
A Deliberative Reasoner for Model-Based Software Health Management

Abhishek Dubey∗, Nagabhushan Mahadevan∗, Gabor Karsai∗
∗Institute for Software Integrated Systems, Vanderbilt University, Nashville, TN 37212, USA

{dabhishe, nag, gabor}@isis.vanderbilt.edu

Abstract—While traditional design-time and off-line ap-
proaches to testing and verification contribute significantly to
improving and ensuring high dependability of software, they
may not cover all possible fault scenarios that a system could
encounter at runtime. Thus, runtime ‘health management’ of
complex embedded software systems is needed to improve their
dependability. Our approach to Software Health Management
uses concepts from the field of ‘Systems Health Management’:
detection, diagnosis and mitigation. In earlier work we had
shown how to use a reactive mitigation strategy specified
using a timed state machine model for system health manager.
This paper describes the algorithm and key concepts for an
alternative approach to system mitigation using a deliberative
strategy, which relies on a function-allocation model to identify
alternative component-assembly configurations that can restore
the functions needed for the goals of the system.

Keywords-Component-based systems; fault diagnosis; auto-
nomic computing; fault removal.

I. INTRODUCTION

Self-adaptive software systems, while in operation, must
be able to adapt to latent faults in their implementation,
in the computing and non-computing hardware; even if they
appear simultaneously. Software Health Management (SHM)
extends classical software fault tolerance techniques [1], [2],
[3] by applying anomaly detection, fault source identification
(diagnosis), fault effect mitigation (in operation), mainte-
nance (offline), and fault prognostics (online or offline), as
used in System Health Management of complex engineering
systems [4], [5]. It is performed at run-time, and it includes
fault detection, fault source isolation, and mitigation activi-
ties to remove fault effects. A good motivation for software
health management is provided in [6].

We have developed an approach and model-based tools
for implementing software health management functions
for component-based systems. The foundation of the ar-
chitecture is a real-time component framework (built upon
an ARINC-653 platform) that defines a specific model of
computation for software components [7]. This framework
brings the concept of temporal isolation, spatial isolation,
strict deadlines from ARINC-653 and combines them with
the well-defined component interaction patterns described in
CORBA Component Model [8]. Health management in the
framework is performed at two levels. The Component-Level
Health Manager (CLHM) provides localized and limited
service for managing the health of individual components.

Higher-level management is provided by a System Health
Manager (SLHM) that manages the health of the overall
system. SLHM includes a diagnosis engine that uses a Timed
Failure Propagation (TFPG) [9] model of the software that
is automatically synthesized from the model of the software
component assembly. The diagnostic engine reason about
cascading fault effect in the system and isolates the fault
source components. This is possible because the data and
behavioral dependencies (and hence the fault propagation)
across the assembly of software components can be de-
duced from the well-defined and restricted set of interaction
patterns supported by the framework [10]. In the past, we
showed how system-wide mitigation can be performed based
on reactive timed state machines specified by the designer
at the system integration time [11]. However, one of the
problems with this approach to system-mitigation is the
complexity of the specification required to cover all possible
combination of failure scenarios.

This paper describes our work on system-level mitigation
using a deliberative search-based technique that relies on
the models of system goals/functionalities and the compo-
nent groups allocated to provide these functionalities. Our
approach is based on:

• Maintaining a model of the desired system functions
and their sub-functions that all are required to provide
that function.

• Maintaining an allocation tree for each function where
the function is the root, the configuration groups (AND,
OR, M of N) are the intermediate nodes and the soft-
ware components are the leaf nodes. This tree captures
the multi component configurations that are required to
provide the service listed as the root function node.

• Identifying the current operational system goals.
• Identifying the affected operational goals based on the

list of faulty components.
• Searching for alternative configuration that can satisfy

the functions, while shutting down faulty components.

The outline of this paper is as follows: first we cover
the related research. Then we present a short overview
of our architecture and earlier results. Next, we discuss
the deliberative reasoner, followed by a case study and
conclusions.

II. RELATED RESEARCH

Our approach focuses on latent faults in software systems,
it follows a component-based architecture with a model-
based development process, and implements all steps in the
Collect/Analyze/Decide/Act loop [12].

