
Application of Software Health Management Techniques∗

Nagabhushan Mahadevan
Institute for Software
Integrated Systems

Vanderbilt University
Nashville TN

Abhishek Dubey
Institute for Software
Integrated Systems
Vanderbilt University

Nashville TN

Gabor Karsai
Institute for Software
Integrated Systems
Vanderbilt University

Nashville TN

ABSTRACT
The growing complexity of software used in large-scale, safety
critical cyber-physical systems makes it increasingly diffi-
cult to expose and hence correct all potential defects. There
is a need to augment the existing fault tolerance method-
ologies with new approaches that address latent software
defects exposed at runtime. This paper describes an ap-
proach that borrows and adapts traditional ‘System Health
Management’ techniques to improve software dependability
through simple formal specification of runtime monitoring,
diagnosis, and mitigation strategies. The two-level approach
to health management at the component and system level is
demonstrated on a simulated case study of an Air Data In-
ertial Reference Unit (ADIRU). An ADIRU was categorized
as the primary failure source for the in-flight upset caused in
the Malaysian Air flight 124 over Perth, Australia in 2005.

Categories and Subject Descriptors
C.4 [Performance of Systems]: [Fault tolerance]; D.2.0
[Software Engineering]: General—Protection mechanisms;
D.2.4 [Software Engineering]: Testing and Debugging
—Diagnostics; D.4.7 [Operating Systems]: Organization
and Design—Distributed systems, Real-time systems and em-
bedded systems

General Terms
Reliability, Design, Management, Experimentation

Keywords
Fault Diagnosis and Mitigation, Real-Time Systems

∗This paper is based upon work supported by NASA un-
der award NNX08AY49A. Any opinions, findings, and con-
clusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the
views of the National Aeronautics and Space Administra-
tion. The authors thank Dr Paul Miner, Eric Cooper, and
Suzette Person of NASA LaRC for their help and guidance
on the project.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

1. INTRODUCTION
Due to the increasing software complexity in modern cyber-

physical systems there is a likelihood of latent software de-
fects that can escape the existing rigorous testing and veri-
fication techniques but manifest only under exceptional cir-
cumstances. These circumstances may include faults in the
hardware system, including both the computing and non-
computing hardware. Often, systems are not prepared for
such faults. Such problems have led to a number of fail-
ure incidents in the past, including but not limited to those
referred to in these reports: [26, 6, 7, 18].

State of the art for safety critical systems is to employ
software fault tolerance techniques that rely on redundancy
and voting [23, 34, 9]. However, it is clear that existing tech-
niques do not provide adequate coverage for problems such
as common-mode faults and latent design bugs triggered by
other faults. Additional techniques are required to make the
systems self-managing, i.e. they have to provide resilience
to faults by adaptively mitigating faults and failures.

Self-adaptive systems, while in operation, must be able
to adapt to latent faults in their implementation, in the
computing and non-computing hardware; even if they ap-
pear simultaneously. Software Health Management (SHM)
is a systematic extension of classical software fault toler-
ance techniques that aims at implementing the vision of
self-adaptive software using techniques borrowed from Sys-
tem Health Management for complex engineering systems.
System health management typically includes anomaly de-
tection, fault source identification (diagnosis), fault effect
mitigation (in operation), maintenance (offline), and fault
prognostics (online or offline) [27, 20]. Note that SHM can
be considered as a dynamic fault removal technique [5]. It
is performed at run-time, and it includes detection, isola-
tion, and mitigation actions to remove fault effects. System
health management also includes prognostics and possibly
Software Health Management can be extended in that di-
rection as well, but we have not investigated it yet.

Our research group has been involved in developing tools
and techniques, including a hard real-time component frame-
work built over the platform services provided by ARINC-
653 compliant operating systems [1], for software health
management [15, 16]. The core principle behind our ap-
proach is the thesis that it is indeed possible to deduce the
behavioral dependencies and failure propagation across an
assembly of software components, if the interactions between
those components are restricted and well-defined. Here,
components imply software units that encapsulate parts of
a software system and implement specific service(s). Simi-DRAFT

lar approaches can be found in [12, 35]. The key difference
between those and our work is that we apply an online di-
agnosis engine coupled with a two-level mitigation scheme.

In this paper, we provide a description and discussion of
our work with respect to a case study that approximately
emulates the working of an Air Data Inertial Reference Unit
(ADIRU) used on Boeing 777 aircraft. Our goal is to show
how an SHM architecture can be used to detect, diagnose,
and mitigate the effects of component level failures such
that the system-wide functionality is preserved. This work
extends our previous works [15, 16] to allow multi-module
systems working on different physical computers. We also
extended the detection functionality developed earlier for
monitoring the correctness of data on all ports to enable ob-
servers that can also monitor the sequence of activities in-
side a component. We have created the necessary software
infrastructure to close the loop from detecting an anomaly
and diagnosing a component failure to issuing the necessary
mitigation actions in real-time.

Paper Outline: Section 2 reviews related research, sec-
tion 3 describes the motivating example: the incident caused
by a software malfunction and the ADIRU architecture. Sec-
tion 4 presents the concepts and capabilities of the soft-
ware component framework. Sections 5-6 describe the im-
plemented case study and explain our approach to software
health management. We conclude with a discussion of re-
sults and a summary. Note that the paper focuses on the
case study. Details of the technological background are avail-
able in other papers [15, 14, 16, 13].

2. RELATED RESEARCH
The work described here fits in the general area of self-

adaptive software systems, for which a research roadmap has
been presented in [10]. Our approach focuses on latent faults
in software systems, follows a component-based architecture,
with a model-based development process, and implements
all steps in the Collect/Analyze/Decide/Act loop.

Rohr et al. advocate the use of architectural models for
self-management [30]. They suggest the use of a runtime
model to reflect the system state and provide reconfigura-
tion functionality. From a development model they generate
a causal graph over various possible states of its architectural
entities. At the core of their approach, they use specifica-
tions based on UML to define constraints, monitoring and
reconfiguration operations at development time.

Garlan et al. [17] and Dashofy et al. [11] have proposed
an approach which bases system adaptation on architectural
models representing the system as a composition of several
components, their interconnections, and properties of inter-
est. Their work follows the theme of Rohr et al., where
architectural models are used at runtime to track system
state and make reconfiguration decisions using rule-based
strategies.

While these works have tended to the structural part of
the self-managing computing components, some have em-
phasized the need for behavioral modeling of the compo-
nents. For example, Zhang et al. described an approach to
specify the behavior of adaptable programs in [40]. Their
approach is based on separating the adaptation behavior
specification from the non-adaptive behavior specification
in autonomic computing software. They model the source
and target models for the program using state charts and
then specify an adaptation model, i.e., the model for the

adaptation set connecting the source model to the target
model using a variant of Linear Temporal Logic [39].

