
Modeling and Analysis of Probabilistic Timed Systems

Abhishek Dubey † Derek Riley† Sherif Abdelwahed‡ Ted Bapty†

† Institute for Software Integrated Systems, Vanderbilt University, Nashville, TN, USA
‡ Electrical Engineering and Computer Science, Mississippi State University

Abstract

Probabilistic models are useful for analyzing systems
which operate under the presence of uncertainty. In this
paper, we present a technique for verifying safety and live-
ness properties for probabilistic timed automata. The pro-
posed technique is an extension of a technique used to ver-
ify stochastic hybrid automata using an approximation with
Markov Decision Processes. A case study for CSMA/CD
protocol has been used to show case the methodology used
in our technique.

1. Introduction

Probabilistic models are useful for analyzing systems
which operate under the presence of uncertainty. These sys-
tems can be modeled using non-determinism; however, of-
ten more information is known about the probabilities asso-
ciated with certain aspects of the system. Also, many sys-
tems such as slot machines and communication networks
are specifically designed to execute probabilistic behavior
to incorporate fairness into their decision making choices.

Soft real-time systems exhibiting probabilistic behavior
can be analyzed using these probabilistic models to more
realistically study their behaviors. Alternatively, hard real-
time systems may also exhibit probabilistic behavior; how-
ever, the hard deadlines of the system do not allow for any
probability of failure. Therefore, probabilistic analysis is
most beneficial for soft real-time systems.

In the past, many communication protocols e.g. Carrier
Sense Multiple Access and Collision Detection, IEEE 1394
firewire protocol, Bluetooth device discovery [12], as well
as biological systems have been modeled and analyzed as
probabilistic models [13]. In the case of communication
protocols the results from these analysis’ can help lead the
designers toward better solutions which would give a higher
probability of success. On the other hand the analysis from
biological systems can help researchers develop a better un-
derstanding of the complex physiological dynamics of the
systems they study. Probabilistic models are also useful in

modeling effect of possible failures [22].
In this work, we present a technique for modeling and

analyzing probabilistic timed systems by approximating
them as a Markov Decision Process (MDP) and analyz-
ing them with the Value Iteration (VI) technique [20] We
will discuss the application of this technique using a case
study on a modified CSMA/CD protocol. This analysis can
help designers choose the parameters for the protocol which
most likely will meet their specifications. The outline for
the rest of the paper is as follows: Section 2 gives a back-
ground and related research; Section 3 explains the model
that we use for probabilistic timed systems. In Section 4
and Section 5 we describe the various kinds of analyses that
we can perform on this model and the technique we use to
perform these analyses. We conclude the paper by demon-
strating our approach in Section 6.

2. Modeling Formalisms for Probabilistic Sys-
tems

We can classify probabilistic systems into two groups,
purely probabilistic and generalized probabilistic [23]. A
system is called purely probabilistic if, for every state of the
system, there is exactly one and only one set of probability
distribution over all available transitions. Non-determinism
occurs, when (a) there are multiple possible transition with-
out an associated probability distribution, or (b) there are
multiple probability distributions defined over the same set
of available transitions. In [19], systems which do not have
such non-determinism are modeled as stochastic automaton
with only one possible transition matrix without any exter-
nal actions.

For non-deterministic systems (generalized probabilis-
tic systems) with multiple probability distributions defined
over a set of transitions as external agent referred to as ad-
versaries [18], strategies [6], schedulers [24] or external ac-
tions [19] decide the chosen probabilistic distribution.

A basic model used in describing behaviors of proba-
bilistic systems is a Markov Chain. It is a simple “random
walk” where the state space is represented as vertices of a
graph and the transition can involve a movement to any ad-
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jacent neighbor such that the movement in current time step
is independent of all previous movements. This assumption
of conditional independence from all previous states except
the most recent one is also called “Markovian assumption”.
Most probabilistic models are enrichments of this Marko-
vian chain model [21].

The finite-state discrete time Markov Chain (DTMC)
[17] is commonly used to model pure probabilistic systems.
DTMC satisfies the Markovian assumption i.e. it is as-
sumed that the probability of reaching a certain state in next
time step only depends upon the present state and not the
past states. Thus, the probability of system taking any path
π = s0, s1 · · · sn, is equal to

∏n−1
1 P (si+1|si), where si is

a state of the system, and P (si+1|si) is the probability that
the next state will be si+1, given that the current state is si.
Thus, given an initial state and an assignment of proposi-
tional labels for each state one can solve the probability of
reaching a certain state and satisfying some propositional
logic formula by summing the probability of all paths be-
tween those two states.

