
Model-based Software Health Management for
Real-Time Systems

Abhishek Dubey Gabor Karsai Nagabhushan Mahadevan
Institute for Software-Integrated Systems

Vanderbilt University
Nashville, TN

Abstract—Complexity of software systems has reached the
point where we need run-time mechanisms that can be used
to provide fault management services. Testing and verifica-
tion may not cover all possible scenarios that a system will
encounter, hence a simpler, yet formally specified run-time
monitoring, diagnosis, and fault mitigation architecture is
needed to increase the software system’s dependability. The
approach described in this paper borrows concepts and prin-
ciples from the field of ‘Systems Health Management’ for
complex systems and implements a two level health man-
agement strategy that can be applied through a model-based
software development process. The Component-level Health
Manager (CLHM) for software components provides a local-
ized and limited functionality for managing the health of a
component locally. It also reports to the higher-level Sys-
tem Health Manager (SHM) which manages the health of
the overall system. SHM consists of a diagnosis engine that
uses the timed fault propagation (TFPG) model based on the
component assembly. It reasons about the anomalies reported
by CLHM and hypothesizes about the possible fault sources.
Thereafter, necessary system level mitigation action can be
taken. System-level mitigation approaches are subject of on-
going investigations and have not been included in this paper.
We conclude the paper with case study and discussion.

TABLE OF CONTENTS

1 INTRODUCTION . 1
2 BACKGROUND ON MODEL-BASED DESIGN 2
3 PRINCIPLES OF SOFTWARE HEALTH MANAGE-

MENT . 2
4 OVERVIEW OF ARINC COMPONENT MODEL

(ACM) . 3
5 DISCREPANCY DETECTION/MONITORING SPEC-

IFICATIONS . 6
6 COMPONENT-LEVEL HEALTH MANAGEMENT . . . 7
7 SYSTEM-LEVEL HEALTH MANAGEMENT 8
8 CASE STUDY . 10
9 RELATED WORK . 14
10SUMMARY . 15

APPENDIX . 16
A BACKGROUND ON ARINC-653 16
B BACKGROUND ON TFPG . 16

1 978-1-4244-7351-9/11/$26.00 c©2011 IEEE.
2 IEEEAC Paper #1650, Version 2, Updated 12/28/2010.

ACKNOWLEDGEMENTS . 16

REFERENCES . 16

BIOGRAPHY . 18

1. INTRODUCTION

Core logic for functions in complex cyber-physical systems
like aircraft and automobiles is increasingly being imple-
mented in software. Software was originally used to imple-
ment subsystem-specific functions (e.g. an anti-lock braking
system in cars), but today software interacts with other sub-
systems as well e.g. with the engine control or the vehicle
stability system and is responsible for their coordinated op-
eration. It is self-evident that the correctness of software is
essential for overall system functions.

As the complexity of software increases, existing verification
and testing technology can barely keep up. Novel methods
based on formal (mathematical) techniques are being used for
verifying critical software functions, but less critical software
systems are often not subjected to the same rigorous verifica-
tion. There is a high likelihood for defects in software that
manifest themselves only under exceptional circumstances.
These circumstances may include faults in the hardware sys-
tem, including both the computing and non-computing hard-
ware. Often, the system is not prepared for such faults.

There is a well-established literature of software fault toler-
ance wherein some of the techniques of hardware fault toler-
ance based on redundancy and voting, like triple modular re-
dundancy, are applied to the software domain [19], [27], [8].
While the architectural principles of software fault tolerance
are clear, the complexity of software and various intercon-
nections has grown to the point that by itself this has become
a potential source of faults; i.e. the implementation of soft-
ware fault tolerance may lead to faults. We argue therefore
that such techniques do not provide a sufficient technology
anymore and additional approaches are needed.

The answer, arguably, lies in two principles: (1) the soft-
ware fault management should be kept as simple as possi-
ble, and (2) the software fault management system should be
built according to very strict standards - possibly automati-
cally generated from specifications. We conjecture that these
goals can be achieved if software fault management tech-
nology embraces new software development paradigms, like

1

component-based software and model-driven development.

Furthermore, current software fault management can be en-
hanced by borrowing additional techniques from the field of
system health management that deals with complex engineer-
ing systems where faults in their operation must be detected,
diagnosed, mitigated, and prognosticated. System health
management typically includes the activities of anomaly de-
tection, fault source identification (diagnosis), fault effect
mitigation (in operation), maintenance (offline), and fault
prognostics (online or offline) [23], [18]. The techniques of
SHM are typically mathematical algorithms and engineering
processes, possibly implemented on some computational sys-
tem that provides health management functions for the oper-
ator, for the maintainer, and for the sustaining engineer.

Some points to note about system health management and
typical software fault tolerant design are: (1) system health
management deals with the entire system, not only with a
single subsystem or component; which is typically the case
in software fault-tolerance approaches, (2) while fault toler-
ance primarily deals with abrupt, catastrophic faults, system
health management operates in continuum ranging from sim-
ple anomalies through degradations to abrupt and complete
faults, and (3) while the goal of typical software fault tol-
erance techniques is to mask the failure, health management
explicitly aims at isolating the root failure and even predicting
future faults from early precursor anomalies of those faults.3

In this paper we discuss the principles of software health
management, in a model-based conceptual and development
framework. First we discuss the model-based approach we
follow, then explain a software component model we devel-
oped, show how the model can serve for constructing compo-
nent level and system level health management services, and
then illustrate its use through a case study. The paper con-
cludes with a brief review of the related work and a summary.

2. BACKGROUND ON MODEL-BASED DESIGN

In the past 15 years a novel approach to the development of
complex software systems has been developed and applied:
model-driven development (MDD). The key idea is to use
models in all phases of the development: analysis, design,
implementation, testing, maintenance and evolution. This ap-
proach has been codified in two related and overlapping direc-
tions: the Model-driven Architecture (MDA) [3] of the Object
Management Group (OMG), and the Model-Integrated Com-
puting (MIC) [4] approach that our team advocates. MDD
relies on the use of models that capture relevant properties of
the system to be developed (e.g. requirements, architecture,
behaviors, components, etc.) and uses these models in gen-
erating (or modifying) code, other engineering artifacts, etc.
Perhaps the greatest success of MDD is in the field of embed-
ded control systems and signal processing: today’s flight soft-

3This is also true for Byzantine failures. While voting techniques can mask
byzantine failure, a holistic system-wide approach is required for isolating
the root failure mode and taking necessary actions.

ware is often developed in Simulink/Stateflow [2] or Matrix-
X [5] - that implement their own flavor of MDD. Properties of
MDD relevant for the goals of software health management
are as follows:

1. Models represent the system, its requirements, its compo-
nents and their behaviors, and these models capture the de-
signer’s knowledge of the system.
2. Models are, in essence, higher-level programs that influ-
ence many details of the implementation.
3. Models could be available at operation time, e.g. embed-
ded in the running system.
4. For this study, the system built using MDD is component-
based: software is decomposed into well-defined components
that are executed under the control of a component platform
- a sort of ‘operating system’ for components that provides
services for coordinating component interactions.
5. The component architecture is clearly reflected in and ex-
plicitly modeled by the models.

In the MDA approach, the key notion is the use of
Platform-Independent Models (PIMs) to describe the sys-
tem in high-level terms, then refine these models (possibly
using model transformations) into Platform-Specific Models
(PSMs) which are then directly used in the implementation
(which itself could - wholly or partially - be generated from
models). In the MIC approach, the use of Domain-Specific
Modeling Languages (DSMLs) is advocated (that allow in-
creases in productivity via the use of domain-specific abstrac-
tions), as well as the application of model transformations for
integrating analysis and other tools into an MDD process. In
either case, the central notion is that of the model, which is
tightly coupled to the actual implementation, and the imple-
mentation (code) cannot exists without it.

3. PRINCIPLES OF SOFTWARE HEALTH
MANAGEMENT

Health management is performed on the running system with
the goal to diagnose and isolate faults close to their source so
that a fault in a sub-system does not lead to a general failure
of the global system. It involves four different phases:

1. Detection: Anomalous behavior is detected by observing
various measurements. Typically, an anomaly constitutes vi-
olation of certain conditions which should be satisfied by the
system or the sub-system.
2. Isolation: Having detected one or more anomalies, the
goal is to isolate the potential source(s) of fault(s);
3. Mitigation: Given the current system state and the isolated
fault source(s), mitigation implies taking actions to reduce or
eliminate the fault effects;
4. Prognostics: Looking forward in time, prognostics is done
to predict future observable anomalies, faults, and failures.