Williams’ research [29] concentrates on model-based au-
tonomy. The paper suggests that emphasis should be on de-
veloping techniques to enable the software to recognize that
it has failed and to recover from the failure. Their technique
lies in the use of a Reactive Model-based Programming Lan-
guage (RMPL)[37] for specifying both correct and faulty be-
havior of the software components. They also use high-level
control programs [38] for guiding the system to the desirable
behaviors.

Lately, the focus has started to shift to formalize the
software engineering concepts for self-management. In [22],
Lightstone suggested that systems should be made “just suf-
ficiently” self-managing and should not have any unneces-
sary complicated function. Shaw proposes a practical pro-
cess control approach for autonomic systems in [31]. The
author maintains that several dependability models com-
monly used in autonomic computing are impractical as they
require precise specifications that are hard to obtain. It
is suggested that practical systems should use development
models that include the variability and unpredictability of
the environment. Additionally, the development methods
should not pursue absolute correctness (regarding adaption)
but should rather focus on the fitness for the intended task,
or sufficient correctness. Several authors have also consid-
ered the application of traditional requirements engineering
to the development of autonomic computing systems [8, 33].

The work described here is closely related to the larger
field of software fault tolerance: principles, methods, tech-
niques, and tools that ensure that a system can survive soft-
ware defects that manifest themselves at run-time [24], [28].
Arguably, our approach comes closest to dynamic software
fault removal, performed at run-time. The overall architec-
ture presented below shows a specific implementation of the
functions needed to perform this task.

3. CASE STUDY: THE ADIRU
In 2005, the flight computer of Malaysian Air flight 124 -

a Boeing 777, flying to Kuala Lumpur from Perth registered
excessive acceleration values in all three body axes - verti-
cal acceleration changed to -2.3g within 0.5 seconds, lateral
acceleration decreased to -1.01g within 0.5 second and the
longitudinal acceleration increased to +1.2g within 0.5 sec-
ond. As a result, the flight computer pitched the aircraft
up and commanded it to a steep climb. Thereafter, the air-
speed decreased and the aircraft descended. Re-engagement
of autopilot was followed by another climb of 2,000 ft. The
investigation report [6] revealed that the problem was caused
due to an anomaly in the fault masking software in the air-
craft’s primary Air Data Inertial Reference Unit (ADIRU).
An ADIRU provides airspeed, angle of attack, altitude as
well as inertial position and attitude information to other
flight systems. To understand the scenario we need to briefly
summarize the ADIRU architecture.

ADIRU Architecture: The primary design principle in
Boeing 777’s ADIRU Architecture [25, 32] is multiple lev-
els of redundancy. There are two ADIRU units: primary
and secondary. The primary ADIRU is divided into 4 Fault
Containment Areas (FCA), with each FCA containing mul-
tiple Fault Containment Modules (FCM): accelerometers (6
FCM), gyros (6 FCM), processors (4 FCM), power supplies
(3 FCM), ARINC 629 bus (3 FCM). The ADIRU systemDRAFT

was designed to be serviceable, with no need of maintenance
with one fault in each FCA. Systems can still fly with two
faults, but it necessitates maintenance upon landing. A sec-
ondary unit, the S(econdary)AARU also provided inertial
data. The flight computer compares the data received from
primary unit and secondary unit before using it.

Accelerometers and gyros are arranged on the face of a do-
decahedron in a skewed redundant configuration [25]. Thus,
any four accelerometers and gyros are sufficient to calculate
the linear acceleration in the body inertial reference frame
and angular velocity in the fixed frame of reference. This
calculation is replicated in parallel by each one of 4 proces-
sors.

Failure Analysis: Post-flight analysis [6] revealed that
in 2001 accelerometer 5 had failed with high output values
and was subsequently marked as faulty. However, because
there was only one failure no maintenance was requested on
the unit, but the status of failed unit was recorded in on-
board maintenance memory. However, on the day of the
incident, a power cycle on the primary ADIRU occurred,
during flight. Upon reset, the processors did not check the
status of the on-board memory and hence did not regard ac-
celerometer 5 as faulty. Thereafter, a second in-flight fault
was recorded in the accelerometer 6 and was disregarded.
Till the time of the incident the ADIRU processors used a
set of equations for acceleration estimation that disregarded
the values measured by accelerometer 5. However, the fault
in accelerometer 6 necessitated a reconfiguration to use a
different set of estimation equations. At this point, they al-
lowed the use of accelerometers 1 to 5 as accelerometer 5
was not regarded as faulty, passing the abnormal high accel-
eration values to all flight computers. Due to common-mode
nature of the fault, voters allowed the incorrect accelerom-
eter data to go out on all channels. This high value was
used by primary flight computers, although a comparison
function used by the flight computers lessened the effect.
In summary, a latent software bug and the common-mode
nature of the accelerometer fault bypassed the redundancy
checks and caused the effect to cascade into a system failure
[19].

In the rest of this paper, we will show that such prob-
lems can be avoided by augmenting the redundancy-based
fault protection by a real-time health management frame-
work that can perform system-level detection, diagnosis, and
mitigation. To demonstrate our approach we emulated the
necessary components1 of the ADIRU using the hard real-
time ARINC-653 Component Framework [15].

4. THE ARINC COMPONENT MODEL
Our approach to Software Health Management is based

on a component-oriented architecture that assumes a com-
ponent model that includes strict rules for component inter-
actions. For our research we have defined a specific com-
ponent model: the ARINC-653 Component Model (ACM)
that is implemented by a runtime software layer called the
ARINC Component Framework (ACF). ACM borrows con-
cepts from other software component frameworks, notably
from the CORBA Component Model (CCM) [36], and is
built upon the capabilities of ARINC-653 [1]: the state of
the art operating system standard used in Integrated Mod-
ular Avionics. A key concept in ARINC-653 is spatial and

1We did not emulate the gyros and actual flight control logic.

temporal isolation among partitions, where partitions host
computational processes.

In ACM, a component can have four kinds of external
ports for interactions: publishers, consumers, facets
(provided interfaces2) and receptacles (required interfaces).
Each port has an interface type (a named collection of meth-
ods) or an event type (a structure). The component can
interact with other components through synchronous cal-
l/return interfaces (assigned to provided or required ports),
and/or via asynchronous publish/subscribe event connec-
tions (assigned to publisher and consumer ports). Addi-
tionally, a component can host internal methods that are
periodically triggered.

Unlike CCM frameworks, where the functional logic be-
longing to a port is executed on a new or pre-existing but dy-
namically allocated worker-thread, here the port’s functional
logic is statically bound to a unique ARINC-653 process.
Therefore, each port can be periodic (i.e. time triggered),
or aperiodic (i.e. event triggered). This binding is defined
and configured during initialization. Given that a provided
interface can have more than one method, every method is
allocated to a separate process. At any time, only one pro-
cess per component is allowed to be in the running state,
thus each process must obtain a component lock before it
can execute. During design, the developers must identify
the real-time properties for each component port, including
frequency, deadline, worst case execution time etc.