A related model is continuous time markov chain model
(CTMC). It associates a probability distribution function
with a continuous range of time. In a CTMC, state tran-
sitions may occur at any time such that time between transi-
tions is exponentially distributed i.e. probability of a current
transition does not depend on previous transitions [21].

A Markov Decision Process (MDP) [20], extends the ba-
sic notion of a DTMC by allowing multiple probabilistic
distributions specifying the probability of state transitions.
This system is very commonly used in artificial intelligence
to choose an optimum policy for reaching a desired goal
state given a set of actions, which have different transition
probability distribution associated with them. Such MDP
also specify a reward model for choosing an action and a
cost for taking an action.

MDP is similar to the Probabilistic Nondeterministic
system (PNS) of Bianco and de Alfaro [6]. PNS allows
under specification of a transition probability. Under speci-
fication here means that the PNS model gives the flexibility
of leaving some transition probabilities unspecified. How-
ever, it is straight forward to map the non-deterministic un-
der specified probabilistic transition of a PNS as an extra
probabilistic distribution of a MDP in which only that tran-
sition has a unity probability while all the other possible
transitions are given a zero probability. The semantics of
PNS require a strategy to pick a probability distribution and
then define state transitions according to the chosen distri-
bution. This model has been shown to be able to represent
n asynchronous purely probabilistic systems running con-
currently. It should be noticed that due to non-determinism,
now only a max and min probability of reaching a state can
be specified.

Generally, PNS are not used to model timed systems,

unless it is assumed that every transition takes the same
amount of time. This notion is similar to the notion of RT-
CTL model checking for Kripke structures in NuSMV [8].
However, in real systems where different events take differ-
ent time, PNS cannot be used.

In [11], timed probabilistic non-deterministic systems
(TPNS) model was introduced. A TPNS model is similar
to PNS and have non-deterministic actions chosen by some
adversary associated with every state. These actions decide
a particular probability distribution for the transition to the
next state. The difference, however, between a TPNS and
PNS is the cost associated with any choice of action. The
cost of an action, which is either 0 or 1 is directly related to
the time spent in the present state before executing that ac-
tion. Similar to a PNS, only maximum and minimum reach-
ability probability for a certain state is specified.

In order to specify the properties of these systems, prob-
abilistic logics are used. Probabilistic real-time computa-
tional tree logic PCTL [14] is used for expressing real-time
and probability in systems. This logic was extended to
PCTL* in [3], much the same as CTL* extends CTL [15].
PCTL* differs from CTL* in that the path quantifiers A
and E are absent and instead a probability operator [ψ]wp
is specified for the path formula ψ. This operator is inter-
preted as the probability of satisfaction of the path formula
ψ is less (w = ≤) or more (w = ≥) than p. The
semantics of PCTL and PCTL* is defined with respect to fi-
nite Markov chains. It should be noted that in PNS models
a PCTL* formula [ψ]wp is compared against the maximum
and minimum probability computed for a particular path.

Baier and others defined a probabilistic branching time
logic (PBTL) in [4] that extends the probabilistic logic for
PNS models. This logic adds the concept of fairness to
PCTL*. Thus any conditions which lead to an unfair path
are not considered while evaluating the satisfaction of a
PBTL formula.

The underlying semantic model for all these logics is ei-
ther a DTMC or MDP. There have been significant devel-
opment in probabilistic model checking and a number of
tools such as PRISM [17] and Mobiüs [9] have been devel-
oped. However, unlike PRISM in which systems have to be
specified as a concurrent DTMCs, or concurrent MDPs, or
CTMCs, Mobiüs allows a rich set of modeling formalisms
like stochastic petri nets [7] for checking the reliability of a
system.

The “real-time” probabilistic model, also called as prob-
abilistic timed automaton (PTA) was first introduced in [1].
This paper described a probabilistic logic that can be used
to specify interesting temporal properties of the probabilis-
tic system. In this paper, we show how a probabilistic timed
automaton can be converted to an equivalent MDP and also
show how we can use the Value Iteration algorithm [20] to
analyze reachability properties.



3. Probabilistic Timed Automaton

A timed automaton [2] is a 6-tuple TA = < Σ, S, L
, S0, X, I, T > such that

• Σ is a finite set of alphabets, which the TA can accept.

