
Architecting Health Management into Software Component Assemblies: Lessons
Learned from the ARINC-653 Component Model

Nagabhushan Mahadevan Abhishek Dubey Gabor Karsai

Institute for Software Integrated Systems, Vanderbilt University, Nashville, TN 37212, USA

Abstract—Complex real-time software systems require an
active fault management capability. While testing, verification
and validation schemes and their constant evolution help
improve the dependability of these systems, an active fault
management strategy is essential to potentially mitigate the
unacceptable behaviors at run-time. In our work we have
applied the experience gained from the field of Systems Health
Management towards component-based software systems. The
software components interact via well-defined concurrency
patterns and are executed on a real-time component framework
built upon ARINC-653 platform services. In this paper, we
present the lessons learned in architecting and applying a two-
level health management strategy to assemblies of software
components.

I. INTRODUCTION

Software is used heavily in modern systems - both to
implement the core functionality as well as to integrate func-
tions across various subsystems [22]. It is well known that
software can contain latent defects that escape the existing
rigorous testing and verification regimes and manifest only
under exceptional circumstances. These circumstances may
comprise faults in the hardware system, including both the
computing and non-computing hardware. Often, systems are
not prepared for such faults, which have led to a number
of incidents in the past, including but not limited to those
referred to in these reports: [19], [5], [6], [14].

Software Health Management (SHM) is an extension of
software fault tolerance using techniques borrowed from
System Health Management of complex engineering systems
[28]. The goal of SHM is to make systems self-managing
such that they exhibit resilience to faults by adaptively
mitigating the effects of those faults. Recent work in this
area includes [21], [27], [18], [4].

We have developed an architecture and approach for
implementing software health management functions for
component-based software systems [12]. Foundation of the
architecture is a real-time component framework (built upon
an ARINC-653 platform) that defines a specific model of
computation for software components [11]. This framework
brings the concept of temporal isolation, spatial isolation,
and strict deadlines from ARINC-653 and merges these
with the well-defined interaction patterns described by the
CORBA Component Model [30]. The health management
function in the framework is performed at two levels, see

figure 2. The Component-level Health Manager (CLHM)
provides localized and limited service for managing the
health of individual software components. A System-Level
Health Manager (SLHM) manages the health of the overall
system.

SLHM includes a diagnosis engine that uses a Timed
Failure Propagation (TFPG) [2], [3] model that is automati-
cally synthesized from the component assembly. Note the
distinction between diagnosis and detection. Diagnosis is
the process of identifying and isolating the root cause(s)
of a detected anomaly. In our work, the diagnosis engine
reasons about fault effect cascades in the system, and iso-
lates the fault source components. This is possible because
the data and behavioral dependencies and hence the fault
propagation across the assembly of software components
can be deduced from the well-defined and restricted set of
interaction patterns supported by the framework. Once the
fault source is isolated, the necessary system level mitigation
action is taken. Similar approaches can be found in [10],
[29]. The key difference between these and our work is that
we apply an online diagnosis engine coupled with a two-
level mitigation scheme.

This paper summarizes our current work along these
lines - component model & design tools (section I-A),
component & system level health managers (section II),
diagnosis scheme (section III). Finally section IV discusses
the lessons learned in adapting and applying a system-
level diagnosis approach to software health management.
The lessons learned are discussed from the perspective of
improving the quality and correctness of diagnosis and we
do not delve into assessing the performance of the current
strategy (CLHM/SLHM ) through quantitative measures.

A. Overview of the ARINC-653 Component Model (ACM)

In our approach to Software Health Management we
assume that software is built as an assembly of components,
where the individual components comply with a specific
component model. The component model defines the com-
ponent ports that facilitate interactions among components.

The ARINC-653 Component Framework is the runtime
code that implements the ARINC-653 Component Model
(ACM), and it was introduced in [11]. ACM is built upon the
services of the ARINC-653 platform; an avionics standard



for safety critical operating systems [1]. ARINC-653 sys-
tems group processes into spatially and temporally separated
partitions, with one or more partitions assigned to each
module (i.e. a processor), and one or more modules forming
a system. Spatial partitioning ensures the exclusive use of a
(virtual) memory region by a partition. Temporal partitioning
ensures the exclusive use of the processing resources by
a partition. Partitioning also ensures that rogue and faulty
processes do not corrupt the memory or hog the CPU
resource in other partitions. In a multi-processor system,
the runtime framework provides facilities to synchronize the
start and end of the hyper periods of all processors.

The ARINC-653 component model allows the developers
to group a number of ARINC-653 processes into a reusable
component. At the component level, the role of a process
is based on the type of the component port it is attached
to. The component model defines the following component
port types: publishers, consumers, facets (a.k.a. provided
interfaces1), receptacles (a.k.a. required interfaces), and
methods (methods are internal to the component). Each
component port is mapped to one active ARINC-653 process
that is used to execute some business logic.

Inter-component interactions are based on well-defined in-
teraction patterns borrowed from other software component
frameworks, notably from the CORBA Component Model
(CCM) [30]. Components can interact with other compo-
nents through synchronous call/return interfaces (associ-
ated with facets or receptacles), and/or via asynchronous
publish/subscribe event connections (assigned to publisher
and consumer ports), facilitated by ports. While the facet
and receptacle ports are associated with an interface type (a
named collection of methods), the publisher and consumer
ports are associated with an event type (a data structure).

