .
5.4.3. Hardware resource production exceeds software resource consumptionIn a final configuration F , the software components SC are deployed to the hardware components HC . Each softwarecomponent Sc consumes computational resources ri (such as memory and processing power) provided by the hardwarecomponent Hc to which it is deployed. The sum of the consumption of each resource of all software components allocatedto a hardware component must not exceed the resource production of each resource produced. The following equation,
λ(HC) determines the resource consumption of the software components deployed to hardware components HC :

λ(HC) = ∀HC,∀r ∈ Rp(HCi), ri − (|Dep(HCi)|∑
j=0 Rc(Dep(Hc)j)),

HSRCon(F) = min(0, λ(HC)).
The final hardware/software resource constraint, HSRFCon(F), determines if the resource production of any hardwarecomponent in HC is over consumed by the software it supports. If HSRFCon(F) is less than 0 the constraint is violatedand the final configuration F is invalid.
5.4.4. Validating a final system configurationThe following three constraints must be satisfied to ensure the validity of a final system configuration F :

• Resource availability must exceed consumption as determined by ExCon(F),
• Component costs must be less than the project budget as given by CostCon(F), and
• The resource production of the hardware components HC must exceed the resource consumption of the softwarecomponents SC as given by HRSConf(F).

13

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

Automated software and hardware evolution analysis for distributed real-time and embedded systems

The validity of the final system configuration F is conveyed by the following equation:
Validity(F) = ExCon(F) + CostCon(F) +HSRConf(F).

A final system configuration F is considered valid if Validity(F) is equal to zero.
6. Empirical results
This section determines valid, high-value, evolution configurations for the scenarios described in Section 3 using empiricaldata obtained from three different algorithmic techniques: (1) exhaustive search techniques, (2) the M-HEU algorithm forsolving single MMKP problem instances described in Sections 4.1 and 4.2, and (3) the ASCENT technique for solvingunlimited evolution problems described in Section 4.3. These results demonstrate that each algorithm is effective forcertain types of MMKP problems. Moreover, a near-optimal solution can be found if the correct technique is used. Eachset represents a point of design variability and problems with more sets have more variability. Moreover, the ASCENTand M-HEU algorithms can be used to determine solutions for large-scale problems that cannot be solved in a feasibleamount of time with exhaustive search algorithms.
6.1. Experimentation testbed
All algorithms were implemented in Java and all experiments were conducted on an Apple MacbookPro with a 2.4 GHzIntel Core 2 Duo processor, 2 gigabytes of RAM, running OS X version 10.5.5, and a 1.6 Java Virtual Machine (JVM)run in client mode. For our exhaustive MMKP solving techniquewhich we call the linear constraint solver (LCS)weused a branch and bound solver built on top of the Java Choco Constraint Solver (choco.sourceforge.net). The M-HEUheuristic solver was a custom implementation that we developed with Java. The ASCENT algorithm was also based ona custom implementation with Java.Simulation MMKP problems were randomly generated. In this process, the number of sets, the minimum and maximumnumber of items per set, the minimum and maximum resource consumption/production per item, and the minimum andmaximum value per item, are the inputs to the MMKP problem generator. The generator produces an MMKP problemconsisting of the specified number of sets. The number of items in each set, the resource consumption/production of eachitem, and the value of each item, are randomly selected within the specified bound for each parameter. This generationprocess is described further in [12].
6.2. Hardware evolution with predefined resource consumption
This experiment investigates the use of a linear constraint solver and the use of the M-HEU algorithm to solve thechallenge described in Section 3.1, where the software components are fixed. This type of system based on the formaldefinition of a system configuration F in Section 5.1. In this type of evolution problem, the S of the F tuple is fixed. Forease of explanation, we also assumed that with the exception of budget B, all values of Ex are abundantly available.We first tested for the total time needed for each algorithm to run to completion. We then examined the optimality ofthe solutions generated by each algorithm. We ran these tests for several problems with increasing set counts, therebyshowing how each algorithm performed with increased design variability.Figure 5 shows the time required to generate a hardware configuration if the software configuration is predefined1.Since only a single MMKP problem must be solved, we use the M-HEU algorithm. As set size increases, the timerequired for the linear constraint solver increases rapidly. If the problem consists of more sets, the time required for thelinear constraint solver becomes prohibitive. The M-HEU approximation algorithm, however, scaled much better, findinga solution for a problem with 1,000 sets in ∼15 seconds. Figure 6 shows that both algorithms generated solutions with100% optimality for problems with 5 or less sets.
1 Time is plotted on a logarithmic scale for all figures that show solve time.