Model-based design: ACF comes with a modeling lan-
guage built using our model integrated computing tools (http:
//www.isis.vanderbilt.edu/research/MIC) that allows the
developers to model a component and the set of interfaces
it provides independent of the actual deployment configura-
tion. This enables a preliminary, constraint-based analysis
of the system. Such an analysis can be used to check, for
instance, type compatibility among connected ports. The
model captures the component’s real-time properties and
resource requirements using a domain specific modeling lan-
guage. System integrators then configure software assem-
blies specifying the architecture of the system built from
interacting components.

The deployment configuration consists of processors
uniquely mapped to ARINC-653 modules, with each mod-
ule containing one or more partitions. These partitions are
temporally and spatially isolated. System integrators map
one or more components in the assembly to a partition.

Component developers can also specify local monitors and
local health management actions for each component (de-
scribed later using the case study example). Once the as-
sembly has been specified, system integrators are required
to specify the models for system-level health management
(described later).

Software Health Management in ACF: Within the
framework there are various levels at which health manage-
ment techniques can be applied, ranging from the level of in-
dividual components or the level of subsystems to the whole
system. In the current work, we have focused on two lev-
els of software health management: component level that is
limited to the component, and the system level that includes
global information for performing diagnosis to identify the
root failure mode(s) and components.

Component-Level Health Management: (CLHM) pro-

2An interface is a collection of related methods.DRAFT

http://www.isis.vanderbilt.edu/research/MIC
http://www.isis.vanderbilt.edu/research/MIC

Component Port Period Deadline
Accelerometer Acc 1sec 1sec

Processor Ac1-Ac6 -1sec 1sec
Processor Out -1sec 1sec

Voter Co1-Co4 -1sec 1sec
Voter Out -1sec 1sec

Display Cl,Cc,Cr -1sec 1sec

Figure 1: Model for the ADIRU Assembly. -1 de-
notes an aperiodic process.

vides localized and limited functionality for managing the
health of one component by detecting anomalies, mitigating
its effects using a reactive timed state machine – on the level
of individual components. It also reports to the higher-level,
system health manager.

System-Level Health Management: (SLHM) man-
ages the overall health of the system i.e. assembly of all
components. The CLHM processes hosted inside each of
the components report their input (monitored alarms) and
output (mitigation actions) to the SLHM. It is important
to know the local mitigation action because it could affect
how the faults cascade through the system. Thereafter, the
SLHM is responsible for the identification of root failure
source(s), with multiple failure mode hypotheses being han-
dled. Once the fault source is identified, appropriate miti-
gation strategy is employed.

Code generation: Code generation tools allow the inte-
grators to generate the glue code (to realize component in-
teractions), and code for the health management. Relieving
the software developer from the arduous task of writing code
for implementing interactions ensures that we can restrict
the semantics, so that we can analyze the system failure
propagation at design time, before deployment. The gen-
erated code includes the wrappers necessary to launch and
configure the ARINC-653 ports associated with the com-
ponent. These wrappers follow a strict template for each
kind of port: checking pre conditions, acquiring locks (to

a1

a2

a3

a4

a5

a6

 =

−0.3717 −0.3386 0.8644
0.3717 −0.8644 0.3386
−0.6015 −0.7971 −0.0536
−0.9732 0.1625 0.1625
−0.6015 −0.0536 −0.7971
0.2298 −0.6882 −0.6882

×
 ax

ay

az

 +N

Table 1: Accelerometer Equations

ensure atomic operation on the component), invoke devel-
oper written functional code, and checking post conditions.
Developers write the functional code using only the exposed
interfaces provided by the framework. When an anomaly
is detected by a monitor, it is always reported to the local
component health manager. Deadline violation is always
monitored in parallel by the underlying framework.

5. MODELING FOR ACM
This section describes how we modeled the ADIRU soft-

ware architecture using the ACM Modeling Language, in
order to conduct experiments. We did not model the gyros
in this example, and timing used does not reflect the actual
timing on the real system.

Software Assembly: Fig. 1 shows the different compo-
nents that are part of this example. This figure also shows
the management module, which implements the system-wide
health manager. Also shown are the real-time properties for
the ports of each type of component. We will cover the
components in that module in detail in subsequent sections.
Different parts of the assembly are organized into modules.
Each ARINC-653 module is deployed on a different host pro-
cessor. The modeling paradigm also captures the internal
data flow and control flow of the components, not shown in
the figure. This is required to create the fault propagation
graph as discussed later in section 6.4.

There are six instances of accelerometer components. Each
accelerometer component has a periodic publisher that pub-
lishes its data every 1 second. The published data consists
of a linear acceleration value measured in the axis of the ac-
celerometer and a time stamp. All accelerometers measure
in directions perpendicular to the six faces of a dodecahe-
dron centered at the origin of the body coordinate system.
Table 1 shows the equation relating measured acceleration,
a1, to a6 in terms of three orthogonal body acceleration
vectors, ax,ay,az. Here N is a 6 × 1 vector of zero mean,
Gaussian noise. Running the model interpreter of the ACM
framework generates the code for all accelerometers. The
only portion supplied by the developer is the function that
is called in every cycle to produce the data. We use a lookup
table to simulate actual sensor measurements, configured for
each experiment.

All acceleration values are fed to the four ADIRU pro-
cessors, which process the values measured by the six ac-
celerometers and solve a set of linear regression equations
to estimate the body linear acceleration. Each ADIRU pro-
cessor consists of six aperiodic consumers and a periodic
publisher. It should be noted that if a processor is aware
of a fault in one of the accelerometers it can ignore that
particular observation and use the other 5 for performing
regression. The following equations present the predicted
acceleration values along the body axes, derived by solv-
ing the regression equations using all six accelerometers :
âx = −0.19a1 + 0.19a2 − 0.30a3 − 0.49a4 − 0.30a5 + 0.11a6,
ây = −0.17a1 − 0.43a2 − 0.40a3 + 0.08a4 − 0.03a5 − 0.34a6,
and âz = +0.43a1+0.17a2−0.03a3+0.08a4−0.40a5−0.34a6.
The output of each ADIRU processor is the body axis dataDRAFT

and is published every second to the three voter components.
The voters consume these data with three consumers. Each
voter uses a median algorithm to choose the middle values
and outputs it to the display component.

Deployment: Fig. 1 also shows the deployment. Each
accelerometer is deployed on a separate partition in an ARINC-
653 module. Module schedule is also shown. ADIRU pro-
cessors are deployed on 4 partitions on one module. A pair
of a voter and a display unit shares a single partition on
the last module. The ACF ensures that all modules run in
a synchronized manner with the specified system-wide hy-
per period of 1 second. At the start of each hyper period
a controller sends a synchronization message to each mod-
ule manager, which executes the module schedule. This is
similar to the technique in the TTP/A protocol [21].