To apply these techniques to software we must start by iden-
tifying the basic ‘Fault Containment Units’. We assume that
software systems are built from ‘software components’, where

2

System

System-Level

Manager

Functional Dependency

Management Dependency

Component Middleware

Processors (ARINC 653 Modules)

Health Monitors

Component 2

Health Manager

Component 2

Health Manager

Component 2

Health Manager

Figure 1. Hierarchical Layout of Component-Level and
System-Level Health Managers

each component is a fault containment unit. Components en-
capsulate (and generalize) objects that provide functionality
and we expect that these components are well-defined, in-
dependently developed, verified, and tested. Furthermore,
all communication and synchronization among components
is facilitated by a component framework that provides ser-
vices for all component interactions, and no component inter-
actions happen through ’out-of-band’ channels. This compo-
nent framework acts as a middleware, provides composition
services, and facilitates all messaging and synchronization
among components, and is used to support fault management.

Section 4 provides a brief background on the component
framework used for the work presented in this paper. This
framework assumes that the underlying operating system is
ARINC-653 [1] compliant, state of the art operating system
used in Integrated Modular Avionics. Appendix A provides a
brief overview of ARINC-6534.

There are various levels at which health management tech-
niques can be applied: ranging from the level of individual
components or the level of subsystems, to the whole sys-
tem. As shown in figure 1, we have focused on two levels
of software health management: Component level that is lim-
ited to the component, and the System level that includes sys-
tem level information for doing diagnosis to identify the root
failure mode(s).

4Please note that even though this paper uses an ARINC-653 based frame-
work, these techniques are generic and can be applied to other real-time sys-
tems that can be configured statically during initialization.

Component-level health management (CLHM) for software
components detects anomalies, identifies and isolates the
fault causes of those anomalies (if feasible), prognosticates
future faults, and mitigates effects of faults – on the level of
individual components. We envision CLHM implemented as
a ‘side-by-side’ object that is attached to a specific compo-
nent and acts as its health manager. It provides a localized and
limited functionality for managing the health of one compo-
nent, but it also reports to higher-level health manager(s) (the
system health manager). The challenge in defining this local
health management is to ensure that the local diagnosis and
mitigation are globally consistent.

System Health Manager (SHM) manages the overall health
of the System (Component Assembly). The CLHM pro-
cesses hosted inside each of the components report their in-
put (alarms monitored events) and output (mitigation action)
to the System Health Manager. It is important to know the
local mitigation action because it could affect how the faults
cascade through the system. Thereafter, the SHM is respon-
sible for the identification of root failure source(s)5. Once the
fault source is identified (diagnosed), an appropriate mitiga-
tion strategy could be employed. This as mentioned earlier is
the topic of ongoing investigations.

4. OVERVIEW OF ARINC COMPONENT
MODEL (ACM)

The ARINC Component Model (ACM) [11],[12] is built
upon the capabilities of the ARINC-653 [1] standard (see
Appendix). ACM follows the MIC approach (see section 2)
and borrows concepts from other software component mod-
els, notably from the CORBA Component Model (CCM) [25]
with a focus on precisely defined component interaction se-
mantics, enabling timing constraints and allowing component
interactions to be monitored effectively.

Figure 2 illustrates the main features of ARINC Component
Model. A component can have four different kinds of interac-
tion ports - consumer port, publisher port, provided interface
port (similar to a facet in CCM) and required interface port
(similar to a CCM receptacle). A publisher port is a source
of events: this port is used to produce events that will be con-
sumed by another component/s. A publisher port needs to be
triggered to publish an event (probably read from some in-
ternal state variable or a hardware source). This triggering
can be either periodic or aperiodic (sporadic). While, a peri-
odic publisher is triggered at regular intervals by a clock, an
aperiodic publisher is invoked (sporadically) by an internal
method of the component, possibly the implementation code
belonging to another port.

A consumer port, as the name suggests, acts as a sink for
events. Like a publisher port, it can be triggered periodically
(by a clock) or aperiodically (by the arrival of an event) to
consume an event. While an aperiodic consumer consumes

5We allow multiple failure mode hypotheses.

3

Figure 2. ARINC Component Model

all the events published by its publisher on a FIFO basis (de-
structive read), a periodic consumer samples the events pub-
lished at a specified rate (nondestructive read).

A provided interface port or facet contains the implementa-
tion for the methods defined in the provided interface and
services the request issued on these interfaces by a recepta-
cle. The incoming client requests are queued by the middle-

ware and are serviced by the provided port’s implementation
in FIFO order.

Two additional concepts exist in ACM as compared to the
CCM: state variables, which are similar to attributes in CCM
but cannot be modified from outside component, and compo-
nent triggers, which are internal, periodically activated meth-
ods within a component that can be used for internal book-

4

keeping and checking state invariants.

The implementation methods associated with the component
trigger and interaction ports (publisher, consumer, facet, and
receptacle) are initialized as ARINC-653 processes. They
have to finish their unit of work within a specified deadline.
This deadline can be qualified as HARD (strict) or SOFT
(relatively lenient). A HARD deadline violation is an error
that requires intervention from the underlying middleware. A
SOFT deadline violation results in a warning.

Like the deadline, the models can specify another property
that the implementations must respect: contracts. These con-
tracts are expressed as pre-conditions and/or post-conditions.
Any contract violation results in an error. This concept
is based upon the logic system developed by Hoare [16].
The key feature of this logic is the concept of assertions of
the form {pre}P{post} commonly known as Hoare Triple,
where P is a computer program, pre is a pre-condition that is
assumed to be true before the program is executed, and post
is the post-condition that is true after the program is executed.

Component Interactions

While each component and its associated ports, states, and
internal triggers can be individually configured, an assembly
is not complete until the interactions between the ports of all
components have been configured. The association between
the ports depends on their type (synchronous/asynchronous)
and the event/interface type associated with the port. Two
kinds of interactions: (1) asynchronous interactions and (2)
synchronous interactions are possible between components.
The possible combination of these interactions with periodic
and aperiodic triggering of processes that are bound to the re-
spective ports gives rise to a richer set of behaviors compared
to CCM.

Asynchronous Interactions: These interactions occur when
a publish port of a component is connected to a consumer port
of another component. While a consumer can be connected
to only one publisher, a publisher may be connected to one
or more consumers. Strict type matching on the event type is
required between the publisher and its consumers.

A periodic consumer always exhibits sampling behavior.
Even if the rate of the publisher is indeterminate, for example
if the publisher is aperiodic, setting the period of the con-
sumer ensures that the events from the publisher are sam-
pled at a specific rate. When the interacting publisher and
consumer both are periodic, the value of the consumer’s pe-
riod relative to the publisher’s determines if the consumer is
over-sampling (higher rate of consumption or lower period
compared to publisher) or under-sampling (lower rate of con-
sumption or higher periodicity compared to publisher).

Interaction between a periodic publisher and an aperiodic
consumer is indicative of a pattern where the sink or the con-
sumer is reactive in nature. In such a case, the consumer port

stores incoming published events in a queue, which are con-
sumed in a FIFO manner. If the queue size is configured ap-
propriately, this allows the consumer to operate on all of the
events received.

The case for interaction between an aperiodic publisher and
an aperiodic consumer is similar to the one between a peri-
odic publisher and an aperiodic consumer.

Synchronous Interactions: This interaction implies call-
return semantics: the caller component ’calls out’ via the re-
quired interface port to the connected provided interface port
of the callee component. A required interface port can be
associated with a provided interface port of an identical in-
terface type. A provides port can be associated with one or
more requires ports. Because of the synchronous nature of
these interactions, the deadline of required interface method
(i.e. the caller) must be greater than the deadline value for the
provided interface method (i.e. the callee).

Synchronous ports in this model are always aperiodic. The in-
teraction patterns observed in synchronous ports is borrowed
from CCM. The key difference is deadline monitoring. The
default type of interaction is call-return or two-way commu-
nication i.e. the required interface port waits for the provided
interface port to finish its operation and return the results.