14

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

Brian Dougherty, Jules White, Douglas C. Schmidt

Figure 5. Hardware evolution solve time vs number of sets.

Figure 6. Hardware evolution solution optimality vs number of sets.

Regardless of the number of sets, the M-HEU algorithm completed faster than the linear constraint solver withoutsacrificing optimality.
6.3. Software evolution with predefined resource production
This experiment examines the use of a linear constraint solver and the M-HEU algorithm to solve evolution scenarios inwhich the hardware components are fixed, as described in Section 3.2. In this type of problem, the H of the configuration
F described in Section 5.1 is predefined. We test for the total time each algorithm needs to run to completion andexamine the optimality of solutions generated by each algorithm.Figure 7 shows the time required to generate a software configuration generated if the hardware configuration ispredetermined. As with Challenge 2, the M-HEU algorithm is used since only a single MMKP problem must be solved.Once again, LCS’s limited scalability is demonstrated since the required solve time makes its use prohibitive for problemswith more than five sets. The M-HEU solver scales considerably better and can solve a problem with 1,000 sets in lessthan 16 seconds, which is fastest for all problems.Figure 8 shows the optimality provided by each solver. In this case, the M-HEU solver is only 80% optimal for problemswith 4 sets. Fortunately, the optimality improves with each increase in set count with a solution for a problem with7 sets being 100% optimal.

15

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

Automated software and hardware evolution analysis for distributed real-time and embedded systems

Figure 7. Software evolution solve time vs number of sets.

Figure 8. Software evolution solution optimality vs number of sets.

6.4. Unrestricted software evolution with additional hardware
This experiment examines the use of a linear constraint solver and the ASCENT algorithm to solve the challengedescribed in Section 3.3, in which no hardware or software components are fixed. We first test for the total time neededfor each algorithm to run to completion and then examine the optimality of the solutions generated by each algorithm.Unrestricted evolution of software and hardware components has similar solve times to the previous experiments.Figure 9 shows that regardless of the set count for the MMKP problems, the ASCENT solver derived a solution muchfaster than LCS. This figure also shows that the required solve time to determine a solution with LCS increases rapidly,
e.g., problems that have more than five sets require an extremely long solve time. The ASCENT algorithm once againscales considerably better and can even solve problems with 1,000 or more sets. In this case, the optimality of thesolutions found by ASCENT is low for problems with 5 sets, as shown in Figure 10.Fortunately, the time required to solve with LCS is not prohibitive in these cases, so it is still possible to find a solutionwith 100% optimality in a reasonable amount of time.

16

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

Brian Dougherty, Jules White, Douglas C. Schmidt

Figure 9. Unrestricted evolution solve time vs number of sets.

Figure 10. Unrestricted evolution solution optimality vs number of sets.

6.5. Comparison of algorithmic techniques
This experiment compared the performance of LCS to the performance of the M-HEU and ASCENT algorithms for allchallenges in Section 3. As shown in Figure 11, the characteristics of the problem(s) being solved have a significantimpact on solving duration. Each challenge has more points of variability than the previous challenge. The solving timefor LCS thus increases as the number of the points of variability increases. For all cases, the LCS algorithm requires anexorbitant amount of time for problems with more than five sets. In contrast, the M-HEU and ASCENT algorithms showno discernable correlation between the amount of variability and the solve time. In some cases, problems with more setsrequire more time to solve than problems with less sets, as shown in Figure 12.Figure 13 compares the scalability of the three algorithms. This figure shows that LCS requires the most solving timein all cases. Likewise, the ASCENT and M-HEU algorithms scale at approximately the same rate for all problems andare far superior to the LCS algorithm. The optimality of the ASCENT and M-HEU algorithms is near-optimal only forproblems with five or more sets, as shown in Figure 14.The exception to this trend occurs if there are few points of variability, e.g., when there are few sets and the softwareis predetermined. These findings motivate the taxonomy shown in Figure 15 that describes which algorithm is mostappropriate, based on problem size and variability.