6. SOFTWARE HEALTH MANAGEMENT
As briefly discussed in section 4, we use a two-level ap-

proach for implementing a software health management frame-
work: (a) component level with local view of the problem,
and (b) the system level. The component level health man-
agement deals with detecting violations and taking local mit-
igation action within a component. The system level health
management deals with aggregating the data (monitor and
local mitigation action) from component health managers
across the entire system, performing a system-wide diag-
nosis to identify the fault-source and taking a system-wide
mitigation action based on the results of the diagnosis. The
following sub-sections discuss these aspects with respect to
the ADIRU example more detail.

6.1 Component Level Anomaly Detection
The ACM framework allows the system designer to deploy

monitors which can be configured to detect deviations from
expected behavior, violations in properties, constraints, and
contracts of an interaction port or component. Table 2 de-
scribes the different discrepancies that can be observed on a
component port and the component as a whole. A detailed
description is provided in the paper [16]. While the mon-
itors associated with resource usage are run in parallel by
framework, other monitors are evaluated in the same thread
executing the component port. When any monitor reports
a violation, the status is communicated to its Component
Level Health Manager (CLHM) and then possibly to
the System Level Health Manager (SLHM).

In addition to the monitors described in Table 2, new
monitors have been introduced that inform the component
health manager of the current component-process (port) be-
ing executed. These monitors report an ENTRY into and
EXIT from a process. These are used to observe the execu-
tion sequence using an observer state machine and thereby
detect and/or prevent any deviations that might adversely
affect the health/operation of the component.

Monitors in the Modeled ADIRU Assembly: In the
ADIRU assembly, the monitors are configured to track the
resource usage (CPU time) of the publishers / consumers
in the Components associated with Accelerometers, ADIRU
processors, Voters and Display components. The publisher
port in each Accelerometer component is configured with a
monitor to observe the published data via a post condition.
These monitors fire if the published data from the associ-
ated Accelerometer appears to be Stuck-High or Stuck-Low
or show a rapid change in value that is more than the estab-

<PreCondition>::=<Condition>
<PostCondition>::=<Condition>
<Deadline>::=<double value> /* from the start of the process
associated with the port to the end of that method */
<Data Validity>::=<double value> /* Max age from time of
publication of data to the time when data is consumed*/
<Lock Time Out>::=<double value> /* from start of obtain-
ing lock*/

<Condition>::=<Primitive Clause><op><Primitive
Clause>|<Condition><logical op><Condition>| !<Condition>
| True| False
<Primitive Clause>::=<double value>| Delta(Var)|
Rate(Var)|Var
/* A Var can be either the component State Variable, or the
data received by the publisher, or the argument of the method
defined in the facet or the receptacle*/
<op>::= < | > | <= | >= | == | !=
<logical op>::=&& | ||

Table 2: Monitoring Specification. Comments are
shown in italics.

HM Action Semantics
CLHM: IGNORE Continue as if nothing has happened
CLHM:ABORT Discontinue current operation, but operation

can run again
CLHM: USE PAST
DATA

Use most recent data (only for operations
that expect fresh data)

CLHM: STOP Discontinue current operation
Aperiodic processes (ports): operation can
run again
Periodic processes (ports): operation must be
enabled by a future START HM action

CLHM: START Re-enable a STOP-ped periodic operation
CLHM RESTART A Macro for STOP followed by a START for

the current operation

SLHM: RESET Stop all operations, initialize state of com-
ponent, clear all queues. start all periodic
operations

SLHM: STOP Stop all operations

Table 3: CLHM and SLHM Mitigation Actions.

lished norms. All the consumer ports in each of the ADIRU-
processors, Voters and Display components have a specified
Data-Validity time and the associated monitors trigger when
the age of the incoming data (i.e. the difference between the
current time and the timestamp on the data) is more than
the specified Data-Validity time. Another set of monitors
are configured to check for violations of a pre-condition for
the consumer ports in the Display component. This prop-
erty detects rapid changes in the data fed to these consumers
consistent with the physical limits on aircraft acceleration
and jerk (rate of change of acceleration) in each one of the
body axes.

(a) (b)

Figure 2: (a) Accelerometer 1 Observer inside the
ADIRU processor. (b) CLHM State-Machine of Ac-
celerometer1

In addition to the monitors specified above, the ADIRUDRAFT

Figure 3: CLHM associated with Display Compo-
nent. PRE COND events are generated when a pre-
condition is violated. SEND is an action that sends
the mitigation to failed process.

processor components look for the absence of published data
on each of the consumer ports, connected to one of the six ac-
celerometers. This is done by observing the lack of the EN-
TRY /EXIT events from these ports within a pre-specified
timeout period, see Fig. 2(a). It shows portions of the state
machine specification monitoring the events for accelerome-
ter 1. Once a missing data is detected, the status is set to 0.
The status array, indexed from 0 and having six elements,
captures the state of all six channels. Five other, similar
state machines are used for observing the other accelerome-
ters, in parallel.

6.2 Component Level Mitigation
Once a discrepancy is detected, the generated code pro-

vided by the framework reports the problem to the CLHM.
The ACM modeling language allows the CLHM to be defined
as a timed-state machine that acts upon input error/dis-
crepancy/anomaly events and outputs the appropriate local
mitigation action. The CLHM for each component is de-
ployed on a high-priority ARINC process that is triggered
when any of the associated processes (that host the Compo-
nent ports) or the underlying ACM framework report any
violations detected by monitors. In a blocking call, the re-
porting process waits for a response/mitigation action from
the CLHM. Table 3 lists the mitigation actions that can be
issued by the CLHM.

Additionally, the CLHM can be configured to take on the
additional responsibility of an observer. As an observer, the
CLHM state machine uses the input events detected by EN-
TER and EXIT monitors to track the execution sequence for
the component ports, possibly together with the evolution
of the component’s state. Such tracking can detect incorrect
sequencing of component operations, or illegal states of the
component. When any deviation is observed, the observer
can trigger the health manager portion of the CLHM state
machine to take the appropriate mitigation action, and/or
transition to a new state.

CLHM in the ADIRU assembly: Components asso-
ciated with an Accelerometer and a Display host a CLHM.
In case of the Accelerometers, the CLHM, see Fig. 2(b), is
configured to issue an IGNORE command when the post-
condition violation is detected in the publisher. In case of
the Display component, the CLHM, see Fig. 3, has a parallel
state machine to observe and manage faults detected in the
consumers associated with left, right, and center channels.
Each of these parallel machines responds with an ABORT
command if a pre-condition violation is observed in the data
input to the consumer. As described in the previous section,
this pre-condition checks whether the rate of change of ac-
celeration does violate the specifications. In both cases, the
CLHM reports the anomaly detected and the local mitiga-
tion command issued to the System Level Health Manager.