Modeling and Design Environment: The framework imple-
menting ACM comes with a modeling language that allows
the component developers to model a component and the set
of services that it provides independent of actual deployment
configuration, enabling preliminary constraint based verifica-
tion of the system for well-formedness. An example for well-
formedness is that each required port must be connected to
precisely one provided port. Once fully specified, the com-
ponent model captures the component’s real-time properties
and resource requirements. It also captures the internal data
flow and control flow within the component. System integra-
tors configure models of software assemblies specifying the
architecture of the system built from interacting components.

While specifying component models in the modeling envi-
ronment, developers can also specify local monitors and local
health management actions for each component (described in
sections 5 and 6). Once the assembly has been specified, sys-
tem integrators are required to specify the models for system-
level health management (described later in section 7). Dur-
ing the deployment and integration process, system integra-
tors associate each component with an ARINC-653 partition.
Thereafter, code generation tools help the integrators to gen-
erate non-functional glue code and find a suitable partition
schedule and deploy the assembly. The developers write the
functional code for each component using only the exposed
interfaces provided by the framework. They are expected not
to invoke the underlying low-level platform (APEX) services
directly. Such restrictions enable us to use the well-defined
semantics of specified interaction types between the compo-

5

Figure 3. GPS Software Assembly used in the case study - Unit of time is seconds.

nents and analyze the system failure propagation at design
time before deployment. This in turn allows us to generate the
necessary diagnosis procedures required. This is explained
later in section 7. Thus during the deployment and integra-
tion process, code generators can also generate the required
health management framework. The generated code can be
later compiled and executed on the runtime system.

Example

Figure 4 shows an assembly of three components deployed
on two ARINC partitions. We will use this example in the
case study later on. Connections between two ports have been
annotated with the (periodicity, deadline) pair, measured in
milliseconds, of the downstream port. Partition 1 contains
the Sensor Component. The sensor component publishes an
event every 4 milliseconds.

Partition 2 contains the GPS and Navigation Display com-
ponent. The GPS component consumes the event published
by sensor at a periodic rate of 4 milliseconds. Afterwards it
publishes an event, which is sporadically consumed by the
Navigation Display (abbreviated as display). Thereafter, the
display component updates its location by using getGPSData
provided interface of the GPS Component. The publish-
consume connection between sensor and GPS components
is implemented via a sampling port (Sampling ports are ba-
sic inter-partition communication mechanism in ARINC 653
platforms). A Channel connects the source sampling port
from partition 1 to destination sampling port in partition 2.

This figure also describes the periodic schedule followed by
the partitions, overseen by a controller process called Module
Manager [11]. This schedule is repeated every 2 ms (hyperpe-
riod). In each cycle, Partition 1 runs with a phase of 0 ms for
1 ms (duration). Partition 2’s phase is 1.2 ms. It runs for 0.8
ms (duration). This schedule ensures that the two partitions

Figure 4. Component Monitoring

are temporally isolated.

5. DISCREPANCY DETECTION/MONITORING
SPECIFICATIONS

The health of the software system/assembly and its individual
components can be tracked by deploying multiple monitors
throughout the system. Each monitor checks for violations
of a property or constraint that is local to a port or a compo-
nent. The status of these monitors is reported to Health Man-
agers at one or more levels (Component or System) to take
the appropriate mitigation action. The modeling language al-
lows system integrators to define these monitors and declare
whether they should be reported at the local or the system
level. Figure 4 summarizes different places (or ports) where
a component’s behavior can be monitored to detect discrep-
ancies. Based on these monitors, following discrepancies can
be currently identified:

• Lock Time Out: The framework implicitly generates mon-
itors to check for resource starvation. Each component has
a lock (to avoid interference among callers), and if a caller
does not get through the lock within a specified timeout it
results in starvation. The value for timeout is either set to a
default value equal to the deadline of the process associated
with component port or can be specified by the system de-

6

<PreCondition>::=<Condition>
<PostCondition>::=<Condition>
<Deadline>::=<double value> /* from the start of the process associated with the port to the end of that method */
<Data Validity>::=<double value> /* Max age from time of publication of data to the time when data is consumed*/
<Lock Time Out>::=<double value> /* from start of obtaining lock*/
<Condition>::=<Primitive Clause><op><Primitive Clause>|<Condition><logical op><Condition>| !<Condition> | True| False
<Primitive Clause>::=<double value>| Delta(Var)| Rate(Var)|Var
/* A Var can be either the component State Variable, or the data received by the publisher, or the argument of the method defined in the facet or the receptacle*/
<op>::= < | > | <= | >= | == | !=
<logical op>::=&& | ||

Table 1. Monitoring Specification. Comments are shown in italics.

Issued By HM Action Semantics
CLHM IGNORE Continue as if nothing has happened
CLHM ABORT Discontinue current operation, but operation can run again
CLHM USE PAST DATA Use most recent data (only for operations that expect fresh data)
CLHM STOP Discontinue current operation

Aperiodic processes (ports): operation can run again
Periodic processes (ports): operation must be enabled by a future START HM action

CLHM START Re-enable a STOP-ped periodic operation
CLHM RESTART A Macro for STOP followed by a START for the current operation

Following actions can be issued only by a System health manager.
SHM RESET Stop all operations, initialize state of component, clear all queues,

start all periodic operations
SHM CHECKPOINT Save component state
SHM RESTORE Restore component state to the last saved state

Table 2. Component and System Health Manager Actions. Note that STOP for all process of a component in combination
with start of processes from a redundant component can be used to reconfigure the system. The network link from the

redundant component should be created at system initialization time.

signer.
• Data Validity violation (only applicable to consumers):
Any data token consumed by a consumer port has an asso-
ciated expiration age. This is also known as the validity pe-
riod in ARINC-653 sampling ports. We have extended this to
be applicable to all types of component consumer ports, both
periodic and aperiodic.
• Pre-condition Violation: Developers can specify condi-
tions that should be checked before executing. These condi-
tions can be expressed over the current value or the historical
change in the value, or rate of change of values of variables
(with respect to previously known value for same parameter)
such as
1. the event-data of asynchronous calls,
2. function-parameters of synchronous calls, and
3. (monitored) state variables of the component.

• User-code Failure: Any error or exception in the user code
can be abstracted by the software developer as an error con-
dition which they can choose to report to the framework. Any
unreported error is recognized as a potential unobservable
discrepancy.
• Post-condition Violation: Similar to preconditions, but
these conditions are checked after the execution of function
associated with the component port.
• Deadline Violation: Any execution started must finish
within the specified deadline.

These monitors can be specified via (1) attributes of model el-
ements (e.g. Deadline, Data Validity, Lock time out), (2) via
a simple expression language (e.g. conditions). The expres-

sions can be formed over the (current) values of variables (pa-
rameters of the call, or state variables of the component), their
change (delta) since the last invocation, their rate of change
(change divided by a time value). Table 1 presents a sum-
mary.

6. COMPONENT-LEVEL HEALTH
MANAGEMENT

A Component Level Health Manager (CLHM), as the name
suggests, observes the health of a component. The oper-
ation of a CLHM can be specified as a state machine in
the modeling environment. It can be configured to react
with a mitigation action from a pre-defined set in response
to violations observed by component monitors. Formally, a
health manager can be described as a timed state machine
HM =< S, si,M,Zτ+ , T, A >, where

• S is the set of all possible states for the health manager.
• si ∈ S is the singleton initial state.
• M is the set of all monitored events that are reported to the
health manager by a component process or the framework.
• Zτ+ is the set of all events generated due to passage of time.
• A is the set of all possible mitigation actions issued by the
health manager. Currently, supported mitigation actions are
specified in Table 2.
• T : S × (M ∪ Zτ+) → A × S is the set of all possible
transitions that can change the state of the manager due to
passage of time or the arrival of an input event. To ensure a
non-blocking state machine, the framework assumes a default

7

Validity?
Precon
ditions?

Lock?
 Read data
from port

Execute
User Code

Exception?