17

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

Automated software and hardware evolution analysis for distributed real-time and embedded systems

Figure 11. LCS solve times vs number of sets.

Figure 12. M-HEU & ASCENT solve times vs number of sets.

Figure 13. Comparison of solve times for all experiments.

18

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

Brian Dougherty, Jules White, Douglas C. Schmidt

Figure 14. Comparison of optimalities for all experiments.

Figure 15. Taxonomy of techniques.

7. Related Work
This section compares/contrasts the strategy used by SEAR for evolution analysis with the use of (1) feature modelsfor software product-lines, (2) architecture reconfigurations to satisfy multiple resource constraints, and (3) resourceplanning in enterprise organizations to facilitate upgrades.
7.1. Automated software product-line configuration
Software product-lines (SPLs) model a system as a set of common and variable parts. A common approach to capturingcommonality and variability in SPLs is to use a feature model [20], which describes the points of variability using atree-like structure. A number of automated techniques have been developed that model feature model configurationand evolution problems as constraint satisfaction problems [21] or SAT solvers to Benavides et al. [21, 22], satisfiabilityproblems [23], or propositional logic problems [24]. Although these techniques work well for automated configuration offeature models, they have typically not been applied with resource constraints, since they use exponential worst-casesearch techniques. SEAR, in contrast, is focused on precisely these types of resource-constrained evolution problemsfor which these techniques perform poorly.
7.2. Architectual considerations of embedded systems
Many hardware/software co-design techniques can be used to analyze the effectiveness of embedded system architec-tures. Slomka et al [25] discuss the development life cycle of designing embedded systems. In their approach, variouspartitionings of software onto hardware devices are proposed and analyzed to determine if predefined performance re-quirements can be met. If the performance goals are not attained, the architecture of the system will be modified byaltering the placement of certain devices in the architecture. Even if a valid configuration is determined, it may still bepossible to optimize the performance by moving devices.

19

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

Automated software and hardware evolution analysis for distributed real-time and embedded systems

While optimization is an integral application of SEAR, it is not achieved by altering the system architecture. Theonly choices that can affect the system performance and value is the choice of which type of hardware and/or softwarecomponent to perform the functionality defined in the architectural design. Moreover, architectural hardware/softwareco-design decisions traditionally do not consider comparative resource constraints or financial cost optimization.
7.3. Maintenance models for enterprise organizations
The difficulty of software evolution is a common and significant obstacle in business organizations. Ng et al. [3] discussthe impact of vendor choice and hardware consumption to show the sizable financial and functional impact that resultsfrom installing enterprise resource planning (ERP) software. Other factors related to calculating evolution costs includevendor technical support, the difficulty of replacing the previous version of the software, and annual maintenance costs.Maintenance models are used to predict and plan the effect of purchasing and utilizing various software options on overallsystem value. Steps for the creating maintenance models with increased accuracy for describing the ramifications of anERP decision are also presented.Currently, maintenance models require a substantial amount of effort to calculate the overall impact of installing a singlesoftware package, much of which can not be done through computation. SEAR analyzes the plausibility and impact ofdeploying many software components onto multiple hardware devices. While maintenance models can be used to assessthe value of the functionality and durability added by a certain software package, they have not been used to explore thehardware/software co-design space to determine valid configurations from large sets of potential hardware devices andsoftware components. Instead, they are used to define a process for analyzing and calculating the value of predefinedupgrades. SEAR is used to solve the complex problem of determining determine valid evolution configurations. Onlyafter the discovery of these configurations can ERPs be used to predict the overall impact of their installation.
8. Concluding remarks
It is hard to determine valid DRE system evolution configurations that increase DRE system value. The exponentialnumber of possible configurations that stem from the massive variability in these problems prohibit the use of exhaus-tive search algorithms for non-trivial problems. This paper presented the Software Evolution Analysis with Resources(SEAR) technique, which converts common evolution problems into multi-dimensional multiple-choice knapsack prob-
lems (MMKP). We also empirically evaluated three different algorithms for solving these problems to compare theireffectiveness in providing valid, high-value evolution configurations.From these experiments, we learned the following lessons pertaining to determine valid evolution configurations forhardware/software co-design systems:
• Approximation algorithms scale better than exhaustive algorithms. Exhaustive search techniques, such as thelinear constraint solver algorithm, cannot be applied to non-trivial problems. The determining factor in theeffectiveness of these algorithms is the number of problem sets. To solve problems with realistic set counts infeasible time, approximation algorithms, such as the M-HEU algorithm or the ASCENT algorithm must be used.These techniques can solve even large problems in seconds, with minimal impact on optimality.
• Extremely small or large problems yield near-optimal solutions. For non-trivial problems, the ASCENT algorithmand M-HEU algorithm can be used to determine near-optimal evolution configurations. For tiny problems, theLCS algorithm can be used to determine optimal solutions. Given that these tiny problems have few points ofvariability, optimal solutions can be determined rapidly.
• Problem size should determine which algorithm to apply. Based on problem characteristics, it can be highlyadvantageous to use one algorithmic technique versus another, which can result in faster solving times or higheroptimality. Figure 15 shows the problem attributes that should be examined when deciding which algorithm toapply. It also relates the algorithm that is best suited for solving these evolution problems based on the numberof sets present.
• No algorithm is universally superior. The analysis of empirical results indicate that all three algorithms aresuperior for different types of evolution problems. We have not, however, discovered an algorithm that performs

