
Performance Modeling of Distributed Multi-Tier Enterprise
Systems

Abhishek Dubey
Institute for Software
Integrated Systems
Vanderbilt University

Nashville, TN

Rajat Mehrotra
Electrical and Computer

Engineering
Mississippi State University

Mississippi State, MS

Sherif Abdelwahed
Electrical and Computer

Engineering
Mississippi State University

Mississippi State, MS

Asser Tantawi
IBM TJ Watson

Research Center
Hawthorne, NY

1. INTRODUCTION
Management techniques for achieving self-adaptive behav-

ior in enterprise computing systems has been recently inves-
tigated by both academia and industry. Primarily, these
techniques observe application measurements and take cor-
rective action, based on a given model, to achieve a speci-
fied Quality of Service (QoS). Examples of such approaches
include task scheduling, CPU provisioning [1], and power
management [2].

Effective management of enterprise systems require fine-
grained decisions that balance various, often conflicting, ser-
vice level agreements while adjusting to changes in the op-
erating environment, caused by factors such as time-varying
user workload and incomplete knowledge of the system op-
erating state. Such decisions, affect how an application be-
haves under different workload intensities [3]. Over time,
they influence system reliability, energy efficiency and cus-
tomer experience. These decisions are implemented through
a control system, requiring a detailed model of the system
that reflects how various management choices affect the sys-
tem behavior under varying environment inputs and oper-
ating conditions. An example of such a model is the layered
queuing model presented in [4].

In this paper, we present the results of recent experiments
aiming to model a distributed multi-tier enterprise applica-
tion. Using dynamic regression and queuing modeling tech-
niques, we have been able to obtain an approximate model
structure that captures the system behavior under various
operation conditions with a high degree of accuracy. In fu-
ture, these models will be used to implement a distributed
control structure that optimizes the system parameters for
a given set of objectives [5].

This paper is organized as follows. Section 2 discusses the
experimental setup. Section 3 discusses the performance
management objectives, and discusses our experiments and
modeling efforts. Section 4 concludes this paper.

2. EXPERIMENTAL SETUP
Computing Resources: Our experimental testbed con-

sists of three heterogeneous nodes (machines) called Nop01,
Nop02 and Nop03. Nop01 has 2 quad-core 1.9 GHz CPU
with 8 GB of RAM. Nop02 has 1 quad-core 2 GHz CPU
with 4 GB of RAM. Nop03 has 2 quad-core 2 GHz CPU
with 8 GB of RAM. We use the open source version of IBM’s
J2EE middleware, Web sphere Application Server Commu-
nity Edition (WASCE) with MySQL for deploying enter-
prise applications. Xen hypervisor (http://www.xen.org/)
was used to create and manage the resources available to

a cluster of virtual machines (VMs) over the given physi-
cal machines. It allows us to control the number of virtual
machines and corresponding resource budgets.

Enterprise Application: As a representative applica-
tion, we have chosen to use Daytrader -a benchmark ap-
plication used to measure the performance of multi-tier in-
stallations. It allows users to monitor their stock portfolio,
inquire about stock quotes, and buy or sell stock shares. The
source code also comes with a client application that drives
a session-less trade scenario and measures the response time.
We have modified this scenario servlet in order to shift some
of the processing load of a request from the database node
to the computing node. This was done to emulate a mix of
business enterprise loads.

The daytrader application was deployed across multiple
instances of WASCE running on different virtual machines.
Multiple instances of the same application across different
machines (physical or virtual) are collectively called a Clus-
ter. All instances belonging to the same cluster share a
common instance of MySQL server running on a separate
virtual machine. All instances receive a fraction of the in-
coming client requests to perform load balancing. Several
service classes can be implemented using Daytrader with
minor changes to the source code. The differences between
such classes are based on different quality of service expected
for each of them.

Clients: Customer request were generated using a mod-
ified version of day trader client. This modification allowed
us to generate exponentially distributed workload requests
with request rate per sample specified as a look up table.