St
ar

t

En
dPostcon

ditions?OK OK OK

OK OK

VALIDITY_FAILURE PRECONDITION_FAILURE LOCK_TIMEOUT_FAILURE USER_CODE_FAILURE POST_CONDITION_FAILURE

Validity
Violation
Response

Precondition
Response

Lock Problem
Response

User Code
Response

Post
condition
ResponseComponent Level

Health Manager Responses

ABORT

IGNORE/
USE_PAST_DATA

IGNORE
IGNORE IGNORE IGNORE

Framework Monitors Deadline Violation

Figure 5. Flow chart describing sequence of monitors and health manager response for a consumer port.

self-transition with the IGNORE action if the health manager
receives an event which it cannot process in the current state.

The process associated with the health manager is sporadi-
cally triggered by events generated either by the framework
(for resource and deadline violation) or by the port monitors
associated with the process. Each monitor checks if its spec-
ified condition is being satisfied. Upon detecting a violation,
the monitors report to the component-level health manager.
The CLHM’s internal state machine tracks the component’s
state and issues mitigation actions. Processes that trigger the
health manager can block using a blackboard to receive the
health manager action6; they are finally released when the
health manager publishes a response (mitigation action) on
their respective blackboard.

Example: Execution Sequence of Generated Monitors
and Component Health Manager Figure 5 shows the
flowchart of the code generated to handle incoming messages
on a consumer port. The shaded gray decision boxes are as-
sociated with the generated monitors. The failed monitored
discrepancy is always reported to the local component health
manager. Deadline violation is always monitored in parallel
by the runtime framework. The white boxes are the possible
actions taken by the local health manager.

7. SYSTEM-LEVEL HEALTH MANAGEMENT

In our implementation, the System Health Manager (SHM)
is a collection of three different components, shown in fig-
ure 6. These components can either be deployed in a sepa-
rately reserved system module, or they can be deployed in a
module shared by other components in the system assembly.
The aggregator component is responsible for receiving all the
alarm inputs, including the local component health manager
decisions and passing them to the diagnosis engine. The ape-
riodic consumer inside the diagnosis engine runs in an ape-
riodic ARINC-653 process, which is triggered by the alarms
sent by the aggregator. The third component is the response
engine - this component is still under development.

6Blackboards are primitive, shared-memory type inter-process communica-
tion structures implemented by ARINC-653.

The diagnosis engine uses a timed fault propagation (TFPG)
model. A TFPG is a labeled directed graph where nodes rep-
resent either failure modes, which are fault causes, or discrep-
ancies, which are off-nominal conditions that are the effects
of failure modes. Edges between nodes in the graph capture
the effect of failure propagation over time in the underlying
dynamic system. To represent failure propagation in multi-
mode (switching) systems, edges in the graph model can be
activated or deactivated depending on a set of possible op-
eration modes of the system. Appendix B provides a brief
overview of TFPG.

The diagnosis engine uses the TFPG model of the software
assembly under management to reason about the input alarms
and the local responses received from different component
level health manager. It then hypothesizes the possible faults
that could have generated those alarms. As more information
becomes available, the SHM (using the diagnosis engine) im-
proves its fault-hypothesis as needed, which can then poten-
tially be used to drive the mitigation strategy at the system
level. Currently, available System level mitigation actions are
listed in Table 2. However, this list is not final as system-level
mitigation approaches are subject of ongoing investigations.

Creating the System Level Fault Propagation Model for
System-Level Diagnosis

The fault propagation model for the entire system involves
capturing the propagations within each component as well
as capturing the propagations across component boundaries.
While the latter can be automatically derived from the inter-
actions captured by the software assembly (via component
ports) the former can be derived from the interactions cap-
tured by the data/control flow model inside each component.

This automatic derivation of fault propagation from compo-
nent and assembly models is possible because the end-points
of these interactions - the component ports - exhibit a well
defined behavior/interaction pattern7. This pattern is depen-
dent on the specific port-type - Publisher, Consumer, Pro-
vides Interface, Requires Interface - and is somewhat inde-

7Formal description of these interaction semantics is available in the ap-
pendix of the related technical report [13]

8

Figure 6. Components belonging to the system health manager.

pendent of the additional properties - data/event types, inter-
faces/methods, periodicity, deadline - that customize a port.
Hence, if a template fault propagation model can be con-
structed for each of the different port-types, then using the
interactions captured in the control/data flow model of the
component and the assembly model of the system, the fault
propagation graph for the entire system can be generated.

In principle, this approach is similar to the failure propagation
and transformation calculus described by Wallace [28], which
showed how architectural wiring of components and failure
behavior of individual components can be used to compute
failure properties for the entire system.

The template fault propagation model for each kind of inter-
action port deals with:

• Failures Modes that represent the failures originating from
within the interaction port
• Monitored Discrepancies whose presence is detected
through the Health Monitor Alarms
• The Unmonitored / silent Discrepancies whose presence is
not detected through alarms
• The Input Discrepancy ports that represent entry points of
failure effects from outside the interaction port
• The Output Discrepancy ports that represent exit points of
failure effects to outside the interaction port
• The failure propagation links between the entities described
above
• The Mode Variables that enable/disable a failure propaga-
tion edge based on their value which is set by the Component
Health Manager’s Response

The Failure Modes / Discrepancies are directly related to the
list of monitors described in section 5. These include failure
modes / discrepancies related to one or more of the following
violations, failures, and problems - LOCK Problem, Valid-
ity violation, Pre-condition failure, User code failure, Post-
Condition failure, Deadline violation. The Mode Variables
are related to the Component Health Manager’s response to
the errors detected by monitors - LOCK Problem Response,
Validity Violation Response etc. The Input/Output Discrep-
ancy ports list includes various manifestations of the prob-
lems listed above - No/ Late/ Invalid Data Published, No/
Late/ Invalid Return Data, Bad Input/Output Data, No Invoke,
No Update etc.

Figure 7 captures the failure propagation template model of
a periodic publisher and a periodic consumer. Additionally,
it captures the failure interaction (red lines) between the pub-
lisher and consumer. In any component, the exact number and

type of the Failure Modes, Monitored/Unmonitored discrep-
ancies, Input/Output ports and the failure propagation links
between them is determined by specific type of the interac-
tion port - Publisher / Consumer / Provides Interface / Re-
quires Interface. It should also be noted that sometimes it
might not be possible to monitor some of the failures / alarms
mentioned above. In such cases, these observed discrepancies
are turned into unobserved discrepancies and the fault effect
propagates through the discrepancy without raising any ob-
servation (alarm). The resulting template failure propagation
model captures: (1) The effect of failures originating from
other interaction-ports, (2) The cascading effects of failures
within the interaction port, and (3) The effect of failures prop-
agating to other interaction-ports.

As discussed earlier in this section, the component failure
propagation model is generated by an algorithm, automati-
cally, by instantiating the appropriate TFPG template-model
for each interaction-port in the component. Thereafter, the in-
formation in the component’s data/control flow model is used
to generate the failure propagation links between the TFPG
models of the interaction-ports within the same component.
These failure propagation links connect input and output dis-
crepancy ports in these TFPG models. Finally, the system
level failure propagation model is generated by using the in-
teraction information in the assembly model. Each link in the
assembly model is translated into one or more failure prop-
agation links between the TFPG models of the appropriate
interaction-ports belonging to different components.

Example: Figure 7 shows a small portion of the failure prop-
agation model between two components for the example de-
scribed in section 4, figure 4. It shows the failure interac-
tions (red lines) between a publisher and consumer. While the
detailed failure propagation template-model of the publisher
and consumer port are encapsulated within the box, the output
and input discrepancy ports of the two models are connected
through failure propagation links that cut across the boxes. A
high level view of the full TFPG model for this example is
shown in Figure 11.