Rohr et al. advocate the use of architectural models for
self-management [13]. They suggest the use of a run-time
model to reflect the system state and provide reconfiguration
functionality. From a development model they generate a
causal graph over various possible states of its architectural
entities. Garlan et al. [14] and Dashofy et al. [15] have
proposed an approach which bases system adaptation on ar-
chitectural models representing the system as a composition
of several components, their interconnections, and properties
of interest. They make reconfiguration decisions using rule-
based strategies.

While these works have tended to the structural part of the
self-managing computing components, some have empha-
sized the need for behavioral modeling of the components.
For example, Zhang et al. described an approach to specify
the behavior of adaptable programs in [16]. Their approach
is based on separating the adaptation behavior specification
from the non-adaptive behavior specification in autonomic
computing software. Williams’ research [17] concentrates on
model-based autonomy. The paper suggests that emphasis
should be on developing techniques to enable the software
to recognize that it has failed and to recover from the failure.
Their technique lies in the use of a Reactive Model-based
Programming Language (RMPL)[18] for specifying both
correct and faulty behavior of the software components.
They also use high-level control programs [19] for guiding
the system to the desirable behaviors.

Work described here is related to the larger field of
software fault tolerance: principles, methods, techniques, and
tools that ensure that a system can survive software defects
that manifest themselves at run-time [20], [21].

III. THE ARINC COMPONENT FRAMEWORK

System-level health management and fault tolerance ap-
proaches are based on the notion of interacting components.
Our work is based upon the ARINC-653 component model
(ACM) [7]. ACM combines the CORBA Component Model
[8] with ARINC-653 [22]. ACM components interact with
each other via well-defined patterns, facilitated by ports.
In ACM, a component can have four kinds of ports for
interactions: publishers, consumers, facets (a.k.a. provided
interfaces - where an interface is a collection of related
methods) and receptacles (a.k.a. required interfaces). The
component can interact with other components through
synchronous call/return interfaces (associated with facets
or receptacles), and/or via asynchronous publish/subscribe
event connections (between publisher and consumer). A
component can also have internal methods that are peri-
odically triggered. Systems are designed as composition of

System

Component
+CLHM

Component
+CLHM

Component
+CLHM

Alarm Aggregator Diagnoser
Deliberative Mitigation

Engine

A
la

rm
s

C
o

m
m

an
d

s

Figure 1. SLHM architecture.

components using a modeling environment, which includes
a domain specific modeling language and associated tools.

Component Execution and Failure Scenarios: A soft-
ware component can be in one of the following three states:
active, inactive and semi-active. When a component is
in the inactive state, none of the ports of the component
are operational. The active state of a component is the
exact opposite of the inactive, and all the component ports
are operational. In a semi-active state, only the consumer
and receptacle ports of a component are operational, the
publisher and provided ports are disabled. While the com-
ponent is executing , i.e., it is in the active or semi-active
state, the code in the component ports can introduce faults
in the system, which can lead to anomalies in either the
same component or in a connected component. We consider
two root failure sources for each component port (a) a
concurrency fault that is indicated by a timeout event in
the act of obtaining the lock associated with the component,
(b) or a latent bug in the code written by the developer
to implement the operation associated with the port. Every
component has a lock to ensure that at any given time at
most one thread is active in the component.

Example: Figure 2 shows the assembly for a notional
GPS system with a redundant set of Sensor and GPS
components (Sensor2, GPS2). Deployment information is
not shown in this figure. Sensors publish an event every
4 sec for their associated GPS. The GPS consumes the
event published by its sensor at a periodic rate of 4 sec.
Afterwards, it publishes an event, which is sporadically
consumed by the Navigation Display. Thereafter, the display
component updates its location by using getGPSData facet
of the GPS Component. In the initial setup of the assembly,
the Sensor, GPS, and NavDisplay components are used
and hence set to be in active mode. The redundant sensor
and GPS (Sensor2 , GPS2) are not used. The GPS2 is set
to a semi-active mode, leaving the Sensor2 component in
active mode. This would allow the GPS2 to keep track of
the current state (by being in semi-active mode where the
GPS2’s consumers are active) but not affect NavDisplay.

Figure 2. GPS Software Assembly.