UserCode

PreCondition

UserCode

PostCondition

Deadline

UserCode

Deadline

UserCode

LateDataPublished

PostCondition

BadData_IN

LockTimeout

PreCondition

InvalidDataPublished

LockTimeout_Failure

IGNORE

IGNORE

ABORT

ABORT

RESTART

ABORT

STOP

IGNORE

IGNORE

IGNORE

IGNORE

IGNORE

PUBLISHER-PORT-TFPG
LOCK PROBLEM

PRECONDITION FAILURE

USER-CODE FAILURE

POST-CONDITION FAILURE

DEADLINE FAILURE

Bad_State
NoDataPublished

C
O

M
PO

N
EN

T-
TF

PG

C
O

M
PO

N
EN

T-TFPG

Failure ModeDiscrepancy
OrDiscrepancy

With Alarm
Pointer to Other

Discrepancy with same
Name

LOCK_FM LOCK_FM

UserCode

PreCondition

UserCode

PostCondition

Deadline

UserCode

ValidityFailure

Deadline

UserCode

LateStateUpdat
e

PostCondition

ValidityFailure_IN

BadData_IN

LockTimeout

PreCondition

InvalidState

LockTimeout_Failure

ValidityFailure

IGNORE

IGNORE

ABORT

ABORT

USEPASTDAT
A

RESTART

ABOR
T

ABOR
T

STOP
IGNORE

USEPASTDATA

IGNORE

IGNORE

IGNORE

IGNORE

CONSUMER-PORT-TFPG
LOCK PROBLEM

VALIDITY FAILURE

PRECONDITION FAILURE

USER-CODE FAILURE

POST-CONDITION FAILURE

DEADLINE FAILURE

Bad_State

MissingStateUpdate

Figure 4: TFPG: Publisher/Consumer interaction

6.3 System-Level Health Management
While component level health management is performed

by the CLHM inside the Component, the system level health
management requires additional, system-wide components.
These new components: Alarm Aggregator, Diagnosis
Engine, and SystemHMResponse Engine have dedi-
cated tasks associated with System Health Management.
Fig. 1 shows these additional System Level Health Man-
agement components, hosted in a separate module, for the
ADIRU assembly.

The Alarm Aggregator is responsible for collecting and ag-
gregating inputs from the component level health managers
(local alarms and the corresponding mitigation actions). It
hosts an aperiodic consumer that is triggered by the data
(alarm, and local mitigation command) provided by the
Component Level Health Managers. The Alarm Aggrega-
tor assimilates the information received from the CLHM-s
in a moving window (two hyper periods long) and sorts them
based on their time of occurrence. This data is fed to the Di-
agnosis Engine. This engine uses a model-based reasoner to
diagnose the source of the fault by searching for an explana-
tion for the alarms collected by the Alarm Aggregator. Fi-
nally, the SystemHMResponse Engine component acts upon
the diagnosis result to deliver the appropriate system level
mitigation response.

In order to interact with the System Level Health Manage-
ment components, each functional component in the existing
Assembly model is provided an additional publisher: HM-
Publisher, and consumer: HMConsumer. The publisher
is used by the Component Health Manager to feed local de-
tection and mitigation data to the Alarm Aggregator. The
consumer is used to receive commands from the SystemHM-
Response Engine. To avoid clutter, Fig. 1 does not show
these additional publishers and consumers.

6.4 System Level Diagnosis
To identify the fault-source, the Diagnosis Engine compo-

nent in the SLHM needs to reason over the alarms (and their
associated local mitigation actions) received from one or
more Component Health Managers. The reasoning process
isolates the fault source using a diagnosis technique based onDRAFT

Figure 5: TFPG model of the ADIRU system

a Timed-Failure Propagation Graph (TFPG) model
of the system. In a TFPG model [2, 3, 4] the fault-sources
(Failure Modes) and the anomalies (observed or un-observed
Discrepancies) of the system are represented as nodes of a
labeled, directed graph. The directed edges between nodes
capture the propagation of the failure effect from the source
node (Failure Mode/Discrepancy) to the destination node
(Discrepancy). A propagation timing interval and the sys-
tem mode wherein the fault effect can propagate are cap-
tured as edge properties.

Automatic Synthesis Of Fault Propagation Graph:
In this work, the TFPG model of the system is auto gener-
ated using the information available in the system’s ACM
model. The TFPG model of the system is made up of the
TFPG model of its associated component, which in turn
is made up of the TFPG model of the interaction ports
(Publisher / Consumer/ Provides/ Requires ports) present
in that component. As each of the ports follow a well-defined
sequence of operations, a specific TFPG-template model can
be created for each of these types. The template TFPG
model contains the Failure-Modes, Discrepancies and the
failure-propagation edges specific to that ACM-port type.
The TFPG model of each component is populated with in-
stances of the appropriate template-TFPG model (based on
the type of ACM-ports contained in the component). The
data-flow and the control flow graph model of a Compo-
nent, is useful in identifying additional failure propagation
edges within the Component. The interaction captured in
the Assembly model (e.g. Fig. 1) helps in identifying failure
propagation interactions across two components.

Diagnosis: The generated TFPG-model is used by the
diagnosis engine to hypothesize the fault-source(s) that could
have triggered a specific set of alarms. While additional
alarms certainly help in narrowing the fault-source, it is pos-
sible that the observed alarm set (observable discrepancies)
could be explained by multiple hypotheses (fault source).
Thresholds based on hypothesis metrics such as Plausibil-
ity and Robustness [4] are used to prune the hypotheses
set. Further, the component containing the most number of
fault-sources (as identified by the pruned hypotheses set) is
categorized as the faulty component.

TFPG Model of ADIRU Assembly: The TFPG model
for the ADIRU system was auto-generated using the ap-
proach described above. This section explains the genera-
tion process and the TFPG models in more detail. Fig. 4
captures an instance of the template TFPG model of a pub-
lisher and a consumer. Additionally it captures the Failure

Propagation effect between the publisher and consumer.
As previously stated, each of the component port types

has a set of generic operations performed in a well-defined
sequence in each cycle of execution. During this process, a
set of monitors are invoked to detect anomalies. Currently
these monitors detect violations and problems related to
Lock-Acquire, Data-Validity (in consumers), Pre-Condition
and Post-Condition checks, errors in User-Code and Dead-
line violations. The TFPG model of the Publisher and Con-
sumer port in the Fig. 4 shows the Discrepancies associated
with these monitors and the failure propagation interaction
of these Discrepancies with other Discrepancies and Failure
modes. These failure propagations correspond to the cas-
cading effects of failures within the ACM-port as well as the
failure propagation into or out of the component port (here
Publisher/Consumer).

