
Institute for Software Integrated Systems
Vanderbilt University

Nashville, Tennessee, 37203

Model Identification for Performance Management of
Distributed Enterprise Systems

Rajat Mehrotra Abhishek Dubey
Electrical and Computer Engineering Institute for Software Integrated Systems

Mississippi State University, Miss. State, MS Vanderbilt University, Nashville, TN

Sherif Abdelwahed Asser Tantawi
Electrical and Computer Engineering IBM TJ Watson Research Center

Mississippi State University, Miss. State, MS Hawthorne, NY

TECHNICAL REPORT

ISIS-10-104

April, 2010

Abstract

Model-based techniques have been explored recently by researchers aiming to develop effective autonomic management
techniques for multi-tier enterprise systems under uncertain and dynamic operating conditions. The general aim is to minimize
operational costs while maximizing a multidimensional QoS metric that typically includes service related factors such as response
time, throughput, and reliability. In this paper we present a systematic approach to develop accurate models for distributed multi-
tier enterprise systems. The proposed approach first identifies the system parameters through extensive experimentation and then
defines the relationship among these parameters and identifies the underlying model structure of the system using regression
methods and bayesian estimation techniques. The developed model can then be used in various model-based autonomic
management structures used for performance control, fault adaptation, and security management. In this techincal report,
we demonstrate the effectiveness of our approach by using a predictive controller to reduce power consumption of a multi-tier
enterprise system and still achieve a good response time. 1

1This technical report extends our work published earlier in [1].

Model Identification for Performance Management of Distributed Enterprise
Systems

Rajat Mehrotra
Electrical and Computer Engineering

Mississippi State University, Miss. State, MS

Abhishek Dubey
Institute for Software Integrated Systems

Vanderbilt University, Nashville, TN

Sherif Abdelwahed
Electrical and Computer Engineering

Mississippi State University, Miss. State, MS

Asser Tantawi
IBM TJ Watson Research Center

Hawthorne, NY

I. INTRODUCTION

Distributed enterprise systems are typically comprised of
several data processing and management components such as
HTTP servers, application servers, Web service applications,
and database management systems. There is tremendous
increase in usage of this architecture for hosting e-commerce,
social networking, internet search, and information broadcast
applications. Additionally, these enterprise systems are cur-
rently used for hosting cloud computing web services (e.g.,
Amazon EC2 [2] and Google Apps[3]). Increased usage of
this architecture leads to increased demand for application
availability, reliability, QoS guarantee, and reduced operation
risk in their typical dynamic and uncertain environment.
To achieve effective management in such operating condi-
tions, expert administrator knowledge is needed to identify
workload pattern, system behavior, capacity planning, and
resource allocation. However, with increasing size and com-
plexity of these systems, effective administration is not only
tedious but also error-prone and in some cases infeasible.
Absence of an efficient management technique will lead to
poor performance and outage of these services which can
result in significant revenue losses.

There has been widespread interest in the research com-
munity to make enterprise systems self-managing i.e. man-
aged autonomically without any human intervention using
high level Quality of Service (QoS) parameters provided
by system engineers and administrators. Such autonomic
systems should be able to change the operating parameters
automatically with respect to changes in environment without
manual intervention. IBM’s Autonomic Computing [4],
Microsoft’s Dynamic Systems [5], and HP’s Adaptive In-
frastructure [6] are some examples of ongoing industry
efforts to realize next generation self-managing systems.

Model-based techniques have been investigated by both
academia and industry to build such systems through en-
abling adaptive behavior in distributed systems and appli-
cations. These techniques observe the current application
measurements and take corrective action, based on a given
model, to achieve a specified system requirements (QoS).

They have been successfully applied to problems such as task
scheduling [7], bandwidth allocation and QoS adaptation in
web servers [8], load balancing in e-mail and file servers [9],
and CPU provisioning [10]. To develop these models and to
derive self-management techniques, knowledge of relevant
system parameters, their dependencies, and constraints is
needed.

Contribution: In this report, we develop a systematic
modeling approach for distributed multi-tier enterprise sys-
tems and present the experimentation steps and results under-
lying the modeling approach. The developed model captures
the system behavior in varying environmental conditions
with high accuracy. The proposed approach starts by iden-
tifying the system parameters impacting the performance of
the system, and then defining the dependency relationship be-
tween these parameters and using this relationship to develop
the model structure of the system using dynamic regression
and Bayesian techniques. Finally, we present the results of
using this model with a predictive control framework aimed
to optimize the system QoS.

Outline: This technical report is organized as follows. Re-
lated works are presented in Section II. Preliminary concepts
of our approach are presented in Section III, and experiment
setup is described in Section IV. System parameters are de-
fined in Section V and the proposed approach of performance
modeling is outlined in Section VI. Experimental efforts
for system model development and performance verification
through a predictive controller are described in section VII
and VIII, while conclusions are presented in Section IX.

II. RELATED WORKS

A feedback Control real time scheduling (FCS) framework
has been developed [11] to manage an adaptive real time
system. The proposed approach applies different load profiles
(ramp and step) with closed loop control methodology to
derive a system model and then to design a FCS algorithm
that achieves a given performance specification. Results
of this study show robust and steady state performance
guarantee even under 100% variation in estimated execution
time for both periodic and aperiodic tasks.

In [12], power consumption was managed in Network of
Chips (NOCs) using a closed loop control structure. In this
study, model approximation and lookahead techniques are
employed to predict the arrival rate of requests in a chip
network and change the states (active, idle, and sleep) of
chips based on this prediction. Results show that a significant
power saving can be achieved with minimal increase in
hardware area for implementation of local controller.

Another approach for system level power management
in event driven computation system is introduced in [13],
where system states are defined in terms of the underlying
process states. The paper proposes shutdown method in
computing systems based on prediction for upcoming idle
period. It introduces two methods; prediction miss correction
and pre-wakeup mechanism. These schemes primarily work
for reducing the delay overhead for switching on and off of
the system which results in minimum power overhead with
low delay penalties.

A recent study [14] describes certain systems that can learn
their best configuration with respect to CPU and memory
shares for a given workload, using machine learning tech-
niques. It discusses dynamic reconfiguration of hardware,
CPU, and memory in response to workload changes. As
a result, it derives four set of rules to determine the best
configuration for the system with respect to changing system
workload.