3. PERFORMANCE MODELING
Multi-tier applications are typically required to achieve

a set of objectives while adjusting to changes in their op-
erating environment. Effective operation of such systems
depends directly on available resources, the configuration of
computation platform, and the characteristics of the under-
lying operating environment. The current modeling effort
aims to address the following performance management ob-
jectives.
Cluster Allocation. The objective is to determine (i) the
number of instances of the application that should be in the
cluster, (ii) determine the placement of all cluster instances
on the machines, (iii) determine the budget of computing
resources that can be consumed by a cluster instance (de-
ployed in a virtual machine) such that response time service
level agreement is satisfied. The last two items are controlled
using a hypervisor such as Xen.



(a) Generated requests and the corre-
sponding server throughput

(b) Aggregate CPU utilization (c) Response time in seconds

Figure 1: Experiment 1. Sampling period=30 seconds.

Load Balancing. Determine the share of the requests
served by any one of the application instance in a cluster
such that the load across all instances remains uniform. This
is required to ensure small variation in total response times.
Power Management. Determine the set of machines that
can be either turned off or set to low power mode to ensure
that the data center meets the stipulated power budgets.

3.1 Quality of Service Modeling
We have collected several experimental data in order to

develop performance models that will allow us to predict the
response time for a service class, given the request rate and
the cluster allocation map. During these experiments, sen-
sors across computing nodes were kept synchronized using
a feedback technique described in [6].

Experiment 1: In this experiment, we setup the web-
server on virtual machine Nop04 (physical machine Nop01).
The database was setup on another virtual machine Nop05
(physical machine Nop02). Xen enables us to monitor the
resource utilization of both virtual machines in run time.
It also allows us to limit the resources available to these
machines. Using Xen, we limited the maximum memory
available to both virtual machines to 1000MB and limited
their maximum CPU share to 25 percent of a single physical
core.

Fig. 1(a) shows the generated client request rate. The av-
erage response time and average request rate was measured
over a sample of 30 seconds duration. This trace is based
on the customer request traces from the 1998 World Cup
Soccer web site [7]. Fig. 1(b) shows the corresponding CPU
utilization as measured on respective VM and physical ma-
chines. The corresponding response times are shown in 1(c).
Visually, we can see the correlation between the request rate
and response time.

3.1.1 Estimating the bottleneck tier

Figure 2: A queuing model for the two tier system

To determine the bottleneck resource, we used an open
queuing approximation for a two tier system as shown in
Fig. 2. λ is the incoming throughput of requests to an ap-
plication. ρ is the utilization of the bottleneck resource. S is
the average service time on the bottleneck resource. D is the

Figure 3: Estimated service and delay (msec) with
variance estimate for CPU as the bottleneck.

average delay. T is the average response time of a request.
Average waiting time for a request W = T − S − D. We
took two different approaches for identifying the bottleneck
resource for the experiment described in previous section. In
the first case, we used a M/M/1 model with the assumption
that CPU on the web server is the bottleneck resource. In
the second case, we used a M/G/1 model with no assump-
tion about the bottleneck resource. For both approaches, we
aggregated eight data samples into one data point to smooth
out the spikes in the data.

CPU bottleneck: We used a M/M/1 queue model for
nop04 (webserver) CPU as the bottleneck resource with ser-
vice time (S) and a non-CPU delay (D). Thus, our state
vector is [S D]. The observation vector is [T ρ]. For a given

timed index of observation, k, the equations

(
Ŝk
D̂k

)
=(

Sk−1

Dk−1

)
+ Z(0, Q) and

(
Tk
ρk

)
=

(
1

1
Sk

−λk
+Dk

λkSk

)
+

V (0, R) were used as the prediction and correction steps for
an Extended Kalman Filter. Z, V are Gaussian noises with
mean zero and covariances Q and R respectively.