Discussion of Fault Propagation: As shown in the
TFPG for the publisher-port, it is evident that inability to
acquire the Component Lock prevents the Publisher code
from running, thereby resulting in no data being published
(see section 4 for description of the generated code for all
ports.). Another fault-propagation example includes a ’Bad
Input’ to the Publisher port that could lead to pre-condition
violation which in-turn could lead to different kinds of anoma-
lies based on the CLHM’s local mitigation action. An ABORT
command issued by CLHM for a pre-condition violation
could again lead to the problems associated with no data
being published. An IGNORE CLHM command could re-
solve the issue (with no further alarms) or possibly cascade
into a user code anomaly and/or a post-condition anomaly
and/or a deadline violation. The net result of these fail-
ures could be either no data being published or invalid data
being published or the data being published late. All these
effects could affect the consumer downstream. Again, a part
of the scenario described above could be triggered even with
good data input into the publisher. It is possible that in
this case there is no pre-condition violation, but a fault in
the user code (captured by USER Code failure mode) could
trigger a set of anomalies leading to down-stream problems
associated with the published data.

It can be seen that the TFPG model of the consumer is
mostly similar to that of the publisher. This is because the
generic operations triggered in sequence during an execu-
tion/run of the consumer are similar to that of the pub-
lisher. The difference is there because the consumer con-
sumes a data-token and updates certain state variables. This
results in the failure effects propagating out of the consumer
port affecting the state variables that the consumer updates
(No Update, Invalid Update, and Late Update).

Intra-Component Failure Propagation: Since the
ACM ports are hosted inside specific components, the fail-
ure effects could propagate (in either direction) between the
ports (i.e. within the component) and between components.
With reference to the Fig. 4, it can be seen that the pub-
lisher is affected if the component state-variable (used by
the publisher) is affected. This is represented as a failure-
propagation between the Bad State discrepancy in the com-
ponent TFPG and the Bad Data IN discrepancy in the pub-
lisher TFPG. The failure effects of a bad-data input affect-
ing the publisher’s pre-condition, or user-code evaluation is
captured by the failure propagation links in the publisher
TFPG. In the case of the consumer-port, the failure effects
originate from the consumer and affect the state variablesDRAFT

(updated by the consumer) in the component.
Inter-Component Failure Propagation: Interaction

between the publisher and the consumer is captured in the
Assembly model. This implies that the output discrepan-
cies in the publisher can possibly propagate failure effects to
the input discrepancies on the consumer side. For example,
the failure effects associated with either no data published
or data published late could affect the validity of the data
consumed in the consumer. Alternatively, an invalid data
published from the publisher could lead to a pre-condition
or user code violation in the consumer. As can be seen from
the TFPG model described in Fig. 4, a Bad State intro-
duced in the Publisher component, could cascade through
the publisher to the consumer side and the associated states
of the consumer component.

System TFPG: Fig. 5 captures the component-level
TFPG model for the entire ADIRU assembly model. The
details of the TFPG model of the publisher/consumer ports
and their interaction with their respective components is not
shown in this model and is considered to be hidden within
the component and ACM port TFPG models. This gener-
ated TFPG model is used by the reasoner in the Diagnosis
Engine component. When new data is received from the
Alarm Aggregator component, the reasoner generates a set
of hypotheses that best describe the cause for the alarms.
As new alarms are received it updates the hypotheses. The
hypotheses with the best metric (Plausibility, Robustness)
are regarded as the most plausible explanation. Further, if a
system-level mitigation strategy is specified, then the com-
ponent containing the source failure modes is identified and
the information is passed on to the component hosting the
system-level mitigation strategy: the SystemHMResponse
Engine.

6.5 System Level Mitigation
The system-level mitigation strategy is modeled using hi-

erarchical timed state machine formalism in the ACM mod-
eling language. This state machine is executed inside the
SystemHMResponse Engine component. This component
has an aperiodic consumer that receives the diagnosis re-
sults from the Diagnosis-Engine Component. Upon arrival
of a new diagnosis result, the consumer triggers the state
machine implementing the system level mitigation with the
input event: the diagnosis result. If a mitigation action
needs to be taken on a specific component, the state ma-
chine’s output is sent to the appropriate component. The
commands issued by the System-Level Health Manager are
RESET, STOP, CHECKPOINT and RESTORE commands
to faulty components (see table 3). Currently, the System
Level Health Manager action is considered for the entire
component (i.e. all ARINC processes in the Component).

Mitigation Strategy for ADIRU: The system-level
mitigation strategy for the ADIRU is currently modeled as
a hierarchical parallel timed state machine. This is the first
method we have chosen to solve the problem, but other
techniques, possibly involving reasoning and search could
also be applicable. A benefit of using a timed FSM-s is
that they allow (some level of) verification via model check-
ing. Fig 6 captures the mitigation strategy for each Ac-
celerometer fault. An initial command is issued to RESET
the Accelerometer component, hoping that this will get the
Accelerometer to work correctly. If despite the reset, the
same Accelerometer is identified as a fault-source within a

Figure 6: Portion of the Mitigation Strategy (State
Machine) dealing with Accelerometer1

specified time-limit, then command is issued to STOP the
Accelerometer.

7. EXPERIMENTS AND DISCUSSION
We deployed the three different modules of the ADIRU

assembly shown in Fig. 1 on three computers in our lab.
These computers were running our ARINC-653 emulator on
top of Linux, and had the ARINC Component runtime. The
computers were deployed in an isolated subnet, with the net-
work shared by all hosts. Upon initialization, all modules
synchronized with the system module that ran the diagnoser
and system response engine. Thereafter, each module cycli-
cally scheduled its partitions. All modules resynchronized
with the system module at the start of each hyper period.
The code necessary for this distributed synchronization was
auto generated from the ADIRU deployment model in which
each module was mapped to a physical core on a processor.

Table 4 shows the highlights of the events as they were
recorded throughout the system. Time is relative to the
first event. All faults, including accelerometer 6 and 5 were
artificially injected and turned on after a fixed number of
iterations. From our observations we noticed that our diag-
noser was correctly able to determine that the problem was
caused by accelerometer 5 and shut it down. Thereafter,
the redundancy management algorithm in the ADIRU pro-
cessor was able to reconfigure itself to use a different set of
regression equations that did not use Accelerometer 5 or 6,
and prevented a system-wide failure.

8. CONCLUSION
Self-adaptive systems, while in operation, must be able

to adapt to latent faults in their implementation, in the
computing and non-computing hardware; even if they ap-
pear simultaneously. Software Health Management (SHM)
is a systematic extension of classical software fault toler-
ance techniques that aims at implementing the vision of self-
adaptive software using techniques borrowed from system
health management. SHM is predicated on the assumptions
that (1) specifications for nominal behavior are available for
a system, (2) a monitoring system can be automatically con-
structed from these specifications that detect anomalies, (3)
a systematic design method and a generic architecture can
be used to engineer systems that implement SHM.

In this paper we have presented our initial work towards
such an SHM approach. We heavily rely on our model-based
technologies (domain-specific modeling languages, software
generators, and model-based fault diagnostics), but we be-
lieve the overhead caused by this apparatus is worthwhile,
as the designer can directly work with specifications and de-
sign the (SHM) system on a high level. Our experiments
have illustrated the approach but its large-scale, industrial
application still remains.