An approximate layered queuing model of a multi-tier web
application system is described in [15] to show the service
dependencies while serving a request among multiple tiers. It
shows the per-tier concurrency limits and resource contention
with help of function approximation method with coupled
processor model. Result of this model shows that it captures
the inter-tier relationship in a multi-tier system with high
precision.

An online autonomic performance management frame-
work for DCS cluster is presented in [16] to achieve pre-
defined QoS parameters in terms of minimum power con-
sumption with desired response time. The proposed approach
describes a hierarchical control based framework to manage
the DCS cluster against the high level system goals by con-
tinuous observation of the underlying system performance.
Additionally, the proposed approach is scalable and highly
adaptive even in case of time varying dynamic workload
patterns.

The goal of this report is to develop a systematic modeling
approach for distributed multi-tier web enterprise system
that uses regression and Bayesian techniques for estimating
the state of a system modeled using concepts learned from
queuing theory. This technical report is an extension of
our earlier work described in [1] by accurately modeling
the multi-tier system behavior with respect to performance
variables and to integrate the system model with a feedback
based predictive controller framework to dynamically change
the system parameters to achieve multi-dimensional QoS
parameters.

III. PRELIMINARY CONCEPTS

This section introduces the multi-layered queuing model
implemented in this paper and the Kalman filter used to pre-
dict the parameters of the system model. We also introduce
the control structure underlying our approach for designing
model-based self-managing enterprise systems.

A. Queuing Models for Multi-Tier Systems

Multi-tier enterprise systems are composed of various
components that typically include web (http) servers, applica-
tion servers, and database servers. Each component performs
its function with respect to web requests and forwards the
result to the next component (tier). Generally, system admin-
istrators limit the number of concurrent requests served at
each tier that is called “concurrency limit” for that particular
tier [15].

Normally, a web request has to wait in a queue for com-
putational resources before it can enter a tier. For example, if
the number of maximum threads allowed in the application
(app) server is capped to limit concurrency, a new request
will wait until the old requests releases a thread. Clearly, the
total service time of the enterprise system is directly affected
by the queuing policy at each tier. Approximate queuing
model can be used to capture the behavior of such systems.
Thereafter, it can be used to measure the average number of
web requests in the queue and the average time spent there.
During the progression of this work, we have considered four
different queuing models. For a detailed description, readers
are referred to [17]. These are:

M/M/1: This is the most basic queuing model where both
service time and arrival time are exponentially distributed.

M/G/1: This is a first come first served (FCFS) system
where the nature or distribution of service time is unknown.
This is a more realistic model of web service behavior where
the service requests of two different request can vary.

M/G/U PS: This is the most realistic queuing model
for a system that has a limit on the maximum number of
concurrent jobs. However, once a job gets admitted, it shares
the computational resources with other jobs already in the
system. This limit is typically enforced on all web servers
and databases. Even in an operating system, the maximum
number of processes that can execute concurrently is capped.
(e.g. 32000 for Linux kernel 2.6). This type of system is
called Limited Processor Sharing(LPS) Queue. However,
closed form analysis for this type of system is difficult and
online prediction for response time and other variables can
become intractable.

M/G/∞ PS: This is a processor sharing (PS) queue with
unlimited capacity, where each web request will enter the
system as soon as it arrives. The distribution of inter-arrival
time between web requests is Markovian (exponential), while
service time distribution is general (any statistical distribu-
tion). The computational resource is shared equally by all the
jobs in a round-robin manner. The analysis of this system is
much easier compared to the LPS queue. In fact, the closed
form expression of this queue is same as that of the M/M/1
queue. The only catch is that this model can be used to

study a webserver realistically only if we can ensure that the
total number of requests in the system do not increase the
maximum concurrency limit. Thus, if the bottleneck resource
utilization is less than 1, we can use this queue to model web
servers.

B. Kalman Filters

Kalman filter [18] is an optimal recursive data process-
ing algorithm, which estimates the future states of linear
stochastic process in presence of measurement noises. This
filter is optimal in the sense that it minimizes the mean of
squared error between the predicted and actual value of the
state. It is typically used in a predict-and-update loop where
knowledge of the system, measurement device dynamics,
statistical description of system noise, and the current state
of the system is used to predict the next state estimate.
Then the available measurements and statistical description
of measurement noise is used to update the state estimate.

Two assumption are made before applying Kalman filter
for state estimation; first, system in consideration is described
by linear model, or if the system is non-linear, the system
model is linearized at the current state (extended Kalman
Filter), and second, the measurement and system noise
are Gaussian and white respectively. Whiteness indicates
that noise is not correlated with time and it has equal
impact on all operating modes. Due to simple approach
with optimal results, Kalman filter has been applied in wide
areas of engineering application including motion tracking,
radar vision, and navigation systems. Furthermore, recently
Kalman filter has been applied to provision CPU resources
in case of virtual machines hosting server applications [19].
In [19], the feedback controllers based on Kalman filter
continuously detect CPU utilization and update the allocation
correspondingly for estimated future workloads. Overall, an
average of 3% performance improvement in highly dynamic
workload conditions over a three-tier Rubis benchmark web
site deployed on a virtual Xen cluster was observed .

In this paper, we describe our implementation of an
exponential Kalman filter that we used to predict the com-
putational nature of the incident requests over webserver by
predicting the service time S and delay D of a request by
observing the current average response time of the incident
request and request arrival rate on the webserver. This filter
uses an M/G/1/∞ PS approximate queuing model as the
system state equation and considers variation in S and D
at previous approximation to estimate the S and D at next
sample time. This filter is exponential because it operates on
the exponential transformation of the system state variables.
This transformation allows us to enforce the ≥ 0 constraints
on the state variables. Such constraints are not possible in
typical Kalman filter implementations. Further details are
provided in Section VII-A.

C. Control-based Management of Enterprise Systems

Control theory concepts provide a powerful foundation
to address various resource management problems under
uncertain conditions and external disturbances. Recently,

Fig. 1. Elements of a General Control System

Control theoretic approaches have been successfully ap-
plied to selected resource management issues including task
scheduling [7], bandwidth allocation, QoS adaptation in web
servers [8], multi-tier websites [9], load balancing in e-mail
and file servers [9], and processor power management [10].
Control theory provides a systematic way to design an
automated and efficient resource management technique by
continuous observation of the system state, variation in the
environment input, and finite control inputs such that system
always operates in a safe and stable state region while
maintaining the QoS demands.