As discussed in section 4, asynchronous interaction between a
publisher port and a consumer port produces a fault propaga-
tion in the direction of data/event flow i.e. from the publisher
to the consumer, while the synchronous (blocking) interaction
pattern between a Requires interface and its corresponding
Provider interface involves fault propagation in both direc-
tions. The fault propagation within a component is captured
through the propagations across the bad updates on the state
variables within the component, observed as pre-condition or

9

PostConditionPostCondition

InvalidDataPublished

BadData_IN

Deadline InvalidDataPublished

UserCode

LateDataPublished

NoDataPublished

LockTimeout

LateDataPublished

PreCondition

NoDataPublished

NoDataPublished

NoDataPublished

InvalidDataPublished

InvalidDataPublished
PreCondition

LockTimeout_Failure

Deadline

NoDataPublished

InvalidDataPublished

UserCode UserCode

UserCode

UserCode LateStateUpdate

MissingStateUpdate

InvalidState

PreCondition

UserCode

MissingStateUpdate

InvalidState

PostCondition

InvalidState

MissingStateUpdate

MissingStateUpdate

Deadline

MissingStateUpdate

UserCode

InvalidState

InvalidState

ValidityFailure

Deadline

UserCode

LateStateUpdate

PostCondition

ValidityFailure_IN

BadData_IN

LockTimeout

PreCondition

InvalidState

MissingStateUpdate

LockTimeout_Failure

InvalidState

ValidityFailure

IGNORE

IGNORE

IGNORE || RESTART

IGNORE

STOP

ABORT

IGNORE

ABORTIGNORE

IGNORE

IGNORE

ABORT

ABORT

USEPASTDATA

RESTART

ABORT

ABORT

STOP

STOP

USEPASTDATA

IGNORE

IGNORE

IGNORE

IGNORE

PUBLISHER-PORT CONSUMER-PORT
LOCK PROBLEM

PRE-CONDITION FAILURE

USER-CODE FAILURE

POST-CONDITION FAILURE

DEADLINE FAILURE

LOCK PROBLEM

VALIDITY FAILURE

PRECONDITION FAILURE

USER-CODE FAILURE

POST-CONDITION FAILURE

DEADLINE FAILURE

Figure 7. TFPG model of periodic publisher port and a periodic consumer port. Failure Propagation between the publisher
and consumer is captured through bold red lines. In the template TFPG model of the publisher/consumer, the horizontal dotted
lines separate one pattern from another. Root Nodes in each pattern are representative of either source of fault (Failure Mode) or
cascading effect of another failure within the interaction port (Reference to a preceding discrepancy) or outside of the interaction
port (Discrepancy Port).

post-condition monitors on the interfaces/interactions ports
that update or read from those state variables.

8. CASE STUDY

In this case study we consider the example of the GPS as-
sembly discussed in section 4. First, we describe the nom-
inal execution of the system. Then, we discuss component
level health management and system-level diagnosis using
two fault scenarios. This case study does not cover system
level mitigation.

Baseline: No Fault. Figure 8 shows the timed sequence
of events as they happen during the first frame of operation.

These sequence charts were plotted using the plotter package
from OMNeT++8. 0th event marks the start of the module
manager, which then creates the Linux processes for the two
partitions. Each partition then creates its respective (APEX)
processes and signals the module manager. This all happens
before the frames are scheduled. After the occurrence of 0th

event, module manager signals partition 1 to start. Upon start,
partition 1 starts the ORB process that handles all CORBA-
related functions. It then starts the sensor health manager.
Note that all processes are started in an order based on prior-
ity. Finally, it starts the periodic sensor process at event num-
ber 8. The sensor process publishes an event at event number

8http://www.omnetpp.org/

10

Highlight of Events associated with

data production and consumption

across components

#9 #26 #27 #33 #34 #46 #47 #51

Sensor GPS GPS NV Display NV Display NV DisplayGPS GPS

Figure 8. Sequence of Events for a no-fault case. The scale is non-linear.

Figure 9. Sequence of events showing a fault scenario where GPS state is corrupted because the sensor does not update its
output as expected. The sensor component is missing from the time line because it does not produce any event. The sequence
of events also shows local health management action in the GPS and Nav Display.

9 and finishes its execution at event number 10. After 1 mil-
lisecond since its start, partition 1 is stopped by the module
manager at event number 14. Immediately afterwards, parti-
tion 2 is started. Partition 2 starts all its CORBA ORB process
and health managers at the beginning of its period. At event
26, partition 2 starts the periodic GPS consumer process. It
consumes the sensor event at event 27. At event 27, GPS pub-
lisher process produces an event and finishes its execution cy-
cle at 28. The production of GPS event causes the sporadic
release of aperiodic consumer process in Navigation Display
(event 33). The navigation process uses remote procedure
call to invoke the GPS get data ARINC process. The GPS
data value is returned to navigation process at event 49. It
finishes the execution at event 51. Partition 2 is stopped after
1 millisecond from its start. This marks the end of one frame.
Note that these events do not capture the internal functional
logic of the GPS algorithm. Moreover, the claim of No-fault

in this sequence of events is made because of the absence of
any violation of component health monitors.

Fault Scenario: For the next two subsections we consider
a scenario in which Sensor (figure 4) stops publishing data.
First we describe the local component level health manage-
ment action, which includes local detection as well as miti-
gation. Then we will show an example of system level diag-
nosis. System level mitigation has not been included in this
example, as it still work in progress.

Component Level Health Management Example

Validity Violation at GPS Consumer Port. Sensor pub-
lishes an event every 4 milliseconds in the nominal condition.
In this experiment, we injected a fault in the code such the
sensor misses all event publications after its first execution.
Figure 9 shows the experiment events that elapsed after the

11

(a) (b)

Figure 10. (a) CLHM for NavDisplay. It can be triggered by either event e1 or event e2; the programmed mitigation response
is to refuse or abort the call. (b) CLHM for GPS. It can be triggered by either event e1 or event e2. Here Restart is a macro for
STOP action followed by the START action.

sensor fault injection. As can be seen in the figure, there is no
activity in Partition1 because of the sensor-fault (event # 57 to
59). The GPS process is started by partition 2 at event 65. At
this time (event #66), the validity condition specified in the
method that handles the incoming event fails. This condition
checks the Boolean value of a validity flag that is set by the
framework every time the sampling port is read. This validity
flag is set to false if the age of the event stored in the sampling
port is older than the refresh period specified for the sampling
port (4 milliseconds in this case). Upon detection, the GPS
process raises an error at event #67, which causes the release
of GPS health manager at event #68. In this case, the GPS
health manager (see figure 10) publishes a USE PAST DATA
response back at event #68. The USE PAST DATA response
(received in the data in process at event #69) means that the
process can continue and use the previously cached value.

Bad GPS Data at NavDisplay Port The fault introduced due
to the missing sensor event and the GPS’s response of use past
data (event #69) results in a fault in the Navigation-Display
component. Event numbers 73 to 88 in Figure 9 capture the
snapshot corresponding to this experiment. The GPS’s getG-
PSData process sends out bad data at event #78 when queried
by the navigation display at event #75 using the remote pro-
cedure call. The bad data is defined by the rate of change of
GPS data being less than a threshold. This fault simulates an
error in the filtering algorithm in the GPS such that it loses
track of the actual position because the sensor data did not
get updated. . At event #81, the post condition check of the
remote procedure call is violated. This violation is defined
by a threshold on the RATE of change of current GPS data
compared to past data (last sample). The navigation display
component raises an error at event #82 to its CLHM. At event
#86, it receives a REFUSE response from the health manager
(see figure 10(a)). The REFUSE response means that the pro-
cess that detected the fault should immediately abort further
processing and return cleanly. The effect of this action is that
the navigation’s GPS coordinates are not updated as the re-

mote procedure call did not finish without error. The next
subsection discusses the system level health management ac-
tions related to this fault cascade scenario.

System Level Health Management Example

Figure 11 shows the high-level TFPG model for the sys-
tem/assembly described in figure 4. The detailed TFPG-
model specific to each interaction pattern is contained inside
the respective TFPG component model (brown box). The
figure shows failure propagation between the Sensor pub-
lisher (Sensor data out) and GPS consumer(GPS data in),
the GPS publisher (GPS data out) and NavDisplay con-
sumer (NavDisplay data in), the requires method in NavDis-
play(NavDisplay gps data src getGPSData) and the pro-
vides method in GPS (GPS gps data src getGPSData), the
effect of the bad updates on state variables and the entities
updating or reading the state-variables.