The SHM technique described above is only the first step
towards the vision and much work remains. For example,DRAFT

Table 4: Event Sequence
Time(s) Module:Component Description
- Accelerometer-5 Accelerometer 5 is known to be faulty and not being used by the processors. Accelerometer 5 post-

condition violation followed by IGNORE from its CLHM. No pre-condition violation in the display
components. SLHM diagnosis does not produce a hypothesis that crosses robustness threshold.

Power Reset of ADIRU-Processors
0 ADIRU Processor(s) Reset. During initialization fail to read information that Accelerometer-5 is faulty. But continue to

use only Accelerolmeter1,2,3,4,6
Accelerometer-6 fails silent

1.00 Accelerometer-6 Fails Silently. Detected by the observers in ADIRU Processors.
2.00 ADIRU-Processor(s) Reconfigure the set of regression equations - end up using Accelerometer-5.

Using Faulty Accelerometer-5
2.74 Accelerometer-5 Published Bad Data. Post-condition check violated.

Local Mitigation & Report to SLHM
2.74 Accelerometer-5 CLHM Receives Post-Condition violation alarm and issues an IGNORE command. Passes the data to Alarm

Aggregator.

3.25 Alarm Aggregator Receives data from Accelerometer-5. Buffers and later sends it to Diagnosis Engine.
Faulty Data Consumed & Processed

4.00 4 ADIRU-Processors (1-4) All of them use data from faulty Accelerometer-5. Hence results from all ADIRU-Processors are
skewed

4.25 3 Voters (Left, Center,
and Right)

Voters compute the results based on the ADIRU-Component outputs. They cannot isolate the faulty
data as all the input-data (to Voter) display is similarly affected.

Local Mitigation & Report to SLHM
4.25 3 Display Components

(Left, Center, Right)
Consume data fed by the voters. Data show pre-condition violation.

4.25 Display Component(s)
CLHM

Receives Pre-Condition violation alarm and issues an ABORT command. Passes the data to Alarm
Aggregator.

4.25 Alarm Aggregator Receives data from Display Component. Buffers and later sends it to Diagnosis Engine.

System Level Health Management - Alarm Aggregation, Diagnosis, Mitigation
5.25 Alarm Aggregator Feeds data to Diagnosis Engine.
5.25 Diagnosis Engine Receives alarm data from Alarm Aggregator and runs the TFPG-Reasoner. Detects Accelerometer-5

to be a possible fault candidate. Supporting alarms received from Pre-Condition violations in Display-
Components increases the metric and confirms the fault in Accelerometer-5. Feeds result to Response
Engine Comp component to take mitigation action

5.39 Response Engine Comp Receives information on the faulty component - Accelerometer-5 - and issues command to reset.
5.74 Accelerometer-5 Receives command to Reset from Response Engine Comp. Resets itself.

Reset of Accelerometer-5 has no effect
6.74 Accelerometer-5 Fault in Accelerometer-5. Published Bad Data. Violates Post-Condition check.

Local Mitigation & Report to SLHM
6.84 Accelerometer-5 CLHM Receives Post-Condition violation alarm and issues an IGNORE command. Passes the data to Alarm

Aggregator.

6.95 Alarm Aggregator Receives data from Accelerometer-5. Buffers and later sends it to Diagnosis Engine.
Faulty Data Consumed & Processed & Other monitors trigger

7 4 ADIRU Processor (1-4) All ADIRUs use all the Accelerometers (including the faulty Accelerometer-5). Hence results from all
ADIRU-Processors are skewed

7.25 3 Voters (Left, Center,
and Right)

Voters compute the results based on the ADIRU-Processor outputs. They cannot isolate the faulty
data as all the input-data (to Voter) display is similarly affected.

7.30 3 Display Components
(Left, Center, Right)

Consume data fed by the voters. Pre-condition violations detected

Local Mitigation & Report to SLHM
7.30 Display-Component(s)

CLHM
Receives Pre-Condition violation alarm and issues an ABORT command. Passes the data to Alarm
Aggregator.

7.34 Alarm Aggregator Receives data from Display-Component(s). Buffers and later sends it to Diagnosis Engine.
System Level Health Management - Alarm Aggregation, Diagnosis, Mitigation

8.30 Alarm Aggregator Feeds data to Diagnosis Engine.
8.65 Diagnosis Engine Receives alarm data from Alarm Aggregator and runs the TFPG-Reasoner. Again detects

Accelerometer-5 to be a possible fault candidate. Finds other monitors/alarms that support the
hypothesis. Feeds result to Response Engine Comp component to take mitigation action

8.65 Response Engine Comp Receives information on the faulty component - Accelerometer-5 - and issues command to STOP it.
8.95 Accelerometer-5 Receives command to Stop from Response Engine Comp. Stops itself.

Post Stopping Accelerometer 5
9.45 ADIRU-Processor(s) Over-time ADIRU-Processors detects using the observer that there is no data from Accelerometer-5.

Stop using Accelerometer-5. Regression equations use accelerometers 1-4
9.75 Display-Component(s) The Data received from the Voter(s) do not violate the Pre-condition. Back to Healthy operation.

fault management systems need to be verified to show that
they do not violate safety rules. The verification of such
adaptive systems is a major challenge for the research com-
munity. Furthermore, the approach described is based on
reactive state machines that encode the strategies to handle
specific failure modes. Designers have to model these reac-
tions explicitly. In a more advanced system, a deliberative,
reasoning-based approach can be envisioned that derives the

correct reaction based on some high-level goals and the cur-
rent state of the system. Such an advanced approach to
SHM is currently being investigated.

9. REFERENCES
[1] ARINC specification 653-2: Avionics application software

standard interface part 1 - required services.DRAFT

[2] S. Abdelwahed and G. Karsai. Notions of diagnosability for
timed failure propagation graphs. In Proc. IEEE Systems
Readiness Technology Conference, pages 643–648, Sept.
2006.

[3] S. Abdelwahed, G. Karsai, and G. Biswas. A
consistency-based robust diagnosis approach for temporal
causal systems. In 16th International Workshop on
Principles of Diagnosis, pages 73–79, 2005.

[4] S. Abdelwahed, G. Karsai, N. Mahadevan, and S. C.
Ofsthun. Practical considerations in systems diagnosis
using timed failure propagation graph models.
Instrumentation and Measurement, IEEE Transactions on,
58(2):240–247, February 2009.

[5] A. Avizienis, J. C. Laprie, B. Randell, and C. Landwehr.
Basic concepts and taxonomy of dependable and secure
computing. IEEE Transactions on Dependable and Secure
Computing, 1(1):11–33, Jan 2004.

[6] A. T. S. Bureau. In-flight upset; 240km NW Perth, WA;
Boeing Co 777-200, 9M-MRG. August 2005.

[7] A. T. S. Bureau. AO-2008-070: In-flight upset, 154 km
west of Learmonth, WA, 7 October 2008, VH-QPA, Airbus
A330-303. October 2008.