A typical control system consists of the components shown
in Fig. 1. Set Point is the desired state of the system
in consideration that a system tries to achieve during its
operation. Control Error is the difference between the
desired system set point and the measured output during
system operation. Control Inputs are the set of system
parameters, which are applied to the system dynamically
for changing the performance level of the system. The
Controller module takes observation of the measured output
and provides the optimal combination of different control
inputs to achieve the desired set point. Estimator module
estimates the unknown parameters for the system based upon
the previous history using statistical methods. Disturbance
Input can be considered as the environment input that affects
the system performance. Target system is the system in con-
sideration, while System Model is the mathematical model
of the system, which defines the relation between its input
and output variables. A Learning Module takes measured
output through the monitor and extracts information based on
the statistical methods. System State shows the relationship
between control/input variables and performance variables of
the system.

IV. EXPERIMENTAL SETUP

Our experimental setup consists of four physical nodes:
Nop01, Nop02, Nop03 and Nop10. Names Nop04 to Nop09
are reserved for the virtual machines. Table I summarizes
configuration of physical machines. Nop03 and Nop10 both
have Dynamic Voltage and Frequency Scaling (DVFS) capa-
bility that allows administrator to tune the complete physical

Name Cores Description RAM DVFS VMs
Nop01 8 2 Quad core 1.9GHz AMD Opteron 2347

HE
8GB No Nop04,Nop07 (Development Machines)

Nop02 4 2.0 GHz Intel Xeon E5405 processor 4GB No Nop05,Nop08 (Client Machines)
Nop03 8 2 Quad core 1.9GHz AMD Opteron 2350 8GB Yes Nop06,Nop09 (Application server)
Nop10 8 2 Quad core 1.9GHz AMD Opteron 2350z 8GB Yes Nop11,Nop12 (Database Server)

TABLE I
PHYSICAL MACHINE CONFIGURATION.

Control Variables State Variables Performance Variables
CPU Frequency CPU Utilization (Observable) Average Response Time
Cap on Virtual machine resources. Memory Utilization (Observable) Power consumption in Watts
Load distribution percentage (in a cluster) Service Time (Unobservable) %age of Errors

Queue waiting Time (Unobservable)
Number of Service Threads Queue Size on each server (Unobservable)
Number of Virtual Machines in Cluster Number of Live Threads (Observable)

Peak Threads available in a JAVA VM (Observable)

TABLE II
SYSTEM PARAMETERS.

node or its individual core for desired performance level.
We have used Xen Hypervisor (http://www.xen.org/)
and Linux version 2.6.18-92.el5xen to create and manage
physical resources (CPU and RAM) for cluster of Virtual
Machines (VMs) on these physical servers.

Table I also shows the virtual machines (VM) running
on all physical machines and the roles played by those
VMs. VM Nop06 and Nop09 are running over physical
host machine Nop03 while database server VMs Nop11 and
Nop12 are running on physical host Nop10. Application
server Nop06 is attached to the database server Nop12 and
Nop09 is attached to the Nop11. All VM run same version
of Linux. Client machines are used to generate request load.
Application servers run the open source version of IBM’s
J2EE middleware, Web Sphere Application Server Commu-
nity Edition (WASCE). Database machines run MySQL.

Example Application: We used Daytrader, an open
source benchmark application developed to compare and
measure the performance of multi-tier J2EE web servers
in industry, as our web application. Daytrader is available
as open source application with WASCE. It drives a trade
scenario that allows users to monitor their stock portfolio,
inquire about stock quotes, buy or sell stock shares, as well
as measure the response time for benchmarking.

Out of the box, the Daytrader application puts most of
the load on the database server. We modified the main trade
scenario servelet to allow shifting the processing load of a
request from the database node to the computing node. In the
modified daytrader application, for each request, webserver
generates a random symbol from the symbol set of available
stock names. Webserver performs database query based on
that symbol and returns the result of the query to the client.
As an added computation on the application server, we
perform computation of sum of the first N integer, where N
is supplied through the client workload. All client requests
contain same N to make them homogeneous in computation
nature. This was done to emulate business enterprise loads
in highly dynamic environment. For the basic service, we

distributed the Daytrader application across multiple in-
stances of WASCE, deployed over virtual machines (Nop06
and Nop09). Finally, a modified Daytrader client is used
to generate workload requests based on a given throughput
profile (specified as a lookup table). This table contains the
sampling period and number of requests in that period.

Due to limitation of workload pattern (only uniform
is allowed) in Daytrader client, we use the Httperf [20]
benchmarking application client tool for measuring the web
server performance in all of our experiments in following
sections. This client tool supports both http 1.0/1.1 and SSL
protocols. It provides flexibility to generate various workload
patterns (poisson, deterministic, and uniform) with numerous
command line options for benchmarking. Similar to the
modified Daytrader client, Httperf also generates workload
requests based on a given throughput profile (specified as a
lookup table). Due to its availability as open source, we have
modified it to print the performance measurements of our
interest periodically while running the experiment. At the end
of each sample period, modified version of Httperf prints out
the detailed performance statistics of the experiment in terms
of total numbers of requests sent, minimum response time,
maximum response time, average response time, total number
of errors with types, and response time for each request.
Furthermore, to support the high workload between the client
- web server interface, changes were made to remove the file
socket limitation in the Linux OS installed over client and
webserver machines.

Monitoring: Specially developed python scripts are used
as monitoring sensors on all virtual and physical machines.
These sensors monitor CPU, disk and RAM utilization of
the node (physical and virtual) throughout the system run
and report data after each sampling interval as well as
at the end of the experiment. Furthermore, modifications
to the web server code allows us to monitor web server
performance in terms of max threads active in web server,
response time measured at first tier and at the database tier
for each incident request, and average queue size after each

sampling interval. The client returns the measured maximum,
minimum, and average response time during the sampling
period. We have specified 100 seconds as the timeout value
for a request response. Any outstanding request after the
timeout is logged as an error. It also returns the number of
errors with their type (client timeout, connection reset, etc)
in each sample. Measurement of power consumption over
a physical node is performed with help of a real time watt
meter. The average power consumption is measured over a
sampling interval of 15 seconds as per the requirements and
data is transferred to computer through the interface software
over USB. Xenmon [21] is used to measure the virtual CPU
utilization at VMs for each sampling interval.