• S is a finite set of locations.

• L: S → 2AP is a labeling function, where AP is the
set of all atomic propositions

• S0 ⊆ S is a set of initial locations.

• X is a finite set of clocks.

• I : S → CX is a mapping called location invariant.
CX is the set of clock constraints over X defined in
BNF grammar by α ::= x ≺ c|¬α|α∧α, where x ∈ X
is a clock, α ∈ CX , ≺∈ {<,≤}, and c is a rational
number.

• T ⊆ S×Σ×CX × 2X ×S is a set of transitions. The
5-tuple < s, σ, ψ, λ, s′ > corresponds to a transition
from location s to s′ via an alphabet σ, a clock con-
straint ψ specifies when the transition will be enabled
and λ ⊆ X is the set of clocks whose value will be
reset to 0.

Probabilistic Timed Automata (PTA) [18] are an exten-
sion to Timed Automata (TA) which includes probabilistic
transitions between the states of the system. The formal
definition for a PTA G is as follows:
G = (Σ, S, L, S0, X, I, T, Prob, PDF,Gs):

• Σ is a finite set of alphabets, which the PTA can accept.

• S a finite set S of locations, where s0 is the initial lo-
cation.

• L: S → 2AP is a labeling function, where AP is the
set of all atomic propositions

• A finite set X of clocks.

• S0 ⊆ S is a set of initial locations.

• I : S → CX is a mapping called location invariant.
CX is the set of clock constraints over X defined in
BNF grammar by α ::= x ≺ c|¬α|α∧α, where x ∈ X
is a clock, α ∈ CX , ≺∈ {<,≤}, and c is a rational
number.

• T ⊆ S×Σ×2X×S is a set of transitions. The 5-tuple
< s, σ, λ, s′ > corresponds to a transition from loca-
tion s to s′ via an alphabet σ, and λ ⊆ X is the set of
clocks whose value will be reset to 0. Note the differ-
ence from the TA definition. Here the guard condition
is not specified with the transition. Let src : T → S be
a map that defines the source location for a transition.

Figure 1. An example of a probabilistic timed
automaton.

• A function Prob: S → 2µ(T ), assigns to each lo-
cation a finite non-empty set of discrete probability
distributions µ : T → [0, 1] ∪ Φ on T such that
(∀s ∈ S)

∑
t∈T∧s=src(t) µ(t) ≤ 1. Φ is the null set

and models the underspecification of probability i.e.
one can choose to not specify the probability for a tran-
sition. Generally, we deal with systems that only have
one probability distribution defined over all state i.e
(∀s ∈ S)|Prob(s)| = 1 (purely probabilistic). How-
ever, for other systems which are generalized we de-
pend on some other random variable to pick a proba-
bility distribution µ ∈ Prob(s) - as described in [19].

• A family (sequence) of functions < Gs >s∈S , Gs :
Prob(s) → CX assigns to each p ∈ prob(s) a guard.
These guard conditions serve the function of enabling
a probability distribution, which then enables certain
transitions.

3.1. Semantics of Probabilistic Timed Au-
tomaton

Fig. 1 shows an example of probabilistic timed automa-
ton. Notice that the transition from q0 state can either go to
the q1 state or the q2 state.

The state of a probabilistic timed automaton is a pair of
the current evaluation of clock variables and the current lo-
cation, Q = (s, v), where s ∈ S and v : X → R+ is the
clock value map, assigning each clock a positive real value.
At any time, all clocks increase with a uniform unit rate,
which, along with events, enable transitions from one state
of the timed automaton to another. Since there are an infi-
nite number of possible clock evaluations, the state space of
a timed automaton is infinite. The transition graph over this
state space, A =< Σ, Q,Q0, R >, is used to describe the
semantics associated with this model. The initial state of A,
Q0 is given by {(q, v)|q ∈ S0 ∧ ∀x ∈ X(v(x) = 0)}.

The transition relation R is composed of two types of
transitions: delay transitions caused by the passage of time,



and action transitions, which lead to a change in location of
a timed automaton. Before proceeding further with transi-
tions, it is necessary to first define some notation.