System Level Diagnosis Process: Figure 12 shows the as-
sembly in figure 4 augmented with Component and System
level Health Managers and the interaction between them. The
TFPG diagnosis engine hosted inside the SHM component
is instantiated with the generated TFPG model of the sys-
tem/assembly. When it receives the first alarm from a fault
scenario, it reasons about it by generating all hypotheses that
could have possibly triggered the alarm. Each hypothesis lists
its possible failure modes and their possible timing interval,
the triggered-alarms that are supportive of the hypothesis, the
triggered alarms that are inconsistent with the hypothesis, the
missing alarms that should have triggered, and the alarms
that are expected to trigger in future. Additionally, the rea-
soner computes hypothesis metrics such as plausibility and
robustness that provide a means of comparison. The higher
the metrics the more reasonable it is to expect the hypothesis
to be the real cause of the problem. As more alarms are pro-
duced, the hypothesis are further refined. If the new alarms
are supportive of existing hypotheses, they are updated to re-
flect the refinement in their metrics and alarm list. If the new

12

Figure 11. TFPG model for the assembly

13

HypthesisConsumer

SystemHMResponseEngine

(Not Implemented Yet)

AlarmConsumer TopHypothesis

DiagnosisEngine

HMConsumer AlarmPublisher

ModuleAlarmAggregator

data_in

gps_data_src
HMPublisher

data_in

gps_data_src
HMPublisher

NavDisplay Component

HMPublisher

data_in

data_out

gps_data_src

HMPublisher

data_in

data_out

gps_data_src

GPS Component

HMPublisher

data_out

HMPublisher

data_out

Sensor Component

-,4

-,4

4,4

28916:Partition3|1273281809.360706622|HME|RECEIVED Monitor: Error Code 2, Component 2, Process 7, Partition 1, Local HM Action 5, time 1273281808760746705
28916:Partition3|1273281809.360952393|HME|RECEIVED Monitor: Error Code 5, Component 3, Process 11, Partition 1, Local HM Action 0, time 1273281808761494007
28916:Partition3|1273281813.360637128|HME|RECEIVED Monitor: Error Code 2, Component 2, Process 7, Partition 1, Local HM Action 5, time 1273281812760731758
28916:Partition3|1273281813.360889186|HME|RECEIVED Monitor: Error Code 5, Component 3, Process 11, Partition 1, Local HM Action 0, time 1273281812761455453
28916:Partition3|1273281821.360642647|HME|RECEIVED Monitor: Error Code 5, Component 3, Process 11, Partition 1, Local HM Action 0, time 1273281820761304597

Output Of Alarm Aggregator

1. ===============[Alarm Monitor AM_GPS_data_in_VALIDITY_FAILURE Triggered at TIME = 24.3411 ============================
2. ===============[TFPG REASONSER INVOKED. TIME = 24.3411 ============================
3. =================[UPDATING ALARMS TRIGGERED.]=================
4. =====================[DISCREPANCY ALARM DISC_GPS_data_in_VALIDITY_FAILURE [AM_GPS_data_in_VALIDITY_FAILURE TRIGGERED]=============
5. =================[Hypothesis Group 1]=================
6. Fault: FM_Sensor_data_out_USER_CODE Component: GPSAssembly failure rate: 0.000000 earliest time: 0.000000 latest time: 24.341104
7. ------- Supporting Alarms :DISC_GPS_data_in_VALIDITY_FAILURE [AM_GPS_data_in_VALIDITY_FAILURE]
8. ------- Expected Alarms :DISC_NavDisplay_gps_data_source_getGPSData_POSTCONDITION_FAILURE [AM_NavDisplay_gps_data_source_getGPSData_POSTCONDITION_FAILURE]
9. ------- Plausibility: 100.000000 Robustness: 50.000000 FRMetric: 0
10. =================[Hypothesis Group 2]=================
11. Fault: Sensor__LOCK_PROBLEM Component: GPSAssembly failure rate: 0.000000 earliest time: 0.000000 latest time: 24.341104
12. ------- Supporting Alarms :DISC_GPS_data_in_VALIDITY_FAILURE [AM_GPS_data_in_VALIDITY_FAILURE]
13. ------- Expected Alarms :DISC_NavDisplay_gps_data_source_getGPSData_POSTCONDITION_FAILURE [AM_NavDisplay_gps_data_source_getGPSData_POSTCONDITION_FAILURE]
14. ------- Plausibility: 100.000000 Robustness: 50.000000 FRMetric: 0
15. ===============[Alarm Monitor AM_NavDisplay_gps_data_source_getGPSData_POSTCONDITION_FAILURE Triggered at TIME = 24.3417 ====================
16. ===============[TFPG REASONSER INVOKED. TIME = 24.3417 ============================
17. =================[UPDATING ALARMS TRIGGERED.]=================
18. =====================[DISCREPANCY ALARM DISC_NavDisplay_gps_data_source_getGPSData_POSTCONDITION_FAILURE [
AM_NavDisplay_gps_data_source_getGPSData_POSTCONDITION_FAILURE TRIGGERED]====================
19. =================[Hypothesis Group 1]=================
20. Fault: FM_Sensor_data_out_USER_CODE Component: GPSAssembly failure rate: 0.000000 earliest time: 0.000000 latest time: 24.341104
21. ------- Supporting Alarms :DISC_GPS_data_in_VALIDITY_FAILURE [AM_GPS_data_in_VALIDITY_FAILURE]DISC_NavDisplay_gps_data_source_getGPSData_POSTCONDITION_FAILURE [
AM_NavDisplay_gps_data_source_getGPSData_POSTCONDITION_FAILURE]
22. ------- Plausibility: 100.000000 Robustness: 100.000000 FRMetric: 0
23. =================[Hypothesis Group 2]=================
24. Fault: Sensor__LOCK_PROBLEM Component: GPSAssembly failure rate: 0.000000 earliest time: 0.000000 latest time: 24.341104
25. ------- Supporting Alarms :DISC_GPS_data_in_VALIDITY_FAILURE [AM_GPS_data_in_VALIDITY_FAILURE]DISC_NavDisplay_gps_data_source_getGPSData_POSTCONDITION_FAILURE [
AM_NavDisplay_gps_data_source_getGPSData_POSTCONDITION_FAILURE]
26. ------- Plausibility: 100.000000 Robustness: 100.000000 FRMetric: 0

Output Of Diagnosis Engine

Figure 12. This figures shows augmentation of the assembly shown in figure 4 with an alarm aggregator component, the
diagnosis engine, and the system level response engine. Details of this last component are not in this paper, as it is the subject
of our ongoing research. Also shown are the results from the alarm aggregator and the diagnosis engine.

alarms are not supportive of any of the existing hypotheses
with the highest plausibility, then the reasoner refines these
hypotheses such that hypotheses can explain these alarms.

Figure 12 also shows the TFPG-results for fault scenario un-
der study. The initial alarm is generated because of data-
validity violations in the consumer of the GPS component.
When this alarm was reported to the local Component Health
manager, it issued a response directing the GPS component
to use past data (USE PAST DATA). While the issue was re-
solved local to the GPS component, the combined effect of
the failure and mitigation action propagated to the Naviga-
tion Display component. In the Navigation Display compo-
nent, a monitor observing the post-condition violation on a
Required interface was triggered because the GPS-data vali-
dated its constraints. These two alarms were sent to the Sys-
tem Health Manager and processed by the TFPG-Diagnoser.

As can be seen from the results, the system correctly gener-
ated two hypotheses (figure 12, lines 20 and 24). The first

hypothesis blamed the sensor component lock to be the root
problem. The second hypothesis blamed the user level code
in the sensor publisher process to be the root failure mode. In
this situation the second hypothesis was the true cause. How-
ever, because in this example lock time out monitors were
not specified the diagnoser was not able to reasonably disam-
biguate between the two possibilities.

9. RELATED WORK

One notable approach to system health management for phys-
ical systems is to design a controller that inherently drives the
system back in safe region upon failure of a system. This
is the basis of goal-based control paradigm [29] that sup-
ports a deductive controller that is responsible for observing
the plant’s state (mode estimation) and issuing commands to
move the plant through a sequence of states that achieves the
specified goal. This approach inherently provides for fault re-
covery (to the extent feasible) by using the control program to
set an appropriate configuration goal that attempts to negate

14

the problems caused by faults in the physical system. How-
ever, these control algorithms are themselves typically imple-
mented in software and are therefore reliant on the fault-free
behavior of related software components.