A. Health Management in ACM

Health Management in ACM happens at two levels. The
first level of protection is provided by a component level
health management (CLHM) strategy, which is implemented
in all components. It provides a localized timed state
machine with state transitions triggered either by a local
anomaly or by timeouts, and actions that perform the local
mitigation. The System Level Health Manager (SLHM) is
at the second, top level in our health management strategy.
The deployment of the SLHM requires the addition of three
special SLHM components to an ACM assembly: the Alarm
Aggregator, The Diagnosis Engine, and the Deliberative
Mitigation Engine, as shown in Figure 1.

The Alarm Aggregator is responsible for collecting and
aggregating inputs from the component level health man-
agers (local alarms and the corresponding mitigation ac-
tions). This information is collected using a moving window
two hyperperiods long. The events are sorted based on their
time of occurrence and then sent to the Diagnosis Engine.

The Diagnosis Engine hosts an instance of a Timed
Failure Propagation Graph reasoner engine. This engine is
initialized by a Timed Failure Propagation Graph (TFPG) [9]
model that captures the failure-modes, discrepancies (possi-
bly indicated by the alarms), and the failure propagations
from failure modes to discrepancies and from discrepancies
to other discrepancies, across the entire system [10], [11].
The reasoner uses this model to isolate the most plausible
fault source: a software component that could explain the
observations, i.e., the alarms triggered and the CLHM com-
mands issued. The result, i.e., the list of faulty components
is reported to the next component that provides the system
level mitigation: the Deliberative Engine, discussed in the
next section.

IV. DELIBERATIVE ENGINE

The mitigation engine in a system has to map the diag-
nosis results to a set of actions that remove the faults in the
system and restore the functionality. There are four basic
commands that can be sent to each component (a) RESET
: Instructs a component to Reset itself, (b) STOP : Instructs a
component to switch to inactive mode, (c) START: Instructs
a component to switch to active mode, and (d) REWIRE

Figure 3. Example of Functional Decomposition for an Inertial Measure-
ment Unit

Figure 4. Example showing allocation of the GPS position function shown
in Figure 3 to the components shown in assembly of Figure 1.

(ri,pc): Instructs a Component to rewire its receptacle In-
terface (ri) to connect to the appropriate facet interface in
another component (pc). In case of REWIRE, the appropriate
facet to be used is identified by the component which stores
a map of component to facet for every receptacle in the
component.

Our initial approach towards fault mitigation in SLHM
included a Reactive Mitigation Engine wherein the mitiga-
tion strategy was specified as a hand-crafted, timed state
machine model at design time. The updated fault status
of the components in the assembly was used to trigger
the SLHM state machine. For details on this mitigation
specification, please see [10], [11].

The new SLHM mitigation approach uses a Deliberative
Mitigation Engine which, like the reactive mitigation engine
receives the diagnosis results: the set of faulty components,
and responds with an appropriate system-level command to
mitigate the fault and its effects. The deliberative mitigation
approach relies on modeling the system goals as functions,
the functional dependency on other sub-functions and the
function-allocation model, i.e., the component group config-
urations that can provide the function (or sub-function). At
run-time, the deliberative engine searches through the space
of the function-allocation model to identify an alternate
configuration of healthy components that can restore the
functions (functionalities) affected by the faulty components.

In the timed-state machine approach, the modeler needs
to specify the specific mitigation strategy for each fault
(component) and/ or fault - combination (set of faulty com-
ponents). We realized that the state-machine based approach
(of modeling fault mitigation actions) is very tedious, error-
prone and gets extremely complicated as the number of
components and their fault combinations grow. In the current
SLHM Mitigation strategy using Deliberative Reasoner, the
reasoner builds a graph of the function allocation model

Table I
IsUsable SEMANTICS

Type Defintion
Component isUsable(c)⇔ ¬isFaulty(c)
AND-Group isUsable(g)⇔ (∀x ∈ child(g))(isUsable(x))
XOR-Group isUsable(g)⇔ (∃x ∈ child(g))(isUsable(x))
MofN-Group isUsable(g)⇔ (∃X ⊆ child(g))(|X| ≥M)

(∀x ∈ X)(isUsable(x))
Function isUsable(f)⇔ (∀x ∈ child(g))(isUsable(x))

Table II
isActive SEMANTICS.