Let us define v+ d to be a clock assignment map, which
increases the value of each clock x ∈ X to v(x) + d. For
λ ⊆ X we introduce v[λ := 0] to be the clock assignment
that maps each clock y ∈ λ to 0, but keeps the value of all
clocks x ∈ X − λ same. Using these notations, we can
define delay and action transitions as follows:

• Delay Transitions refer to passage of time while stay-
ing in the same location. They are written as (s, v)

d→
(s, v + d). The necessary condition is v ∈ I(s) and
v + d ∈ I(s)

• Action Transitions refer to occurrences of a transitions
from one location to another location. Given an al-
phabet σ, an action transition for a probabilistic timed
automaton is composed of two steps:

1. Choose a probability distribution p ∈ prob(s)
such that the current clock valuation v satisfies
the guard Gs(p) i.e. v ∈ Gs(p). This choice is
some

2. Make a probabilistic transition to a state s′ ac-
cording to p; that is for any state s′ ∈ S and
λ ⊆ X , the probability that location will change
to s′ and clocks λ will be reset to 0 is given by
p(t), where t = (s, σ, λ, s′) is a transition.

Probabilistic Timed Automaton differ from TA in the
fact that they allow, but do not require probabilities on tran-
sitions. These probabilities must be assigned to states of the
TA which only allow discrete, not timed transitions. A PTA
must be very carefully defined because the transitions of
a TA which allow both timed and discrete transitions gen-
erate inherent non-determinism which cannot be resolved
through simple probability assignment. Therefore, our ver-
ification technique ignores probabilities assigned to these
types of transitions and keeps them as non-deterministic so
the results of the verification do not make limiting assump-
tions which the user is not aware of. This problem can be
avoided if the TA is designed in such a way to limit or elim-
inate the use of these special non-deterministic choices.

Networked PTA: Usually, a system is composed of sev-
eral sub-systems, each of which can be modeled as a timed
automaton. Therefore, for modeling of the complete sys-
tem, we will have to consider the parallel composition of a
network of timed automatons [5, 10, 25].

A network of timed automatons is a parallel composi-
tion of several timed automatons [10]. Each timed automa-
ton can synchronize with any other timed automaton by us-
ing input events and output actions. For this purpose, we
assume the alphabet set Σ to consist of symbols for input

events denoted by σ? and output actions σ! and internal
events τ . Networked probabilistic timed automaton are de-
fined similarly.

The semantics of network-timed automatons are also
given in terms of transition graphs. A state of a network
is defined as a pair (~s, v), where ~s denotes a vector of all
the current locations of the network, one for each timed
automaton, and v is the clock assignment map for all the
clocks of the network. The rules for delay transitions are
the same as those for a single timed automaton. However,
the action transitions are composed of internal actions and
external actions.

An internal action transition is a transition, which hap-
pens in any one timed automaton of the network, indepen-
dent of other timed automatons. On the other hand, an ex-
ternal action transition is a synchronous transition between
two timed automatons. For such a transition, one timed au-
tomaton produces an output event on its transition leading
to a change in its location (denoted as a!), while the other
timed automaton consumes that event (denoted as a?) and
takes the transitions leading to a change in its location. An
external action transition cannot happen if any of the timed
automatons cannot synchronize.

For a networked probabilistic timed automaton, the prob-
ability of synchronized transitions is obtained by multiply-
ing the probability of individual transitions.

Before going on to next section, let us assume the exis-
tence of an operation unprob(.) that generates an equiva-
lent timed automaton from a given probabilistic timed au-
tomaton. For purely probabilistic systems, one can find a
bisimilar TA by simply equating all transition probabilities
to one. That is system is turned into a non-deterministic
system from a probabilistic system. For a system that has
multiple probability distributions, we have to first convert it
into a purely probabilistic system by invoking an adversary
[18] that chooses a probability distribution for all source
states. We can then use the unprob operator.

Definition 1 (Probabilistically Bisimilar) A PTA G =
(Σ, S, L, S0, X, I, T, Prob,Gs) and a TA defined over
same locations,clock variables, initial locations, Invariants
and alphabets TA=< Σ, S, L, S0, X, I, T > are probabilis-
tically bisimilar iff for all probabilistic transitions of a PTA
with a given guard condition an equivalent transition of
timed automaton with same guard condition exists i.e.

(∃p ∈ Prob(s))(p(s, σ, λ, s′) 6= 0) (1)
⇔ (∃t ∈ TA.T )(t = (s, σ,Gs(p), λ, s

′))

4. Analysis Types

Our proposed verification method allows for several dif-
ferent types of verification including reachability, safety,
and bounded time reachability.