Results shown in Fig. 3 indicate that the assumption of
CPU being the bottleneck resource is invalid. This is be-
cause given a CPU utilization, the service time should have
been in the range of 15 to 20 msec. Given that the CPU
utilization was lightly loaded (between 10% and 30%), the
waiting time was small and therefore did not capture the
strong relationship between the average response time and
the throughput. Hence, the delay estimate collected the re-



Figure 4: Estimated service and delay (msec) with variance estimate for the unknown bottleneck.

mainder of the response time (delay = response time - (ser-
vice time + waiting time)). The delay estimate D varied
quite a bit and had a high variance.

Unknown Bottleneck: We used a M/G/1 queue model
assuming an unknown and not necessarily the CPU bottle-
neck. Our state vector was [S D]. The observation vector
was the average response time, T . We assumed a coefficient
of variation for the service time equal to 5. The predict
equation for the extended Kalman filter was still the same
as in the previous paragraph. However, the update equation

was changed to T = S(1 +
1+C2

b
2(1−ρ)ρ) + D + V (0, R), where

Cb is the coefficient of variation for service time. Fig. 4
shows the results. The estimate of service time looks more
promising compare to the previous results. The bottleneck
utilization was estimated to be in the range of 15% to 60 %.
Upon further investigation, the maximum number of threads
available in the JAVA web server seems to be a likely can-
didate for being the bottleneck resource.

3.1.2 Modeling Power Consumption

Figure 5: Power consumption on Nop03 vs CPU
frequency and the no. of cores at 100% utilization.

We used a real-time watt meter to monitor the power
usage through the servers, and to identify the relationship
between power consumption and CPU core usage as well
as CPU frequency. Fig. 5 shows the power used on one of
the nodes, Nop03 (see Section 2). Based on such experi-
ments we developed a regression model that correlates the
load on the machine with the power consumed and current
CPU frequency. The corresponding regression models are

power = a+b∗numcore+c∗freq and a+b∗numcore∗freq,
with R2 equal 0.91 and 0.92, respectively.

4. FUTURE WORK AND DISCUSSION
In this paper, we presented an approach for performance

modeling of multi-tier enterprise applications using regres-
sion analysis of system measurements corresponding to a
discretized domain of operating settings. This approach was
demonstrated on a two-tier benchmark enterprise applica-
tion. Experimental results shows that the generated models
can accurately predict system behavior and accordingly can
support a variety of model-based management techniques.

We are currently investigating the use of limited processor
sharing (LPS) queues [8] for modeling web servers. In an
LPS model, the server is shared equally by the jobs in service
subjected to maximum limit on the number of jobs that can
be in the system at a time. In future, we will integrate this
system with a limited lookahead control framework [5] that
can optimize the system parameters for the set of objectives
specified in section 3.

Acknowledgment This work is supported in part by the
NSF SOD Program, contact number CNS-0804230.

5. REFERENCES
[1] Chenyang Lu et al. Feedback control real-time scheduling:

Framework, modeling and algorithms. Journal of Real-Time
Systems, 23(1/2):85–126, 2002.

[2] T. Simunic and S. Boyd. Managing power consumption in
networks on chips. In Proc. Design, Automation, & Test
Europe (DATE), pages 110–116, 2002.

[3] J. Wildstrom et al. Towards self-configuring hardware for
distributed computing systems. In Proc. ICAC, 2005.

[4] Yixin Diao et al. Modeling differentiated services of
multi-tier web applications. In MASCOTS ’06: Proceedings,
pages 314–326, 2006.

[5] S. Abdelwahed et al. Online control for self-management in
computing systems. In Proc. RTAS, pages 365–375, 2004.

[6] Compensating for timing jitter in computing systems with
general-purpose operating systems. In ISROC, 2009.

[7] M. Arlitt and T. Jin. Workload characterization of the 1998
world cup web site. Technical Report HPL-99-35R1,
Hewlett-Packard Labs, September 1999.

[8] Jiheng Zhang and Bert Zwart. Steady state approximations
of limited processor sharing queues in heavy traffic.
Queueing Syst. Theory Appl., 60(3-4):227–246, 2008.


	Introduction
	Experimental Setup
	Performance Modeling
	Quality of Service Modeling
	Estimating the bottleneck tier
	Modeling Power Consumption


	Future work and discussion
	References