Synchronization: System time is synchronized using NTP.
The jitter in monitoring sensors across all servers is con-
trolled using a PID controller as described in [22].

V. IDENTIFICATION OF THE SYSTEM PARAMETERS

As a result of different experiments described in Sec-
tion VI, an extensive list of system parameters have been
identified, which is shown in Table II. This list contains
three different types of parameters: Control Variables, State
Variables, and Performance Variables. Control variables
can be controlled at runtime during experiment for tuning
the system to achieve performance objectives. State variables
describes the current state of system under observation.
Performance variables are used to quantify QoS objectives.
Additionally, state variables are divided into two differ-
ent categories: Observable and Unobservable. Observable
variables can be measured directly through sensors, system
calls or application related API, while unobservable variables
can not be measured directly, instead they are estimated
within certain accuracy using existing measurements through
various techniques at runtime. During our experiments, we
used specially written sensors or different tools to measure
observable variables, while unobservable variables (e.g. ser-
vice time and delay) are estimated through the exponential
Kalman filter described in Section VII-A.

Fig. 2. Power consumption on Nop03 vs CPU frequency and Aggregate
CPU core utilization.

VI. SYSTEM MODELING APPROACH

For identifying an accurate system model of a distributed
multi-tier system, extensive experiments have been per-

formed and results have been analyzed. During these ex-
periments, we analyzed the multi-tier system performance
with respect to system utilization, various work load profiles,
bottleneck resource utilization, and its impact on system
performance. Additionally, we calculated work factor of our
client requests with help of linear regression techniques
described in [23]. details of modeling efforts are described
in following sub-sections.

A. Model for Power Consumption
As a first step towards system model identification, the

mutual relationship among physical CPU core utilization,
CPU frequency, and power consumption of the physical
server is identified. This work is an extension of the power
modeling effort described in [1] to model the system power
consumption with greater accuracy that can be utilized effec-
tively in real time physical server deployment. Fig. 2 shows
the power consumed on one of the physical server Nop03
with respect to the aggregate CPU core usage and CPU
frequency. An extensive experiment was performed over
physical server Nop03 with help of a specially written script,
which exhausted a physical CPU core through floating point
operations in increments of 10% utilization independent of
the current CPU frequency. With multiple instances of this
utility, all eight physical CPU core of the Nop03 server were
loaded in incremental manner for different discrete values of
CPU frequencies. CPU frequency across all of the physical
cores (1 to 8) was kept same during each step. The consumed
power was measured with help of a real time watt meter.
Based on this experiment, we created a regression model
for power consumption at physical machine with respect to
CPU core frequency and aggregate CPU utilization. After
analysis of the results (and reconfirmation with several other
experiments across other nodes), it was observed that power
consumption model of a physical machine is non-linear
because power consumption in these machines depends not
only upon the CPU core frequency and utilization, but also
depends non-linearly on other power consuming devices e.g.
hard drive, CPU cooling fan etc. As a result, a look-up
table with near neighbor interpolation was found to be the
best fit for aggregating the power consumption model of
the physical machine. Combination of CPU frequency, and
aggregate CPU core usage of the physical machine is used
as a key of the lookup table to access the corresponding
power consumption value. This aggregate power model was
utilized further for the controlled experiments described in
section VIII.

B. Determining Request Characteristics
Httperf benchmark application code was modified to allow

the generation of client requests to the webserver, Nop03,
at a pre-specified rate provided from a trace file. At Nop03,
each request performed certain fixed floating point compu-
tation on the webserver and then performed some random
select query on the database machine. To better understand
the nature of requests, we performed analysis to compute the
number of CPU cycles needed to process the request. This
linear regression technique is explained in [23].

Fig. 3. Work factor Plot for Request Characteristic

Fig. 6. A queuing model for the two-tier system.

During any sampling interval T , if ρ is virtual CPU
utilization, f is CPU frequency, Wfc is the work factor of the
request (defined in terms of CPU clock cycles), λ is request
rate, and ψ is system noise. Then, ρ ∗ f = λ ∗Wfc + ψ.
The average workfactor was computed to be 2.5X104 CPU
cycles with coefficient of variation = 0.5. The variation in
Wfc shows the variation in the nature of final request based
upon the chosen symbol for query. Result of the experiment
is shown in Fig. 3.

VII. EXPERIMENT 1: NO CONTROLLER

This experiment was performed to learn the system char-
acteristics, identify bottle necks and have a benchmark to
compare the performance of a later experiment in which we
used the predictive controller that we developed.

This first experiment was configured with Nop09 (physical
machine Nop03) as the virtual machine running the first tier
of Daytrader application. With help of Xen, virtual CPU of
Nop09 was pinned to a single physical core and 50% of the
physical core was assigned to Nop09 as maximum available
computational resource. Physical memory was also limited to
1000MB for Nop09. Nop11 was configured as database using
similar CPU and memory related operating settings over
physical server Nop10. To simulate real time load scenario,
all CPU cores of physical server Nop03 (except the CPU
core hosting Nop09) were loaded approximately 50% with
help of utility scripts described in Section VI-A. MAX JAVA
threads, a parameter that sets the maximum concurrency
limit was configured as 600 in the webserver application. All
CPU cores in physical server Nop03 are operating at their
maximum frequency 2.0 Ghz. Results of this experiment are

shown in figure(4 and 5) and prominent observations are
listed in following paragraph.

Observations from figure(4 and 5): The aggregate CPU
utilization (sub-figure 1) (numbered from top to bottom) and
memory utilization (sub-figure 2) of webserver and database
tier are shown in Fig. 4. According to sub-figure 1, initial
CPU utilization of physical server Nop03 is approximately
46% due to loading of the CPU cores as described in previous
paragraph, while addition to the Nop03 CPU utilization is
due to contribution of weberser Nop09 during the experi-
ment. Power consumption of the physical machine Nop03
is shown in sub-figure 3 and aggregate utilization of the
physical machine Nop03 (similar to Nop03CPU in sub-
figure 1) is shown in sub-figure 4. Sub-figure 6 represents
the java thread utilization of the web server and sub-figure
7 shows the queue size of the web server through the
method described in section VIII-A. Distribution of observed
response time at webserver is shown in Fig. 5 sub-figure 1
while the min, max, and mean value of response time is
plotted in sub-figure 2 of the same figure.