4.1. Reachability

The result of reachability analysis describes the proba-
bility that a certain state will transition to a set of states ini-
tially marked as reachable while not transitioning to another
set of states initially marked as unreachable. The reachable
states can represent states such as done, and the unreach-
able states can represent states such as error. The resulting
reachability probability will then describe the probability
that a state will transition to a done state without reaching
an error state i.e. given a set of target locations φ ⊆ 2AP ,
and a set of unsafe locations ψ, find the conditional proba-
bility P (E3φ∧ not A2ψ|S0), where TCTL formulaE3φ
is true if the predicate logic formula φ is eventually satisfied
on any execution path of the system. S0 is the initial loca-
tion.

4.2. Safety

The result of safety analysis on a system describes the
probability that a state will never reach a set of bad states.
These marked states must be identified a priori and can de-
scribe states such as error or completed. Safety analysis is
performed as a negation of reachability check. For example
if ψ is the set of unsafe location, then safety probability is
1− P (E3ψ|S0).

4.3. Bounded Time Safety/Reachability

Bounded time reachability or safety can be determined
for PTA by using reachability or safety analysis on a modi-
fied version of the PTA. To add the bounded time analysis,
it is required that the user add an additional clock to the sys-
tem which marks the total time of the system and is never
reset. The user must also add a new error state to the system
which is transitioned to by any state of the system after the
bounded time is reached. The analysis method is similar to
the reachability or safety analysis described above except
that the new error state is marked as the reachable or unsafe
set. The result of this analysis will tell the user the probabil-
ity that the initial state will transition to the error state (run
out of time) before transitioning to a safe state.

5. Verification Technique

Figure 2 illustrates the control flow of our approach.
Given a PTA, we first generate an equivalent TA by using
the unprob(.) operator. The probability distributions associ-
ated with all guard conditions and transitions are stored in
a separate file as a lookup table. This lookup table stores
all probability distributions and corresponding probabilities
stored for all transitions. A transition is identified using the

source and destination location pair. Next step involves gen-
eration of the equivalency graph for the timed automaton
TA by using KRONOS tool [25]. The equivalency graph
contains a set of symbolic states < s,Z > , where s ∈ S is
a location and Z ⊆ Cx is set of clock valuations such that
Z ⊆ I(s): it represents all states (s, v) such that v |= Z .
It also contains the discrete transitions between these states.
This graph is called equivalency graph because it is bisimi-
lar to the given TA. More details can be founds in [25].

Figure 2. Algorithmic Flow.

An equivalency graph is effectively a finite state machine
over the set of all states of timed automaton and the alpha-
bets Σ. Once the equivalency graph is generated, a parser
program uses that file, along with another file describing
the probabilities of the system to create the PTA representa-
tion. This representation is equivalent to a Markov Decision
Process (MDP), which is then analyzed using a technique
called the value iteration method. We will discuss this fur-
ther in section 5.2.

Lemma 1 Behaviors generated by the generated markov
decision process are probabilistically bisimilar to the be-
haviors generated by the orginal probabilistic timed au-
tomaton.

Proof 1 Since the TA is probabilistically bisimilar to the
PTA and the equivalency graph is bisimilar to the TA, by
associativity we can maintain that the markov decision pro-
cess is probabilistically bisimilar to the original PTA.

Figure 3. The equivalency graph with proba-
bilities for PTA shown in fig. 1.

A Markov Decision Process requires that all transition
probabilities between all states are well defined. Therefore,



the parsing program which translates the reachability output
from KRONOS into the MDP must correctly assign prob-
abilities to all states. The probabilities are included in a
file which describes the probability of a transition between
two states in the original system. Therefore, the parser must
identify all instances of this transition in the reachability re-
sult and inject the probability accordingly.

For a networked probabilistic timed automaton Kronos
generates a composed equivalency graph. This composed
graph contains locations which are a union of locations
from all individual PTA. To inject probability in the com-
posed equivalency graph, the parser keeps a transition map
in the memory and identifies the change of labels between
a source state and a destination state. If this change in label
is associated with a probability, the net probability of the
transition (assigned by default to 1) is updated using mul-
tiplication to the new probability. Since equivalency graph
contains all the labels from individual transitions being syn-
chronized, this approach ensures that the probability of syn-
chronized transitions is the multiplication of probabilities of
individual transitions being synchronized.