Formal argument for checking correctness of execution of a
computer program based on a first order logic system was first
presented by Hoare in [16]. Later this concept was extended
to distributed systems by Meyer in [21], [17]. A contract im-
plemented by Meyer specified the requires and ensure clauses
as assertions specified by a list of boolean expressions. These
assertions were specified as logic operations upon the value
domain of the program variables and were compiled out in
the running system. In ACM, these correctness conditions are
specified by preconditions and post conditions, which can be
defined over both the value-domain and temporal domain of
program variables as well as the state variables belonging to
the component. We envision that these checks are performed
in real-time on the system. This is especially necessary be-
cause there is a high likelihood for software defects being
present in complex systems that arise only under exceptional
circumstances. These circumstances may include faults in
the hardware system (including both the computing and non-
computing hardware) - software is very often not prepared for
hardware faults [13].

Conmy et al. presented a framework for certifying Inte-
grated Modular Avionics applications build on ARINC-653
platforms in [9]. Their main approach was the use of ‘safety
contracts’ to validate the system at design time. They defined
the relationship between two or more components within a
safety critical system. However, they did not present any de-
tails on the nature of these contracts and how they can be
specified. We believe that a similar approach can be taken
to formulate acceptance criteria, in terms of “correct” value-
domain and temporal-domain properties that will let us detect
any deviation in a component’s behavior.

Nicholson presented the concept of reconfiguration in inte-
grated modular systems running on operating systems that
provide robust spatial and temporal partitioning in [22]. He
identified that health monitoring is critical for a safety-critical
software system and that in the future it will be necessary to
trade-off redundancy based fault tolerance for the ability of
“reconfiguration on failure” while still operational. He de-
scribed that a possibility for achieving this goal is to use a
set of lookup tables, similar to the health monitoring tables
used in ARINC-653 system specification, that maps trigger
event to a set of system blue-prints providing the mapping
functions. Furthermore, he identified that this kind of recon-
figuration is more amenable to failures that happen gradually,
indicated by parameter deviations.

Goldberg and Horvath have discussed discrepancy monitor-
ing in the context of ARINC-653 health-management archi-
tecture in [14]. They describe extensions to the application
executive component, software instrumentation and a tempo-

ral logic run-time framework. Their method primarily de-
pends on modeling the expected timed behavior of a process,
a partition, or a core module - the different levels of fault-
protection layers. All behavior models contain “faulty states”
which represent the violation of an expected property. They
associate mitigation functions using callbacks with each fault.

Sammapun et al. describe a run-time verification approach
for properties written in a timed variant of LTL called MEDL
in [26]. They described an architecture called RT-MaC for
checking the properties of a target program during run-time.
All properties are evaluated based on a sequence of obser-
vations made on a “target program”. To make these observa-
tions all target programs are modified to include a “filter” that
generates the interesting event and reports values to the event
recognizer. The event recognizer is a module that forwards
the events to a checker that can check the property. Timing
properties are checked by using watchdog timers on the ma-
chines executing the target program. Main difference in this
approach and the approach of Goldberg and Horvath outlined
in previous paragraph is that RT-MaC supports an “until” op-
erator that allows specification of a time bound where a given
property must hold. Both of these efforts provided valuable
input to our design of run-time component level health man-
agement.

10. SUMMARY

This paper presented our first steps towards building a Soft-
ware Health Management technology that extends beyond
classical software fault tolerance techniques. In the ap-
proach, we briefly discussed our framework first that com-
bines component-oriented software construction with a real-
time operating system with partitioning capability (ARINC
653). Based on this framework, we defined an approach for
‘Component-level Software Health Management’ and created
a model-based toolsuite (modeling tool, generators, and soft-
ware platform) that supports the model-driven engineering of
component-based systems with health management services.

We also showed how we can perform system-level diagno-
sis, which is required for system level health management,
where faults occur in and propagate across many compo-
nents. Our diagnosis procedure is based on a Timed Fail-
ure Propagation model for the system, automatically synthe-
sized from the software assembly models. Our current work
is focusing on extending the component level mitigation pro-
cedure to the system-level, where more sophisticated miti-
gation logic is necessary. We also plan to extend this work
to the entire, larger system: a cyber-physical system, like a
large sub-system of an aerospace vehicle, that may have its
own, non-software failure modes. The challenge in that level
is to integrate health management across the entire hardware
/ software ensemble. Additionally, we hope to leverage our
work with distributed TFPG reasoners [20] and explore a dis-
tributed health management approach that addresses issues
related to single point of failures, scalability, and other issues.

15

APPENDIX

1. BACKGROUND ON ARINC-653
The ARINC-653 software specification describes the stan-
dard Application Executive (APEX) kernel and associated
services that should be supported by safety-critical real-time
operating system (RTOS) used in avionics. It has also been
proposed as the standard operating system interface on space
missions [10]. The APEX kernel in such systems is required
to provide robust spatial and temporal partitioning. The pur-
pose of such partitioning is to provide functional separation
between applications for fault-containment. A partition in
this environment is similar to an application process in regu-
lar operating systems, however, it is completely isolated, both
spatially and temporally, from other partitions in the system
and it also acts as a fault-containment unit. It also provides
a reactive health monitoring service that supports recovery
actions by using call-back functions, which are mapped to
specific error conditions in configuration tables at the parti-
tion/module/system level.

Spatial partitioning [14] ensures exclusive use of a memory
region for a partition by an ARINC process (unless other-
wise mentioned, a ‘process’ is meant to be understood as an
‘ARINC Process’ throughout this paper). It is similar to a
thread in regular operating systems. Each partition has prede-
termined areas of allocated memory and its processes are pro-
hibited from accessing memory outside of the partition’s de-
fined memory area. The protection for memory is enforced by
the use of memory management hardware. This guarantees
that a faulty process in a partition cannot ruin the data struc-
tures of other processes in different partitions. For instance,
space partitioning can be used to separate the low-criticality
vehicle management components from safety-critical flight
control components. Faults in the vehicle management com-
ponents must not destroy or interfere with the flight control
components, and this property could be ensured via the parti-
tioning mechanism.

Temporal partitioning [14] refers to the strict time-slicing of
partitions, guaranteeing access for the partitions to the pro-
cessing resource(s) according to a fixed, periodic schedule.
The operating system core (supported by hardware timer de-
vices) is responsible for enforcing the partitioning and man-
aging the individual partitions. The partitions are scheduled
on a fixed-time basis, and the order and timing of partitions
are defined at configuration time. This provides determinis-
tic scheduling whereby the partitions are allowed to access
the processor or other hardware resources for only a prede-
termined period of time. Temporal partitioning guarantees
that a partition has exclusive access to the resources during
its assigned time period. It also guarantees that when the pre-
determined period of execution time of a partition is over, the
execution of the partition will be interrupted and the partition
itself will be put into a dormant state. Then, the next partition
in the schedule order will be granted the right to execution.
Note that all shared hardware resources must be managed by

the partitioning operating system in order to ensure that con-
trol of the resource is relinquished when the time-slice for the
corresponding partition expires.

2. BACKGROUND ON TFPG
Timed failure propagation graphs (TFPG) are causal models
that capture the temporal characteristics of failure propaga-
tion in dynamic systems. A TFPG is a labeled directed graph.
Nodes in graph represent either failure modes (fault causes),
or discrepancies (off-nominal conditions that are the effects
of failure modes). Edges between nodes capture the propaga-
tion of the failure effect. Formally, a TFPG is represented as
a tuple (F,D,E,M,A), where:

• F is a nonempty set of failure nodes.
• D is a nonempty set of discrepancy nodes. Each discrep-
ancy node is of AND or OR type.9. Further, if a discrepancy
is observable then it is associated with an alarm.
• E ⊆ V ×V is a set of edges connecting the set of all nodes
V = F ∪D. Each edge has a minimum and a maximum time
interval within which the failure effect will propagate from
the source to the destination node. Further, an edge can be
active or inactive based on the state of its associated system
modes.
• M is a nonempty set of system modes.
• A is a nonempty set of alarms.

The TFPG model serves as the basis for a robust online di-
agnosis scheme that reasons about the system failures based
on the events (alarms and modes) observed in real-time[15],
[7],[6]. The model is used to derive efficient reasoning algo-
rithms that implement fault diagnostics: fault source identifi-
cation by tracing observed discrepancies back to their orig-
inating failure modes. The TFPG approach has been ap-
plied and evaluated for various aerospace and industrial sys-
tems[24]. More recently, a distributed approach has been de-
veloped for reasoning with TFPG[20].