20

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

Brian Dougherty, Jules White, Douglas C. Schmidt

well for every problem type. To determine if other existing algorithms perform better for one or all types ofevolution problems, further experimentation and analysis is necessary. Our future work will therefore examineother approximation algorithms, such as evolutionary algorithms [26, 27] and particle swarm techniques [28, 29],to determine if a single superior algorithm exists.
The current version of ASCENT with example code that utilizes SEAR is available in open-source form atascent-design-studio.googlecode.com.
References

[1] Schach S.R., Classical and Object-Oriented Software Engineering, McGraw-Hill Professional, place of publication,1995[2] Kemerer C.F., Slaughter S., An empirical approach to studying software evolution, IEEE T SOFTWARE ENG, 2002,25, 493-509[3] Ng C.S.P., Chan G.T., An ERP maintenance model, In: Editor Surname Editor Initials, Proceedings of the 36th AnnualHawaii International Conference on System Sciences (2003, place of conference), publisher, year of publication, firstpage-last page[4] Leen G., Heffernan D., Expanding Automotive Electronic Systems, COMPUTER, 2002, 35, 88-93[5] Dougherty B., White J., Thompson C., Schmidt D., Automating Hardware and Software Evolution Analysis, In: EditorSurname Editor Initials, International Conference and Workshop on the Engineering of Computer Based Systems(ECBS) (November 2009, San Francisco, USA), publisher, year of publication, first page-last page[6] Boehm B., Clark B., Horowitz E., Westland C., Madachy R., Selby R., Cost models for future software life cycleprocesses: COCOMO 2.0, ANN SOFTW ENG, 1995, 1, 57-94[7] Gu X., Yu P.S., Nahrstedt K., Optimal Component Composition for Scalable Stream Processing, In: Editor SurnameEditor Initials, 25th IEEE International Conference on Distributed Computing Systems. ICDCS 2005. Proceedings.(2005, place of conference), publisher, year of publication, 773-782[8] Moser M., Jokanovic D.P., Shiratori N., An algorithm for the multidimensional multiple-choice knapsack problem,IEICE T FUND ELECTR, 1997, 80, 582-589[9] Martello S., Toth P., Knapsack problems: algorithms and computer implementations, Wiley, New York, 1990[10] Ulfat-Bunyadi N., Kamsties E., Pohl K., Considering Variability in a System Familyâ€Źs Architecture During COTSEvaluation, In: Editor Surname Editor Initials, Proceedings ofthe 4th International Conference on COTS-BasedSoftware Systems (ICCBSS) (2005, Bilbao, Spain), Springer, 2005, first page-last page[11] Srinivasan S., Jha N.K., Hardware-software co-synthesis of fault-tolerant real-time distributed embedded systems,In: Editor Surname Editor Initials, Design Automation Conference, 1995, with EURO-VHDL, Proceedings EURO-DAC’95 (2002, place of conference), IEEE, year of publication, 334-339[12] White J., Dougherty B., Schmidt D.C., ASCENT: An Algorithmic Technique for Designing Hardware and Softwarein Tandem, ISIS-Vanderbilt University, ISIS-08-907, August 2008[13] Lin E.Y.H., A Biblographical Survey on Some Wellknown Non-Standard Knapsack Problems, INFORMATION SCI-ENCE AND OPERATIONAL RESEARCH, 1998, 36, 280-283[14] Hifi M., Michrafy M., Sbihi A., Heuristic algorithms for the multiple-choice multidimensional knapsack problem, JOPER RES SOC, 2004, 12, 1323-1332[15] Her J.S., Choi S.W., Cheun DW, Bae JS, Kim SD, A Component-Based Process for Developing Automotive ECUSoftware, LECT NOTES COMPUT SC, 2007, 4589, 358-last page[16] Shahriar A.Z.M., Akbar M.M., Rahman M.S., Newton M.A.H., A multiprocessor based heuristic for multi-dimensionalmultiple-choice knapsack problem, J SUPERCOMPUT, 2008, 43, 257-280[17] Hifi M., Michrafy M., Sbihi A., A Reactive Local Search-Based Algorithm for the Multiple-Choice Multi-DimensionalKnapsack Problem, COMPUT OPTIM APPL, 2006, 33, 271-285[18] Akbar M.M., Manning E.G., Shoja G.C., Khan S., Heuristic Solutions for the Multiple-Choice Multi-dimensionKnapsack Problem, LECT NOTES COMPUT SC, 2001, volume, 659-668[19] Hiremath C.S., Hill R.R., New greedy heuristics for the Multiple-choice Multi-dimensional Knapsack Problem,INTERNATIONAL JOURNAL OF OPERATIONAL RESEARCH, 2007, 2, 495-512
21