For any non-deterministic choices left, the parser flags
the transition as non-deterministic so it can be identified and
handled correctly by the analysis portion of the program.

5.1. Non-determinism

The conversion of a PTA to a MDP can yield some
transitions for which the given probability is not specified.
Non-deterministic transitions can be handled in a variety of
ways. Our analysis program utilizes three different tech-
niques: minimum, maximum, and average. The minimum
technique assumes that every non-deterministic choice will
be made by choosing the transition which has the least prob-
ability of reaching the reachable set. This technique is use-
ful when the user is attempting to determine a lower bound
on the reachability probability. Similarly, the maximum
technique chooses the transition to the largest reachability
probability so the user can determine an upper bound. The
average non-deterministic analysis technique assumes that
all outgoing transitions have an equal probability of occur-
rence, so the transition probabilities of the MDP are ad-
justed accordingly. This is useful for systems where the
non-deterministic transitions truly have equal probability of
occurrence. Because this is rare in real systems, the most
accurate result is obtained by including as many transition
probabilities as possible in the original model.

5.2. Value Iteration

The Value Iteration (VI) technique [20] has been applied
to the reachability analysis of a MDP representation of a
Stochastic Hybrid System and the convergence results can

be found in [16]. This technique is similarly applied for
the PTA MDP. Each state of the MDP is assigned a value
which represents the reachability probability for that state.
Initially this value is one for all states in the goal set and
zero for all other states. The VI approach iteratively ana-
lyzes each state of the MDP and updates its value by sum-
ming the transition probabilities multiplied by the values of
the states the transitions lead to for all outgoing transitions
of the original state.

The calculation for the value function is described by the
equation below where Vi is the value function at state i and
pi,j is the probability of state i transitioning to state j. This
computation is performed iteratively for every state and re-
peated multiple times until the values converge.

Vi =
∑
j

pi,j ∗ Vj

Vk = 1 if k ∈ GOAL,where GOAL
is the set of intended reachable states

The values calculated by the VI method at each state of
the MDP represent the probabilities for those states to reach
the goal set. Therefore, this technique not only answers the
reachability question for the initial state, it also answers the
question for every other state as well. This occurs because
the reachability probabilities for every state are necessary
for calculating the final reachability from the initial state,
so all probabilities for intermediate states are also available
which allows the user more insight into the dynamics of the
system.

It can be shown that, the convergent value Vi in each
state can be formally described as Vi =

∑
k P (πk), where,

πk is a possible executional trace of the system starting in
the ith state and ending in any one of the goal states. Here
k is an index set over all possible execution traces lead-
ing to the goal state. If πk = s0, s1 · · · sn, then due to
markov assumption P (πk) is equal to

∏n−1
1 P (si+1|si),

where P (si+1|si) is the conditional probability of system
moving the state i+ 1 from current ith state, also known as
the transition probability.

6. Casestudy -CSMA/CD

In computer networking, Carrier Sense Multiple Access
With Collision Detection (CSMA/CD) 1 is a network con-
trol protocol typically used for Ethernet. In this protocol, a
single universal bus is shared between various senders and
receivers by using a mix of carrier sensing scheme, and col-
lision detection scheme. Once the bus detects the transmis-
sion of a packet it broadcasts a busy signal that keeps the

1http://www.ieee802.org/index.html



Figure 4. Top Level view of two senders and
a bus.

other senders from attempting a transmission. However,
since there is a finite delay between the departure of the
packet from a sender before it is detected by the bus, there is
a chance of a collision. Therefore, if a transmitting sender
detects another signal on the bus it stops the transmission
and sends out a jam signal, which makes all the senders wait
for a random time interval (also known as “back off delay”)
determined using a truncated binary exponential back off
algorithm before trying to send that frame again.

In this case study we formally modeled the CSMA/CD
protocol for two scenarios, one with 2 sender processes and
the other with 3 sender processes. It is assumed that these
sender processes are connected to a single bi-directional
10Mbps Ethernet bus. It is known that this bus has a worst
case propagation delay σ of 26µs. We only modeled the
scenario of fixed length packets and it is known that on the
average the total time taken for a successful transmission λ,
including the propagation delay is, 808µs. We also assume
that the bus does not buffer packets and is virtually error
free.