Type Defintion
Component isActive(c) is marked by the deployment

scheme and any previous action of the reasoner
AND-Group isActive(g)⇔ (∀x ∈ child(g))(isActive(x))
XOR-Group isActive(g) ⇔ (∃x ∈

child(g))(isActive(x))(∀y ∈ child(g))(y 6=
x)(¬isActive(y))

MofN-Group isActive(g)⇔
(∃X ⊆ child(g))(|X| ≥
M)(∀x ∈ X)(isUsable(x))(∀y ∈
child(g)/X)(¬isUsable(y))

Function isActive(f)⇔ (∀x ∈ child(g))(isActive(x))

and the assembly model and searches this graph for an
appropriate mitigation action to restore the functionality. The
deliberative reasoning approach using the function allocation
model allows a better modeling scalability for faults and
fault combinations.

Modeling the Functional Decomposition of System:
During the design time, the system integrator enumerates
the system functions as a collection of simple AND trees.
That is, if F is the set of all immediate children of a
function node, fp, in the functional decomposition tree, then
isActive(fp) = (∀f ∈ F)(isActive(f)).

Example Model: Figure 3 shows the functional decom-
position of portions of an Inertial Measurement Unit. The
Inertial Position function requires the GPSPosition function
and the BodyAccelerationMeasurement function. In the run-
ning system one or more such function trees can be active.
Additionally, a lower level function may be required in
multiple trees.

Modeling the Functional Allocation: A function at any
level of the functional decomposition directed acyclic graph
can depend on other child functions and can depend upon the
availability of a set of components at that level. The set of
components related to a function can be hierarchically orga-
nized into groups. There are three kinds of groups: (a)AND
of some components (all), (b) XOR of some components
(exactly one of N), and (c) MofN of some components (at
least M out of N components.). Note that both XOR and
MofN groups are used to model redundancy.

Once specified, the functional allocation tree has the
function at the root, groups as intermediate nodes
and components as the leaf nodes. Components have
two attributes in this tree: isFaulty and isActive. While
isFaulty is determined based on the diagnoser output,

Procedure 1 Driver - RunDR
1: CLEAR LIST GRC, GRN.
2: for component c ∈ DR do
3: MarkAsFaulty(c)
4: end for
5: RunReconfig();
6: return GRC; {set of possible reconfig commands}

isActive is determined by the initial configuration. The
deliberative reasoning process could result in marking a
component (healthy or faulty) to be inactive , i.e., setting
isActive = false. This results in sending a STOP command
to the component. When a component is not faulty it is con-
sidered to be usable , i.e., isUsable(c) =⇒ ¬isFaulty(c).

Usable attribute for the groups can be set based on the
immediate child groups and child components. An AND
group is usable if and only if all its children are usable. A
XOR group is usable if any one of the children is usable. A
MofN group is usable if at least M children are usable. These
rules are summarized in Table I. Note in the table g means
group, c means component. Operator parent(x) returns the
set of all immediate parents of x in the function allocation
Directed Acyclic Graph (DAG). Operator child(x) returns
the set of immediate children of x, and |.| is the cardinality
operator.

Similarly isActive(c) can be evaluated from leaf to the
root of the function allocation tree. A root function in this
tree is usable if all its immediate groups are usable. It
is active if all its immediate groups are active. Table II
summarizes all the rules. Note that due to the maximal
nature of the isActive(c) definition for MofN group, any
reconfiguration action that requires turning a MofN group
active requires to turn all its usable children active.

Example Function Allocation Model: Figure 4 shows
the allocation diagram for one of the functions in figure
components shown in Figure 3 using the components in the
assembly depicted in Figure 2. The model indicates that
the GPS Function can be provided by an M of N (1 of
2) Group. It requires the services of at least one of the
two AND Groups (Group2 or Group3). The AND groups
in turn require the services of all of their child nodes (here
components).

A. Search and Reconfiguration Algorithms

During run-time, the deliberative engine is seeded with
the functional allocation model translated into a XML form
and the initial configuration of the system components.
Internally, it maintains three lists: (a) Global List GFC: set of
components that have been diagnosed as faulty, (b) Global
List GRC: set of possible reconfiguration commands, and
(c) Global List GRN: set of possible reconfiguration nodes.

Furthermore, the deliberative engine assigns an index to
each node in the functional allocation graphs. All leaves
are assigned index 0. Any other node has a level Number

Procedure 2 Mark as faulty
Input: Faulty Component c
Given: RN is an empty set.