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

Automated software and hardware evolution analysis for distributed real-time and embedded systems

[20] Kang K.C., Kim S., Lee J., Kim K., Shin E., Huh M., FORM: A Feature-Oriented Reuse Method with Domain-specificReference Architectures, ANN SOFTW ENG, 1998, 5,143-168[21] Benavides D., Trinidad P., Ruiz-Cortes A., Automated Reasoning on Feature Models, In: Editor Surname EditorInitials, 17th Conference on Advanced Information Systems Engineering (2005, place of conference), Springer, 2005,491-503[22] White J., Czarnecki K., Schmidt D.C., Lenz G., Wienands C., Wuchner E., Fiege L., Automated Model-based Con-figuration of Enterprise Java Applications, In: Editor Surname Editor Initials, EDOC (October 2007, Annapolis,Maryland, USA), publisher, 2007, first page-last page[23] Mannion M., Using First-order Logic for Product Line Model Validation, In: Editor Surname Editor Initials, Pro-ceedings of the Second International Conference on Software Product Lines (2002, place of conference), Springer,2002, 176-187[24] Batory D., Feature Models, Grammars, and Prepositional Formulas, In: Editor Surname Editor Initials, SoftwareProduct Lines: 9th International Conference (26-29 September 2005, Rennes, France), Springer, 2005, first page-lastpage[25] Slomka F., Dorfel M., Munzenberger R., Hofmann R., Hardware/software codesign and rapid prototyping of embed-dedsystems, IEEE DES TEST COMPUT, 2000, 17, 28-38[26] Bäck T., Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, GeneticAlgorithms, Oxford University Press, USA, 1996[27] Fogel D.B., Inc N.S., La Jolla C.A., What is Evolutionary Computation?, IEEE SPECTRUM, 2000, 37, 26-28[28] Kennedy J., Eberhart R., Particle Swarm Optimization, In: Editor Surname Editor Initials, IEEE InternationalConference on Neural Networks (1995, place of conference), publisher, 1995, first page-last page[29] Shi Y., Eberhart R.C., Empirical Study of Particle Swarm Optimization, In: Editor Surname Editor Initials, Proceed-ings of the 1999 Congress on Evolutionary Computation (1999, place of conference), NJ: IEEE Service Center, 1999,1948-1950

22