Figure 5(sub-figure 3) show the generated client request
rate, (ActualRequestRateSent), and corresponding server
throughput (ActualRequestRateCompleted) for the experi-
ment. Time series “ExpectedRequestRate” shows the request
profile supplied to the client, which can be different from the
“ActualRequestRateSent” in case of client side connection
limitations. The request trace in these experements was
based on the user request traces from the 1998 World Cup
Soccer(WCS-98) web site [24]. According to Fig.(4 and 5),
the correlation among request rate (fig 5 sub-figure 3) , CPU
utilization (fig 4 sub-figure 1 and 4), and response time (fig 5
sub-figure 1) is apparent. However, Live JAVA threads shown
in Fig. 4 sub-figure 6 are not decreasing with decrease in
client request rate. Upon investigation we discovered that
this is due to the thread pool policy, which does not allow
threads to be idle for a time long enough such that they are
never retired from the thread pool. However, all live threads
in this case are not necessarily actively working.

A. Estimating Bottleneck Resource

It is important to determine the bottleneck resource in
a distributed system. For that purpose, we used a queuing
approximation for a two tier system as shown in Fig. 6. λ
is the incoming throughput of requests to an application. ρ
is the utilization of the bottleneck resource. S is the average
service time on the bottleneck resource. D is the average
delay. T is the average response time of a request. The
average waiting time for a request is W = T − S −D. We
define a queue model with state vector [S;D] and observation
vector as [T].

An exponential Kalman filter (KF) was used to estimate
the system state as mentioned earlier. It is important to note
that we can approximate the system as a M/G/1/∞ PS queue
if the system has no bottleneck. In the presence of bottleneck,
the system utilization (not necessarily CPU) will approach
unity. At that time, the system will change to the LPS queue
model. However, as mentioned earlier, it is difficult to build

a tractable model for LPS queuing systems. Hence, we just
identify the operating regions where the system changes the
mode between two queuing models and analyze the system
in the Infinite PS queue region only.

The KF equations, written in the term of exponentially
transformed variables, [x1 ∈ R;x2 ∈ R] s.t. S = exp(x1)
and D = exp(x2) are as follows. Note that this transforma-
tion ensures S,D ∈ R+: For a given timed index of observa-

tion, k, the equations
(
exp(x̂1k)

exp(x̂2k)

)
=

(
exp(x1k−1)
exp(x2k−1)

)
+

N(0, Q) and T = exp(x1k) ∗ (1/(1− λk ∗ exp(x1k))) +
exp(x2k) + V (0, R) define the state update dynamics and
observation. N and V are Gaussian process and measurement
noises with mean zero and covariances Q and R respectively.
One can verify that these equations described the behavior
of a M/G/1 PS queue. Here, predicted bottleneck utilization
is given by ρ̂k = λk*exp(x1k). Additionally, the Kalman
filter does not update its state when the predicted bottleneck
resource utilization becomes more than 1.

Observations from figure 7: According to Fig. 7(sub-
figure 1), the developed exponential Kalman filter tracks
service time S and delay D at webserver perfectly with low
variance as the experiment (section VII) progresses. Addi-
tionally, as per sub-figure 2, Kalman filter tracks bottleneck
utilization as similar to CPU utilization of the system. How-
ever, we noticed that sometime, the bottleneck utilization
might saturate at 1 without the CPU utilization reaching
that value. In those cases, we discovered that the number of
available system threads acted as the bottleneck. According
to sub-figure 3, predicted response time from the Kalman
filter Tpred and actual response time T also very close to
each other, which indicates efficiency of the Kalman filter.

B. Experiment 2: Impact of Maximum Usage of Bottleneck
Resource

The primary motive for this investigation was to observe
the affect of high bottleneck resource usage on system
performance. In this case, we chose the settings that made
the number of available threads as the system bottleneck.
We did various experiments with different setting for Max
JAVA Threads. This parameter sets the maximum number
of threads that can be used for request processing. Based
on our observation, there are typically 90 more system
threads which are not accounted under this cap. Fig. 8
shows the results for the one experiment with max threads
set to 750. This figure shows that at maximum utilization
of the bottleneck resource, system performances decrease
significantly and response time from the webserver becomes
unpredictable. Furthermore, this is the region, where the
system transitions from a PS queue to a LPS queue system.

Once the system reaches the max utilization of the bot-
tleneck resources, it restricts entry for more requests into
the system resulting into max utilization of the incoming
system queue which in turn results in rejection of the
incoming client requests from the server. Therefore, to
achieve predefined QoS specifications, system should never
be allowed to reach the maximum utilization of bottleneck

resource. Additionally, this boundary related to max usage of
bottleneck resource can also be considered as “Safe Limit”
of system operation.

C. Experiment 3: Impact of Limited usage of Bottleneck
Resource

After determining the bottleneck resource and impact of
its maximum utilization over web server performance, next
step was to observe the web server performance, when
the bottleneck resource utilization varies from minimum to
maximum and back to minimum. This type of study provides
knowledge regarding web server performance if bottleneck
resource utilization is lowered from maximum limit through
a controller that maintains the QoS objective of the multi-tier
system.

The configuration settings for this experiment was same as
experiment 1. MAX number of JAVA threads for experiment
is 600. The client request trace profile used for this experi-
ment is shown in Fig. 9 subfigure 6 . According to the results
shown in the same figure (Fig. 9), system utilization (sub-
figure 1) and performance in terms of response time (sub-
figure 4) follows the trend of applied client request profile
(sub-figure 6). We can also see the sudden jump in size of
server queue (sub-figure 3), which indicates contention of
computational resource among all of the pending requests
inside the system. Sudden increase in RAM utilization is
due to the increase in thread utilization of the system. Ad-
ditionally, from the comparison of request rate and response
time plot in Fig. 9, it is apparent that by lowering the system
utilization and client load on the web server, web server can
be brought back to state, where it can restore QoS objective
of the system that can be consist of minimizing the system
queue size and server response time.

Kalman Filter Analysis: Results of the experiment were
analyzed with the help of Kalman filter described in sec-
tion VII-A and results of the analysis are shown in Fig 10.
According to Fig. 10, the defined exponential Kalman filter
tracks service time and delay at webserver quite well with
low variance as the experiment progresses. One can notice
the regions where the bottleneck resource utilization ap-
proaches unity but the CPU utilization is less than one. Upon
further investigation of those time samples, the bottleneck
resource was found to be the maximum number of Java
threads available in webserver. This limit can be changed
by the ‘MAX JAVA Threads’ configuration setting. The
goal of any successful controller design for performance
optimization of the system will be to drive the system to
work in the stable region (where the bottleneck resource
utilization is less than unity). During the experiment, when
predicted utilization of the bottleneck resource is more than
one, Kalman filter does not updates its states.