Each sender and the bus are modeled as a probabilistic
timed automaton. They communicate via communication
channels as shown in Fig. 4. When a collision is detected
each sender goes to a collision state and randomly picks
one of the possible wait states. Ideally, the sender should
reattempt to send the packet more than one time. However,
we have only modeled one reattempt by the sender before
rejection of the packet to keep the size of the model small.

The basic synchronization events can be summarized as
follows:

• begini: Sender starts transmitting the packet

• busyi: Once the bus detects a packet it communicates
busy to all the senders to stop them from attempting
transmission.

• endi: The completion of a transmission from the
sender.

• cdi: If a collision happens then the bus asks the sender
to wait for a random time before reattempting trans-
mission.

Figure 5. Sender with two wait states.

The probabilistic timed automaton of a sender and a bus
are shown in Fig. 5 and 6. The sender is initially idle and
goes to the transmission state if a send signal is received
from some outside process. During transmission if it re-
ceives a cd signal then it moves to a collision state, where
it has to immediately pickup one of the possible wait states.
The probability of choosing a wait state is 1/number of wait
states. This choice is made immediate by setting the in-
variant of collision state to x = 0, where x is the clock
associated with the sender. The number of wait states of the
sender and the associated probability are changed to model
different strategies.

The safety problem was set such that all senders are ei-
ther in idle state or done state. We did the reachability anal-
ysis to find the probability of the success with a 6 wait state
strategy and 8 wait state strategy for 2 senders and 3 senders
case. It should be noted that the max and min probability for
all cases was 1 and 0 respectively.

6.1. Analysis

Table 1 summarizes the analysis result. Figure 7 shows
the success result i.e. no collision happening. Note that the
results converge as the number of iterations in the value iter-
ation method increase. From the results, it can be seen that
probability of success reduces with the number of senders.
The result that the success rates increase when the number
of wait states are increased for the same number of senders



Table 1. All the computations have been performed on a 4- processor Intel(R) Xeon(TM) CPU 2.80GHz,
1 GB RAM, LINUX Machine. The Propagation Delay is assumed to be 26µs, while the Transmission
Delay is assumed to be 808µs

No.
of
Senders

No.
of
Wait
States

Wait
Times
(µs)

Size of Product Au-
tomaton

Size of Reachability
Graph

Avg
Proba-
bility of
Success

Time Taken (Real
Time/Sys Time)

2 6 26, 52,
104,
1000,
2000,
3000

94 states, 260 trans, 3
clocks

188 states, 241 trans, 3
clocks

0.8888 0m0.312s/0m0.000s

3 6 26, 52,
104,
1000,
2000,
3000

1426 states, 6051
trans, 4 clocks

4602 states, 6471 trans,
4 clocks

0.4819 3m12.268s/0m0.150s

2 8 26, 52,
104, 208,
416, 832,
1664,
3328

134 states, 404 trans,
3 clocks

308 states, 391 trans, 3
clocks

0.8020 0m0.792s/0m0.020s

3 8 26, 52,
104, 208,
416, 832,
1664,
3328

2310 states, 106747
trans, 4 clocks

8267 states, 11547 trans,
4 clocks

0.4295 10m5.079s/0m0.250s

can be attributed to the chosen wait times. In this experi-
ment, wait times were further distributed away from their
mean when number of wait states was 6 compared to when
the number of wait states was 8.

7. Concluding Remarks

Probabilistic verification of stochastic systems is a use-
ful technique which can provide insights into the intrica-
cies of a real world model. There are many real world sys-
tems such as soft real-time systems and biological systems
which can naturally have uncertainty and probabilities built
into them. Reachability or safety verification can produce
results which will help the designer or observer better un-
derstand and interact with the system. Our proposed tech-
nique of converting the timed automata model to a Markov
Decision Process and analyzing the MDP with the Value It-
eration method provides a unique and powerful method for
probabilistically analyzing these types of systems.

In this paper, we did not compute the bounded time prob-
abilities. However, they can be done by adding an extra
clock to the timed automatons to restrict the forward reach-

ability graph.

In the future, this research can follow many directions.
This approximation technique has been shown to parallelize
elegantly which can significantly reduce the time required
to analyze complex systems. There is also promise for de-
veloping an analytical solution for special cases of the MDP.
Resolving the intricacies dealing with non-determinism
could also result in more accurate bounds for the system.
Overall, the verification technique proposed has been able
to demonstrate its power and flexibility for verifying com-
plex stochastic systems.
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Figure 7. Results.

Figure 6. Bus which is used to communicate.
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