[8] D. W. Bustard and R. Sterritt. A requirements engineering
perspective on autonomic systems development. Autonomic
Computing: Concepts, Infrastructure, and Applications,
pages 19–33, 2006.

[9] R. Butler. A primer on architectural level fault tolerance.
Technical report, NASA Scientific and Technical
Information (STI) Program Office, Report No.
NASA/TM-2008-215108, 2008.

[10] E. Cheng, Betty H. Software engineering for self-adaptive
systems. chapter Software Engineering for Self-Adaptive
Systems: A Research Roadmap, pages 1–26.
Springer-Verlag, Berlin, Heidelberg, 2009.

[11] E. M. Dashofy, A. van der Hoek, and R. N. Taylor. Towards
architecture-based self-healing systems. In WOSS ’02:
Proceedings of the first workshop on Self-healing systems,
pages 21–26, New York, NY, USA, 2002. ACM Press.

[12] R. de Lemos. Analysing failure behaviours in component
interaction. Journal of Systems and Software, 71(1-2):97 –
115, 2004.

[13] A. Dubey, G. Karsai, R. Kereskenyi, and N. Mahadevan.
Towards a real-time component framework for software
health management. ISIS-09-111, Institute for Software
Integrated Systems, Vanderbilt University, Nov 2009.
www.isis.vanderbilt.edu/sites/default/files/
TechReport2009.pdf.

[14] A. Dubey, G. Karsai, and N. Mahadevan. Towards
model-based software health management for real-time
systems. ISIS-10-106, Institute for Software Integrated
Systems, Vanderbilt University, August 2010. http://
isis.vanderbilt.edu/sites/default/files/Report.pdf.

[15] A. Dubey, G. Karsai, and N. Mahadevan. A Component
Model for Hard-Real Time Systems: CCM with
ARINC-653. Softw., Pract. Exper., 2011. To Appear. Draft
available at http://isis.vanderbilt.edu/sites/default/
files/Journal_0.pdf.

[16] A. Dubey, G. Karsai, and N. Mahadevan. Model-based
software health management for real-time systems. In
Aerospace conference, 2011 IEEE, march 2011.

[17] D. Garlan, S. W. Cheng, and B. Schmerl. Increasing
system dependability through architecture-based
self-repair. Architecting Dependable Systems, 2003.

[18] W. S. Greenwell, J. Knight, and J. C. Knight. What should
aviation safety incidents teach us? In SAFECOMP, 2003

[19] C. Johnson, C.W.;Holloway. The dangers of failure masking
in fault-tolerant software: Aspects of a recent in-flight
upset event. In 2nd IET Systems Safety Conference, pages
60–65. 2007.

[20] S. Johnson, editor. System Health Management: With
Aerospace Applications. John Wiley & Sons, Inc, To
Appear in 2011.

[21] H. Kopetz, M. Holzmann, and W. Elmenreich. A universal
smart transducer interface: TTP/A. In ISORC, pages 16
–23, 2000.

[22] S. Lightstone. Seven software engineering principles for
autonomic computing development. ISSE, 3(1):71–74, 2007.

[23] M. R. Lyu. Software Fault Tolerance, volume New York,
NY, USA. John Wiley & Sons, Inc, 1995.

[24] M. R. Lyu. Software reliability engineering: A roadmap. In
Future of Software Engineering, pages 153–170, 2007.

[25] M. D. W. Mcintyre and D. L. Sebring. Integrated
fault-tolerant air data inertial reference system, 1994.

[26] NASA. Report on the loss of the mars polar lander and
deep space 2 missions. Technical report, NASA, 2000.

[27] S. Ofsthun. Integrated vehicle health management for
aerospace platforms. Instrumentation Measurement
Magazine, IEEE, 5(3):21 – 24, Sept. 2002.

[28] L. L. Pullum. Software fault tolerance techniques and
implementation. Artech House, Inc., USA, 2001.

[29] P. Robertson and B. Williams. Automatic recovery from
software failure. Commun. ACM, 49(3):41–47, 2006.

[30] M. Rohr, M. Boskovic, S. Giesecke, and W. Hasselbring.
Model-driven development of self-managing software
systems. In “Models@run.time” at (MoDELS/UML), 2006.

[31] M. Shaw. Self-healing: Softening precision to avoid
brittleness. In Proceedings of the first workshop on
Self-healing systems, pages 111–114,2002.

[32] M. Sheffels. A fault-tolerant air data/inertial reference
unit. In Digital Avionics Systems Conference, 1992.
Proceedings., IEEE/AIAA 11th, pages 127 –131, Oct. 1992.

[33] A. Taleb-Bendiab, D. W. Bustard, R. Sterritt, A. G. Laws,
and F. Keenan. Model-based self-managing systems
engineering. In DEXA Workshops, pages 155–159, 2005.

[34] W. Torres-pomales. Software fault tolerance: A tutorial.
Technical report, NASA, 2000.

[35] M. Wallace. Modular architectural representation and
analysis of fault propagation and transformation. Electron.
Notes Theor. Comput. Sci., 141(3):53–71, 2005.

[36] N. Wang, D. C. Schmidt, and C. O’Ryan. Overview of the
CORBA component model. Component-based software
engineering: putting the pieces together, pages 557–571,
2001.

[37] B. Williams, B. Williams, M. Ingham, S. Chung, and
P. Elliott. Model-based programming of intelligent
embedded systems and robotic space explorers. Proceedings
of the IEEE, 91(1):212–237, 2003.

[38] B. C. Williams, M. Ingham, S. Chung, P. Elliott,
M. Hofbaur, and G. T. Sullivan. Model-based programming
of fault-aware systems. AI Magazine, 24(4):61–75, 2004.

[39] J. Zhang and B. H. C. Cheng. Specifying adaptation
semantics. In WADS ’05: Proceedings of the 2005
workshop on Architecting dependable systems, pages 1–7,
New York, NY, USA, 2005.

[40] J. Zhang and B. H. C. Cheng. Model-based development of
dynamically adaptive software. In ICSE ’06: Proceeding of
the 28th international conference on Software engineering,
pages 371–380, New York, NY, USA, 2006.DRAFT

www.isis.vanderbilt.edu/sites/default/files/TechReport2009.pdf
www.isis.vanderbilt.edu/sites/default/files/TechReport2009.pdf
http://isis.vanderbilt.edu/sites/default/files/Report.pdf
http://isis.vanderbilt.edu/sites/default/files/Report.pdf
http://isis.vanderbilt.edu/sites/default/files/Journal_0.pdf
http://isis.vanderbilt.edu/sites/default/files/Journal_0.pdf

	Introduction
	Related Research
	Case Study: The ADIRU
	The ARINC Component Model
	Modeling for ACM
	Software Health Management
	Component Level Anomaly Detection
	Component Level Mitigation
	System-Level Health Management
	System Level Diagnosis
	System Level Mitigation

	Experiments and Discussion
	Conclusion
	References