VIII. EXPERIMENT 4: WITH PREDICTIVE CONTROLLER

This section implements the observed system model de-
fined in Section VII-A as an online Kalman filter over multi-
tier system, which predicts the service time (workfactor) Ŝ
of the incident requests on the webserver. The predicted

Fig. 11. Main components of the control structure from section VIII-B

service time Ŝ is used by a Predictive Controller similar
to the L0 Controller described in [16] to predict the aggre-
gate response time of the incident requests during the next
sample time (look-ahead horizon N) of the system based
on different possible combinations of control inputs (CPU
core frequency). Now the predictive controller will choose
the best possible control input for the system to achieve
the pre-specified QoS objective of the system during next
sample interval. The predictive controller tries to optimize
the system behavior in terms of QoS objectives by continuous
observation of the underlying system and choosing the best
control input for the system in next sample interval.

Although there are a large number of system parameters
listed in section V, but we have chosen a small set of
most important parameters for our predictive controller to
show the performance of our modeling approach. We have
chosen CPU core frequency as the control input due to its
impact on the system performance in multiple dimensions
for response time of the system and power consumption
both. Additionally, system queue size and response time
are considered as as state variable for the system due to
their ability to show the exact system health. According to
the experiments shown in sections VII and VII-C, it is
evident that the higher value of application queue represents
contention in computational resources of the application and
total response time value indicates system’s capability to
minimize or process the requests lying in system queue with
the new arrived request during that sample period. Therefore,
we try to minimize the application queue size and total
response time as one of the component in cost function
J described in section VIII-A. Response time and power
consumption are considered as performance variables, which
are used in web service industry to define a typical multi-
dimensional service level agreements (SLAs). We have plan
to incorporate other variables also in future implementations
of more complex version of the predictive controller. Imple-
mentation details of the predictive controller is presented in
following subsection.

A. The Predictive Controller:

We developed a JAVATM based predictive controller for
adjusting operating frequency of the physical CPU core with
respect to varying load conditions. The control structure
consists of the following key components:

System Model: It identifies the relationship between
resident requests (System Queue size) inside the system and
total response time to process those requests. The system
dynamics is generally defined as follows: x(t + 1) =
φ(x(t), u(t), λ(t)), where x(t) is the system state at discrete
time sample t, where x(t) ⊂ Rn, u(t) is the control input at
time t, where u(t) ⊂ Rm, and λ(t) is the environment input
at time t. T is the sampling time of the system.

The system state for this experiment, x(t), at time t can
be defined as set of system queue q(t) and response time
r(t), that is, x(t) = [q(t); r(t)]. The queuing system model
is given by the equation: q̂(t + 1) = max{q(t) + (λ̂(t +

1)− α(t+1)

Ŵf
) ∗ T, 0} and r̂(t+ 1) = (1 + q̂(t+ 1)) ∗ Ŵf

α(t+1) ,
where at time t, q(t) is the queue level of the system, λ(t)
is the arrival rate of requests, r(t) is the response time of
the system, α(t) is a scaling factor defined as u(t)/umax
where u(t) is the frequency at time t, umax is the maximum
supported frequency in the system, Ŵf is the predicted
average service time (work factor in units of time) required
per request at the maximum frequency. Online Kalman filter
estimates the service time Ŝt of the incident request at
current frequency u(t), which is scaled against the maximum
supported frequency of the system to calculate the work
factor (Ŵf = Ŝt ∗ u(t)

umax
). Finally, E(t) is the system power

consumption in watts.
Use of Request Forecasting Technique: The estimation

of future environmental input and corresponding output of
the system are crucial for the accuracy of the model. In this
experiment, an autoregressive moving average model was
used as estimator of the environmental input as per following
equation. λ(t + 1) = β ∗ λ(t) + γ ∗ λ(t − 1) + (1 − (β +
γ)) ∗ λ(t− 2), where β and γ determines the weight on the
current and previous arrival rates for prediction.

Control Algorithm and Performance Specification:
During a given time t, the controller calculates the optimal
value of frequency u(t) for the time interval from t to (t+1)
such that the cost function can be minimized.We use a cost
function J(t+1), which is the weighted conjunction of drift
from the desired set point xs, of the system state and power
consumption E(t + 1). In our experiment, xs = [q∗, r∗]
where q∗ = desired maximum queue size, r∗ = desired
maximum response time, X = [q, r] is the system state
at current time, and J(t + 1) = Q ∗ ‖X (t+ 1)− xs)‖ +
R ∗ ‖E(t+ 1)‖, where Q and R are user specified relative
weights for the drift from the optimal system state xs
and power consumption E(t + 1), respectively. The power
consumption E(t+ 1) is predicted with the help of lookup
table generated in section VI-A based upon the current
frequency of the CPU core and aggregate system utilization
of the physical server.

Starting from a time t0, the optimization problem for

the controller is to minimize the total cost of operating the
system J in future lookahead prediction horizon t = 1...N
steps. We chose N = 2 in this experiment.

min

U

t=t0+1∑
t=t0+N

J(x(t), u(t))

B. System Model for Predictive Control

We used the exponential Kalman filter described earlier
to track the system state online. The two main parameters
received from the filter are the current service time S
and predicted response time Tpred. These values are then
plugged into the model described in the previous section.
The power model described in Section VI-A was used to
estimate the system (physical node of webserver) power
consumption. With help of these system and power model,
the predictive controller provides the optimal configuration
of the system in terms of CPU core frequency. Performance
of the online controller directly depends upon the accuracy of
Kalman filter estimation of the parameters of the webserver
application model and the power consumption model of the
physical system.

Experiment settings: Experimental settings and incoming
request profiles were kept similar to Section VII for direct
comparison between the webserver performance with and
without the controller implementation. The Controller archi-
tecture is shown in Fig. 11. The Local Response Monitor
monitors the webserver performance on the VM (Nop09)
hosting web server. It collects, processes, and reports perfor-
mance data after every SAMPLE TIME (in this case it was
set to 30 seconds) to the Local Controller running on host
machine (Nop03). These performance data includes average
service time at webserver (computation time at application
tier as well as query time over database tier), average queue
size (average resident request into the system) of the system
during the time interval of SAMPLE TIME, and request
arrival rate. The average queue size of the system is measured
based on the total resident request in the system at previous
sample, (plus) total incident request into the system, and
(minus) total completed request from the system in the
current sample duration. Results from the experiment are
shown in Fig. 12 and 12, while plots of the estimates from
the online Kalman filter are shown in Fig 14.