1: if c ∈ GFC then
2: return
3: end if
4: c.isFaulty=true
5: c.isUsable=false
6: GFC.add(c)
7: RN = visitParent(c)
8: if isempty(RN) then
9: output-command = RESET(c)

10: else
11: output-command=STOP(c)
12: GRN.add(RN)
13: end if
14: GRC.add(output-command)

that is Max(Level-Index of its children) +1. This Level-
Index is used to sort the elements in GRN (the Possible-
Reconfig Nodes) based on the graph topology. During the
reconfiguration search, the elements in GRN are explored for
reconfiguration in the increasing order of Level-Index , i.e.,
the reconfigurable nodes closest to the source is explored
first.

Each time the deliberative reasoner is invoked, it receives
an input list DR of components diagnosed as faulty. It
invokes the steps detailed in Procedure 1. The deliberative
reasoner uses the Procedure 2 to mark the faulty component
in the functional allocation graphs. This algorithm does
nothing if the component is already faulty. Otherwise, it
marks it as faulty and invokes the visitParent Procedure 3.
If the visitParent Procedure returns a possible reconfigura-
tion node, then it records a command to STOP the faulty
component. Otherwise, it records a command to RESET the
faulty component. The reconfiguration node is added to the
GRN, the command is added to the GRC.

The visitParent Procedure 3 is used to visit a parent
node of the current node in the function allocation graph.
It evaluates the IsUsable property for each parent node.
If a parent node is still usable, then it returns the node
as reconfiguration node. Otherwise, it recursively invokes
VisitParent on the parent node. Note that each group has
only one parent group or one or more function parent node.

Once the reconfiguration node, i.e., the node in the allo-
cation tree where the change has to take place is identified,
the Run Reconfig Procedure 4 is invoked to compute the
reconfiguration that would restore the functionality. This
algorithm loops through each node that is stored in the
GRNlist. It invokes the Reconfig Procedure 5 on each node,
which returns true if an alternative exists, else it returns false.
It also invokes the ReconfigStop Procedure 6 on those child
nodes that need to be stopped as they are no longer usable.
Components that are marked as active but do not belong to
any active parent group are commanded to be stopped. As
a last step, it checks if any of the receptacles need to be

Procedure 3 visitParent
Input: Node N
Output: Set of Reconfig Node RN

1: P = parent(N)
2: for p ∈ P do
3: if isUsable(p) then
4: RN.add(p) {add a usable node to possible reconfig nodes}

5: return RN
6: else
7: if p ∈ GRN then
8: GRN.remove(p)
9: end if

10: return visitParent(p)
11: end if
12: end for
13: return 0

Procedure 4 RunReconfig
1: for n ∈ GRN do
2: Result= Reconfig(n)
3: if Result then
4: CN = child(N) {set of children}
5: for ch∈ CN do
6: if ¬isUsable(ch) ∧ isActive(ch) then
7: ReconfigStop(ch)
8: end if
9: end for

10: end if
11: end for
12: Check for Rewiring

rewired to a facet on a newly activated provider component.
This step of rewiring is required if any component servicing
a facet has been stopped in the current reconfiguration.

B. Example Reconfiguration

Consider the assembly captured in Figure 2. Initially Sen-
sor, GPS, NavDisplay components are active. Sensor2 is also
active. But, GPS2 is semi-active. Thus, GPS2 consumes data
from the Sensor2 but does not publish data to NavDisplay.
At this time, the Global List of Fault Candidates GFC is
initialized as an empty list. The deliberative engine records
the initial states of the component and identifies if the
currently active functionality shown in fig 4 is satisfied or
not.

The Deliberative Engine is invoked if there is any fault
diagnosis reported by the Diagnosis Engine component.
Consider that GPS component is reported faulty. This will
lead to the invocation of the MarkAsFaulty Procedure 2,
causing GPS to be set as faulty and unusable. When the
VisitParent Procedure 3 is invoked, the parent group of
GPS (And Group2) will be marked as unusable because it
requires all children to be usable. A recursive call to the
same Procedure will identify that the MofN Group 1 is still
usable because at least 1 of the 2 AND groups, Group 3
is still usable. At the end of these two Procedures, Group1
will be added to the GRN and a command to stop the GPS