ACKNOWLEDGMENTS

This paper is based upon work supported by NASA under
award NNX08AY49A. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of the
National Aeronautics and Space Administration. The authors
would like to thank Dr Paul Miner, Eric Cooper, and Suzette
Person of NASA LaRC for their help and guidance on the
project.

REFERENCES

[1] “Arinc specification 653-2: Avionics application soft-
ware standard interface part 1 - required services,” Tech.
Rep.

[2] “Mathworks, Inc., www.mathworks.com.”

9An OR(AND) type discrepancy node will be activated when the failure
propagates to the node from any (all) of its predecessor nodes.

16

[3] “Model-Driven Architecture,” www.omg.org/mda.

[4] “Model-Integrated Computing,” http://www.isis.
vanderbilt.edu/research/MIC.

[5] “National Instruments,” www.ni.com.

[6] S. Abdelwahed, G. Karsai, N. Mahadevan, and S. C.
Ofsthun, “Practical considerations in systems diagnosis
using timed failure propagation graph models,” Instru-
mentation and Measurement, IEEE Transactions on,
vol. 58, no. 2, pp. 240–247, February 2009.

[7] S. Abdelwahed, G. Karsai, and G. Biswas, “A
consistency-based robust diagnosis approach for tempo-
ral causal systems,” in in The 16th International Work-
shop on Principles of Diagnosis, 2005, pp. 73–79.

[8] R. Butler, “A primer on architectural level
fault tolerance,” NASA Scientific and Techni-
cal Information (STI) Program Office, Report
No. NASA/TM-2008-215108, Tech. Rep., 2008.
[Online]. Available: http://shemesh.larc.nasa.gov/fm/
papers/Butler-TM-2008-215108-Primer-FT.pdf

[9] P. Conmy, J. McDermid, and M. Nicholson, “Safety
analysis and certification of open distributed systems,”
in International System Safety Conference,, Denver,
2002.

[10] N. Diniz and J. Rufino, “ARINC 653 in space,” in Data
Systems in Aerospace. European Space Agency, May
2005.

[11] A. Dubey, G. Karsai, R. Kereskenyi, and N. Mahade-
van, “A real-time component framework: Experience
with ccm and arinc-653,” Object-Oriented Real-Time
Distributed Computing, IEEE International Symposium
on, pp. 143–150, 2010.

[12] A. Dubey, G. Karsai, and N. Mahadevan, “A component
model for hard-real time systems: Ccm with arinc-653,”
Softw., Pract. Exper., to Appear.

[13] ——, “Towards model-based software health man-
agement for real-time systems.” Institute for Soft-
ware Integrated Systems, Vanderbilt University, Tech.
Rep. ISIS-10-106, August 2010. [Online]. Available:
http://isis.vanderbilt.edu/node/4196

[14] A. Goldberg and G. Horvath, “Software fault protection
with ARINC 653,” in Proc. IEEE Aerospace Confer-
ence, March 2007, pp. 1–11.

[15] S. Hayden, N. Oza, R. Mah, R. Mackey, S. Narasimhan,
G. Karsai, S. Poll, S. Deb, and M. Shirley, “Diagnostic
technology evaluation report for on-board crew launch
vehicle,” NASA, Tech. Rep., 2006.

[16] C. A. R. Hoare, “An axiomatic basis for computer pro-
gramming,” Commun. ACM, vol. 12, no. 10, pp. 576–
580, 1969.

[17] J.-M. Jézéquel and B. Meyer, “Design by contract: The
lessons of ariane,” Computer, vol. 30, no. 1, pp. 129–
130, 1997.

[18] S. Johnson, Ed., System Health Management: With
Aerospace Applications. John Wiley & Sons, Inc,
Based on papers from First International Forum on Inte-
grated System Health Engineering and Management in
Aerospace, 2005. To Appear in 2011.

[19] M. R. Lyu, Software Fault Tolerance. John Wiley &
Sons, Inc, 1995, vol. New York, NY, USA. [Online].
Available: http://www.cse.cuhk.edu.hk/∼lyu/book/sft/

[20] N. Mahadevan, S. Abdelwahed, A. Dubey, and G. Kar-
sai, “Distributed diagnosis of complex causal sys-
tems using timed failure propagation graph models,” in
IEEE Systems Readiness Technology Conference, AU-
TOTESTCON, 2010.

[21] B. Meyer, “Applying “design by contract”,” Computer,
vol. 25, no. 10, pp. 40–51, 1992.

[22] M. Nicholson, “Health monitoring for reconfigurable
integrated control systems,” Constituents of Modern
System safety Thinking. Proceedings of the Thirteenth
Safety-critical Systems Symposium., vol. 5, pp. 149–
162, 2007.

[23] S. Ofsthun, “Integrated vehicle health management
for aerospace platforms,” Instrumentation Measurement
Magazine, IEEE, vol. 5, no. 3, pp. 21 – 24, Sep. 2002.

[24] S. C. Ofsthun and S. Abdelwahed, “Practical applica-
tions of timed failure propagation graphs for vehicle di-
agnosis,” in Proc. IEEE Autotestcon, 17–20 Sept. 2007,
pp. 250–259.

[25] A. Puder, “MICO: An open source CORBA implemen-
tation,” IEEE Softw., vol. 21, no. 4, pp. 17–19, 2004.

[26] U. Sammapun, I. Lee, and O. Sokolsky, “RT-MaC: run-
time monitoring and checking of quantitative and prob-
abilistic properties,” in Proc. 11th IEEE International
Conference on Embedded and Real-Time Computing
Systems and Applications, 17–19 Aug. 2005, pp. 147–
153.

[27] W. Torres-Pomales, “Software fault tolerance: A
tutorial,” NASA, Tech. Rep., 2000. [Online]. Avail-
able: http://citeseerx.ist.psu.edu/viewdoc/summary?
doi=10.1.1.32.8307

[28] M. Wallace, “Modular architectural representation and
analysis of fault propagation and transformation,” Elec-
tron. Notes Theor. Comput. Sci., vol. 141, no. 3, pp. 53–
71, 2005.

[29] B. C. Williams, M. Ingham, S. Chung, P. Elliott,
M. Hofbaur, and G. T. Sullivan, “Model-based program-
ming of fault-aware systems,” AI Magazine, vol. 24,
no. 4, pp. 61–75, 2004.

17

BIOGRAPHY[

Abhishek Dubey is a Research Sci-
entist at the Institute for Software In-
tegrated Systems at Vanderbilt Univer-
sity. He has nine years of experience
in software engineering. He conducts
research in theory and application of
model-predictive control for managing
performance of distributed computing

systems, in design of fault-tolerant software frameworks for
scientific computing, in practice of model-integrated comput-
ing, and in fault-adaptive control technology for software in
hard real-time systems. He received his Bachelors from the
Institute of Technology, Banaras Hindu University, India in
2001, and received his M.S and PhD from Vanderbilt Univer-
sity in 2005 and 2009 respectively. He has published over 20
research papers and is a member of IEEE.

Gabor Karsai is Professor of Electrical
and Computer Engineering at Vanderbilt
University and Senior Research Scientist
at the Institute for Software-Integrated.
He has over twenty years of experience
in software engineering. He conducts re-
search in the design and implementation
of advanced software systems for real-

time, intelligent control systems, and in programming tools
for building visual programming environments, and in the
theory and practice of model-integrated computing. He re-
ceived his BSc and MSc from the Technical University of
Budapest, in 1982 and 1984, respectively, and his PhD from
Vanderbilt University in 1988, all in electrical and computer
engineering. He has published over 100 papers, and he is the
co-author of four patents.

Nagabhushan Mahadevan is a Se-
nior Staff Engineer at the Institute for
Software Integrated Systems (ISIS), De-
partment of Electrical Engineering and
Computer Science, Vanderbilt Univer-
sity, Nashville, TN, where his work is fo-
cused on using model-based techniques
towards diagnosis, distributed diagno-

sis, software health management, adaptation of software-
intensive systems and quality-of-service management. He re-
ceived his M.S. degree in Computer Engineering and Chem-
ical Engineering from the University of South Carolina,
Columbia, and B.E.(Hons.) degree in Chemical Engineering
from Birla Institute of Technology and Science, Pilani, India.

18