For this experiment, we have chosen optimal system state
xs = [q∗, r∗] where q∗ = 0 and r∗ = 0, which shows our
inclination towards keeping system queue and response time
both minimum. Q and R are assigned values equal to 10000
and 1 respectively to penalize the multi-tier system a lot more
for increment in queue size and response time compared
to the increment in power consumption. Additionally, look
ahead horizon value N is 2 for the current experiment to
keep the controller computation simple and efficient. During
forecasting of future predicted arrival request rate β and γ
were equal to 0.8 and 0.15 respectively to put maximum
weight on the current arrival rate to calculate future arrival
request rate.

Observations from Figure 12 and Figure 13: The aggre-
gate CPU utilization (sub-figure 1) and memory utilization
(sub-figure 2) of webserver and database tier are shown in
Fig. 12. Power consumption of the physical machine Nop03
is shown in sub-figure 3 and aggregate utilization of the
physical machine Nop03 (similar to Nop03CPU in sub-figure
1) is shown in sub-figure 4. Sub figure 6 represents the
java thread utilization of the web server and sub-figure 7
shows the queue size of the web server through the method
described in section VIII-A.

Distribution of observed response time at webserver is
shown in Figure 13 (sub-figure 1) while the min, max,
and mean value of response time is plotted in sub-figure
2. Figure 13 (sub-figure 3) shows the generated client
request rate, (ActualRequestRateSent), and corresponding
server throughput (ActualRequestRateCompleted) for the
experiment. Time series “ExpectedRequestRate” shows the
request profile supplied to the client, which can be different
from the “ActualRequestRateSent” in case of client side
connection limitations. The most interesting plot in figure 12
is sub-figure 5, which shows the change in frequency of
the CPU core from the controller to achieve predefined Qos
requirements based upon the control steps taken by observing
the system state and estimating the future environmental
inputs. After direct comparison of sub-figure 5 and sub-
figure 3 from Figure 13, we can see that change in CPU
core frequency follow similar trend as incident request rate
at web server. Additionally, controller has chosen 1.2 Ghz
frequency for the CPU core until there is some sudden
increase or decrease in the incident request rate. Furthermore,
controller changes frequency of the core very less often even
when incident request rate is changing continuously, which
shows the minimal disturbance in the system operation due
to predictive controller.

Comparative analysis of the controller results: Perfor-
mance of the proposed system model can be measured by
direct comparison of the current results (Fig. 12 and 13)
with the results from section VII(Fig. 4 and 5). Observation
of the plots from both experiments lead to the following
observations. According to the Fig. 14, online Kalman filter
tracks average response time of the incident requests well.
Additionally, it tracks bottleneck utilization with high accu-
racy. The estimated service time of the incident requests by
the Kalman filter shows minimal variation. The controlled
version runs at a lower frequency most of the times, which
results into considerable amount of power saving (18%) over
a period of four hours of experiment (Fig. 12 and 13) com-
pared to the baseline experiment shown in section VII(Fig. 4
and 5). The controller changes the frequency of the CPU
core at very few occasions, but it is able to identify the
sudden increase in the incident request rate. This feature
shows adaptive nature of the controller in case of varying
dynamic load conditions. On comparing Fig.(4 and 5) with
Fig.(12 and 13), it is clearly visible that there is negligible
memory overhead due to the controller. Additionally, the
overhead in virtual CPU utilization over webserver Nop09
due to controller contributes little to the aggregate system

overhead. The increased virtual CPU utilization can mostly
be attributed to the lower physical core frequency. According
to Fig. 4 and Fig. 12, even after presence of controller and
slow running system, response times at webserver is in the
similar range. It shows that controller while managing to
decrease power consumption does not affect QoS objec-
tives of the system negatively. According to figure 15, the
power model described in section VI-A, estimates the power
consumption in the physical machine Nop03 quite well
with only 5% average error in prediction that indicates the
effectiveness of the power consumption model. Additionally,
Java thread utilization is less in case of controller, which
indicates that even after slowing down the system, incident
requests are getting served in time without much contention
of computational resources. Furthermore, mean server queue
statistics (Fig. 4 and Fig. 12) are in the same range for both
cases.

Observations in previous paragraph indicates that the
current system model captures the dynamics of the multi-
tier web server (dyatrader) perfectly with high accuracy.
Additionally, the system model uses typical control inputs,
state variables, and performance measurements of the multi-
tier web service domain for achieving QoS objectives that
makes proposed framework suitable for any multi-tier web
service system.

IX. CONCLUSION

We have presented an approach to develop accurate models
for multi-tier enterprise systems. The developed model can
be integrated with a predictive control framework for dy-
namically changing the system tuning parameters based on
the estimated time varying workload. The proposed power
consumption model of the system is used by the controller
to optimize system performance and was able to achieve
18% reduction of power consumption in four hours of
experiment. Furthermore, the experimental results indicates
that the combined approach has low run-time overhead in
terms of computational and memory resources.

Acknowledgment This work was supported in part by
the NSF SOD Program, contact number CNS-0804230. The
authors will also like to acknowledge Manish Khushwaha
from Vanderbilt University for his help with the Kalman filter
discussions.

REFERENCES

[1] Abhishek Dubey, Rajat Mehrotra, Sherif Abdelwahed, and Asser
Tantawi. Performance modeling of distributed multi-tier enterprise
systems. SIGMETRICS Performance Evaluation Review, 37(2):9–11,
2009.

[2] http://aws.amazon.com/ec2/.
[3] http://www.google.com/apps/intl/en/business/

index.html.
[4] http://www.research.ibm.com/autonomic/.
[5] http://www.microsoft.com/presspass/press/2003/

mar03/03-18DynamicSystemsPR.mspx.
[6] http://h10134.www1.hp.com/services/

adaptiveinfrastructure/.
[7] Anton Cervin, Johan Eker, Bo Bernhardsson, and Karl-Erik AArzén.