Procedure 5 Reconfig
Input: Node N

1: if isUsable(N) then
2: if N.type() ==COMPONENT ¬isActive(N) then
3: N.isActive= true
4: Output-Command = START(N)
5: GRC.add(Output-Command)
6: end if
7: if N.type() ==MofNGROUP then
8: CN=child(N)
9: for x ∈ CN do

10: Reconfig(x)
11: end for
12: N.isActive= true
13: end if
14: if N.type() ==ANDGROUP then
15: if isUsable(N) then
16: CN=child(N)
17: for x ∈ CN do
18: Reconfig(x)
19: end for
20: N.isActive= true
21: end if
22: if N.type() ==XORGROUP then
23: CN=child(N)
24: for x ∈ CN do
25: if isUsable(x) then
26: Reconfig(x)
27: for y ∈ CN and y 6= x do
28: if isActive (y) then
29: ReconfigStop(y)
30: end if
31: end for
32: N.isActive= true
33: return {It will return as soon as the first is

usable child is found}
34: end if
35: end for
36: end if
37: end if
38: return
39: end if

component will be added to the GRC.

Once the reconfigurable nodes are identified, RunReconfig
Procedure 4 will be invoked to identify the exact reconfigu-
ration commands to restore the functionality. The Reconfig
Procedure 5 will be performed on Group 1 which is of
type MofN. This will result in iterative invocation of the
Reconfig Procedure 5 on Group2 and Group3. While nothing
will happen in the context of Group2 as it is no longer
usable, Reconfig step will be invoked on Group3’s children:
Sensor2 and GPS2. Commands to START GPS2 component
will be added to the Global Reconfig Command (GRC)
list. The RunReconfig Procedure 4 will invoke ReconfigStop
Procedure 6 on the other AND group (Group2) that will
result in the GRC list being updated with a stop command
for the Sensor component. An additional check will be
performed to see if any receptacle ports need to be rewired.
This results in the rewire of the receptacle in NavDisplay to

Procedure 6 ReconfigStop
Input: Node N

1: if N.type() 6= COMPONENT then
2: N.isActive=false
3: CN=child(N)
4: for x ∈ CN do
5: ReconfigStop(x)
6: end for
7: end if
8: if N.type() == COMPONENT then
9: PN=parent(N)

10: deactivate= true
11: for x ∈ PN do
12: if isActive(x) then
13: deactivate = false
14: BREAK
15: end if
16: end for
17: if deactivate then
18: output-command=STOP(N) {Deactivate a component,

when none of its parents are active}
19: GRC.add(output-command)
20: end if
21: end if

use the facet in GPS2. Note the details of this check have
not been included in the paper due to space constraints.

C. Limitation
The algorithm described above suffers from a limitation

exposed by the XOR group. The XOR group dictates that
one and only one component associated with that group is
active at any time. This condition associated with the XOR
group could be violated in the algorithm described above. If
one or more components appeared under an XOR group as
well as in other branches of the function allocation model,
the algorithm does not ensure that the XOR conditions are
honored. Currently, we impose a restriction that a component
featured under an XOR group may not feature elsewhere in
the function allocation model.

V. CONCLUSION

This paper discusses our approach towards restoring the
health of a software system based on identifying the alterna-
tive component configurations using the function-allocation
model for the system. We described the design language for
modeling the function allocation, the algorithm employed
to update the usable branches of the function allocation
model based on the fault report from the diagnosis engine
and identify suitable component reconfigurations that can
restore the function. An example was described to illustrate
the function allocation design and the algorithm. In order
to relax the restrictions associated with function allocation
model, we are exploring other approaches such as using a
SAT solver to identify alternate configurations.

Acknowledgement
This paper is based upon work supported by NASA

under award NNX08AY49A. Any opinions, findings, and

conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the
views of the National Aeronautics and Space Administration.
Authors would like to thank Dr Paul Miner, Eric Cooper, and
Suzette Person of NASA LaRC for their help and guidance
on the project.

REFERENCES

[1] Michael R. Lyu. Software Fault Tolerance, volume New York,
NY, USA. John Wiley & Sons, Inc, 1995.

[2] Wilfredo Torres-Pomales. Software fault tolerance: A tutorial.
Technical report, NASA, 2000.

[3] R.W. Butler. A primer on architectural level fault tolerance.
Technical report, NASA Scientific and Technical Information
(STI) Program Office, Report No. NASA/TM-2008-215108,
2008.

[4] S. Ofsthun. Integrated vehicle health management for
aerospace platforms. Instrumentation Measurement Maga-
zine, IEEE, 5(3):21 – 24, September 2002.

[5] S.B. Johnson, T. Gormley, S. Kessler, C. Mott, A. Patterson-
Hine, K. Reichard, and P. Scandura Jr. System Health
Management: With Aerospace Applications. John Wiley &
Sons, Inc, 2011.

[6] Ashok Srivastava and Johann Schumann. The Case for
Software Health Management. In Fourth IEEE International
Conference on Space Mission Challenges for Information
Technology, 2011. SMC-IT 2011., pages 3–9, August 2011.

[7] Abhishek Dubey, Gabor Karsai, and Nagabhushan Mahade-
van. A component model for hard real-time systems: CCM
with ARINC-653. Software: Practice and Experience,
41(12):1517–1550, 2011.

[8] Nanbor Wang, Douglas C. Schmidt, and Carlos O’Ryan.
Overview of the CORBA component model. Component-
based software engineering: putting the pieces together, pages
557–571, 2001.

[9] S. Abdelwahed, G. Karsai, N. Mahadevan, and S. C. Ofsthun.
Practical considerations in systems diagnosis using timed
failure propagation graph models. Instrumentation and Mea-
surement, IEEE Transactions on, 58(2):240–247, February
2009.

[10] Abhishek Dubey, Gabor Karsai, and Nagabhushan Mahade-
van. Model-based Software Health Management for Real-
Time Systems. In Aerospace Conference, 2011 IEEE, pages
1–18. IEEE, 2011.

[11] Nagabhushan Mahadevan, Abhishek Dubey, and Gabor Kar-
sai. Application of software health management techniques.
In Proceedings of the 2011 ICSE Workshop on Software En-
gineering for Adaptive and Self-Managing Systems, SEAMS
’11, New York, NY, USA, 2011. ACM, ACM.

[12] Betty H Cheng. Software engineering for self-adaptive
systems. chapter Software Engineering for Self-Adaptive
Systems: A Research Roadmap, pages 1–26. Springer-Verlag,
Berlin, Heidelberg, 2009.

[13] Matthias Rohr, Marko Boskovic, Simon Giesecke, and Wil-
helm Hasselbring. Model-driven development of self-
managing software systems. In Proceedings of the Workshop
“Models@run.time” at the 9th International Conference on
model Driven Engineering Languages and Systems (MoD-
ELS/UML’06), 2006.

[14] David Garlan, Shang-Wen Cheng, and Bradley Schmerl.
Architecting dependable systems. chapter Increasing system
dependability through architecture-based self-repair, pages
61–89. Springer-Verlag, Berlin, Heidelberg, 2003.

[15] Eric M. Dashofy, Andre van der Hoek, and Richard N.
Taylor. Towards architecture-based self-healing systems. In
WOSS ’02: Proceedings of the first workshop on Self-healing
systems, pages 21–26, New York, NY, USA, 2002. ACM
Press.

[16] Ji Zhang and Betty H. C. Cheng. Model-based development
of dynamically adaptive software. In ICSE ’06: Proceeding
of the 28th international conference on Software engineering,
pages 371–380, New York, NY, USA, 2006. ACM.

[17] Paul Robertson and Brian Williams. Automatic recovery from
software failure. Commun. ACM, 49(3):41–47, 2006.

[18] B.C. Williams, B.C. Williams, M.D. Ingham, S.H. Chung,
and P.H. Elliott. Model-based programming of intelligent
embedded systems and robotic space explorers. Proceedings
of the IEEE, 91(1):212–237, 2003.

[19] Brian C. Williams, Michel Ingham, Seung Chung, Paul El-
liott, Michael Hofbaur, and Gregory T. Sullivan. Model-based
programming of fault-aware systems. AI Magazine, 24(4):61–
75, 2004.

[20] Michael R. Lyu. Software reliability engineering: A roadmap.
In 2007 Future of Software Engineering, FOSE ’07, pages
153–170, Washington, DC, USA, 2007. IEEE Computer
Society.

[21] Laura L. Pullum. Software fault tolerance techniques and
implementation. Artech House, Inc., Norwood, MA, USA,
2001.

[22] ARINC specification 653-2: Avionics application software
standard interface part 1 - required services. Technical report.