Feedback–feedforward scheduling of control tasks. Real-Time Syst.,
23(1/2):25–53, 2002.

[8] T.F. Abdelzaher, K.G. Shin, and N. Bhatti. Performance guarantees for
web server end-systems: a control-theoretical approach. Parallel and
Distributed Systems, IEEE Transactions on, 13(1):80–96, Jan 2002.

[9] Chenyang Lu, Guillermo A. Alvarez, and John Wilkes. Aqueduct:
Online data migration with performance guarantees. In FAST ’02:
Proceedings of the 1st USENIX Conference on File and Storage Tech-
nologies, page 21, Berkeley, CA, USA, 2002. USENIX Association.

[10] Dara Kusic, Nagarajan Kandasamy, and Guofei Jiang. Approximation
modeling for the online performance management of distributed com-
puting systems. In ICAC ’07: Proceedings of the Fourth International
Conference on Autonomic Computing, page 23, Washington, DC,
USA, 2007. IEEE Computer Society.

[11] Chenyang Lu et al. Feedback control real-time scheduling: Frame-
work, modeling and algorithms. Journal of Real-Time Systems, 23:85–
126, 2002.

[12] T. Simunic and S. Boyd. Managing power consumption in networks
on chips. In Proc. Design, Automation, & Test Europe (DATE), pages
110–116, 2002.

[13] Chi-Hong Hwang and Allen C.-H. Wu. A predictive system shutdown
method for energy saving of event-driven computation. ACM Trans.
Des. Autom. Electron. Syst., 5(2):226–241, 2000.

[14] Jonathan Wildstrom, Peter Stone, Emmett Witchel, Raymond J.
Mooney, and Mike Dahlin. Towards self-configuring hardware for
distributed computer systems. In The Second International Conference
on Autonomic Computing, pages 241–249, June 2005.

[15] Yixin Diao, Joseph L. Hellerstein, Sujay Parekh, Hidayatullah Shaikh,
Maheswaran Surendra, and Asser Tantawi. Modeling differentiated
services of multi-tier web applications. In MASCOTS ’06, pages 314–
326, 2006.

[16] N. Kandasamy, S. Abdelwahed, and M. Khandekar. A hierarchical
optimization framework for autonomic performance management of
distributed computing systems. In Proc. 26th IEEE Int’l Conf.
Distributed Computing Systems (ICDCS), 2006.

[17] Leonard Kleinrock. Theory, Volume 1, Queueing Systems. Wiley-
Interscience, 1975.

[18] R. E. Kalman. A new approach to linear filtering and prediction
problems. Transactions of the ASME Journal of Basic Engineering,
82(Series D):35–45, 1960.

[19] Evangelia Kalyvianaki, Themistoklis Charalambous, and Steven Hand.
Self-adaptive and self-configured cpu resource provisioning for virtu-
alized servers using kalman filters. In ICAC ’09: Proceedings of the
6th international conference on Autonomic computing, pages 117–126,
New York, NY, USA, 2009. ACM.

[20] HP. httperf documentation. Technical report, 2007.
[21] Diwaker Gupta, Rob Gardner, and Ludmila Cherkasova. Xenmon:

Qos monitoring and performance profiling tool. Technical report, HP
Labs, 2005.

[22] Abhishek Dubey et al. Compensating for timing jitter in computing
systems with general-purpose operating systems. In ISROC, Tokyo,
Japan, 2009.

[23] Giovanni Pacifici, Wolfgang Segmuller, Mike Spreitzer, and Asser
Tantawi. Dynamic estimation of cpu demand of web traffic. In
valuetools ’06: Proceedings of the 1st international conference on
Performance evaluation methodolgies and tools, page 26, New York,
NY, USA, 2006. ACM.

[24] M. Arlitt and T. Jin. Workload characterization of the 1998 world
cup web site. Technical Report HPL-99-35R1, Hewlett-Packard Labs,
September 1999.

http://aws.amazon.com/ec2/
http://www.google.com/apps/intl/en/business/index.html
http://www.google.com/apps/intl/en/business/index.html
http://www.research.ibm.com/autonomic/
http://www.microsoft.com/presspass/press/2003/mar03/03-18DynamicSystemsPR.mspx
http://www.microsoft.com/presspass/press/2003/mar03/03-18DynamicSystemsPR.mspx
http://h10134.www1.hp.com/services/adaptiveinfrastructure/
http://h10134.www1.hp.com/services/adaptiveinfrastructure/

Fig. 4. Web server behavior from section VII: Sampling period=30 seconds.

Fig. 5. Web server behavior from section VII: Sampling period=30 seconds.

Fig. 7. Offline Exponential Kalman filter output corresponding to the results from section VII (Fig. 4). Service time and delay are in millisecond range.
Response time is specified in seconds.

Fig. 8. Impact of Max utilization of bottleneck Resource on performance from section VII-B. MAX Thread =750.

Fig. 9. Web Server Behavior While Limiting the Use of Bottleneck Resource from section VII-C.

Fig. 10. Offline KF Analysis of the results from Fig. 9 of section VII-C. Service time and delay are in milliseconds. Response time is specified in seconds.

Fig. 12. Web server behavior With Controller as per section VIII-B: Sampling period=30 seconds.

Fig. 13. Web server behavior With Controller as per section VIII-B: Sampling period=30 seconds.

Fig. 14. Online exponential Kalman filter output corresponding to the experiment from Section VIII-B (figure 12 and 13). Service time and delay are
in millisecond range. Response time is specified in seconds.

(a) Predicted and actual Power Consumption in web server from section
VIII-B

(b) Error in predicting power consumption compared to actual in sec-
tion VIII-B

Fig. 15. Comparison of Power Consumption for Actual Vs predicted through Predictive Controller in section VIII-B.

	Introduction
	Related Works
	Preliminary Concepts
	Queuing Models for Multi-Tier Systems
	Kalman Filters
	Control-based Management of Enterprise Systems

	Experimental Setup
	Identification of the System Parameters
	System Modeling Approach
	Model for Power Consumption
	Determining Request Characteristics

	Experiment 1: No Controller
	Estimating Bottleneck Resource
	Experiment 2: Impact of Maximum Usage of Bottleneck Resource
	Experiment 3: Impact of Limited usage of Bottleneck Resource

	Experiment 4: With Predictive Controller
	The Predictive Controller:
	System Model for Predictive Control

	Conclusion
	References