B. Design and Generation of the Software Component As-
sembly

Supporting tools accompanying the ARINC-653 Compo-
nent Framework enable the specification of components,
their ports with types. Additional real-time properties of
the port (corresponding to the ARINC-653 process) such
as periodicity, deadline, worst case execution time etc. can
also be specified. Further data and control flow dependency
between the ports of a component can be modeled using a
graphical tool.

Once a library of components has been created, these can
be used to put together the design of a sub-system or a
system assembly. The integrator can create the assembly
model by instantiating and connecting components or sub-
system models, thereby capturing the interaction across the
assembly. The design constraints enforced by the modeling
tool ensure that all ports are properly connected e.g. the type
of publisher matches the subscriber.

1An interface is a collection of related methods.

Deployment details can be specified by modeling the plat-
form (i.e. the ARINC-653 modules), the partitions associated
with each module, and then specifying the partitions where
each component in the assembly is to be deployed. Note that
even though ACM assemblies are multi module, ACM does
not specify any particular networking implementation to be
used.

Thereafter the code generators included in the modeling
tool suite2 generate the glue code that creates partitions,
ARINC-653 processes, bindings between the component
ports and the ARINC-653 processes, code to map the
developer provided business logic to the ARINC-653 APIs,
configuration files for the schedule information for each
module, and additional details to facilitate the inter-partition
communication.

II. TWO-LEVEL SOFTWARE HEALTH MANAGEMENT

A nominal assembly without any fault management sup-
port can be modeled, deployed, and executed to achieve
functional goals using a design- and run-time framework
that follow the concepts discussed in the previous sections.
This section describes the additional support in the design,
generated code and runtime framework to support a two-
level health management strategy as discussed in the intro-
duction. However, we must first discuss the execution states
and various faults that can occur in each component.

A. Component Execution States, Faults, and Anomalies

Any component, once deployed in the system can be
in one of the following three states: active (all ports are
operational), inactive (no port is operational) and semi-
active (only consumer and requires port are operational).
Typically, a component is in active state under nominal
operation, semi-active when it serving as a passive replica,
inactive when it is faulty or not required currently. Note
that components are equipped with a lock that ensures that
at most one thread (process) can be active in a component
at any time.

Failure Sources While the component is executing, i.e.
it is in active or semi-active state, anomalies detected in
component ports can indicate faults in the larger system.
We consider two cases : (a) faults related to the environment
of the component that manifests itself as an anomaly with
acquiring the component lock (this can be related to schedul-
ing problems, etc.), and (b)a latent defect in the developer-
supplied, functional code implementing the business logic
of the component port.

Both these fault sources can lead to anomalies in either
the same component or in a connected component. In our
framework, the design tools allow the system designer to
deploy monitors which can be configured to detect devi-
ations from expected behavior, violations of specifications:

2These tools can be downloaded from https://wiki.isis.vanderbilt.edu/
mbshm/

https://wiki.isis.vanderbilt.edu/mbshm/
https://wiki.isis.vanderbilt.edu/mbshm/


Partition 1

Partition 2

Partition 3

Partition 4

HYPERPERIOD = 2.0 Sec, Partition2_SCHEDULE = 0.5, 0.5, Partition1_SCHEDULE = 0, 0.5
Partition3_SCHEDULE = 1.0, 0.5,Partition4_SCHEDULE = 1.5, 0.5

Figure 1. GPS Software Assembly - Unit of time is seconds.

conditions and constraints associated with an interaction port
or component. Based on these monitors, following anomalies
can be detected:

• Lock timeout: The framework implicitly generates mon-
itors to check for process starvation. Each component
has a lock (to avoid interference among callers), and
if a caller does not get access to the lock within a
specified time, an anomaly is generated. The value for
the timeout is either set to a default value equal to the
deadline of the process associated with component port
or can be specified by the system designer.

• Data validity violation (only applicable to consumer
ports): Any event data token consumed by a consumer
port has an associated expiration age. This is known as
the validity period in ARINC-653 sampling ports. We
have extended this to be applicable to all types of com-
ponent consumer ports, both periodic and aperiodic.

• Pre-condition violation: Developers can specify condi-
tions that are evaluated before executing the functional
code. These conditions can be expressed over the
current value or the historical change in the value, or
rate of change of values of function call parameters of
the and the state variables of the component.

• User-code failure: Any error or exception raised in the
user code can be treated by the software developer as
an error condition which can then be reported to the
framework. Any unreported error is recognized as a
potential unobservable anomaly.

• Post-condition violation: These are similar to pre-
condition violations, but the conditions here are
checked after the execution of the functional code
associated with the component port.

• Deadline violation: Detected when a process does not
finish its execution within a specified deadline.

Figure 1 shows an assembly model with redundant GPS
systems. This model shows the connection between the
components and their deployment on four different parti-
tions. Partition 1 contains the Sensor Component. Partition
2 contains the GPS, Partition 3 contains the redundant GPS
(GPS2) component and Partition 4 contains the Navigation

Display component. The Sensor component publishes an
event every 4 sec. The GPS component consumes the event
published by sensor at a periodic rate of 4 sec. Afterwards it
publishes an event, which is sporadically consumed by the
Navigation Display (abbreviated as NavDisplay or Display).
Thereafter, the display component updates its location by
using getGPSData facet of the GPS Component.

B. Component Level Health Manager

In ACM, each component can be equipped with a Com-
ponent Level Health Manager (CLHM). During component
design, the CLHM is modeled as a hierarchical timed state
machine. It captures the reactions or mitigation actions
for the component anomalies (discussed above), given the
current state of the CLHM. The health manager model
can also include one or more observer automata that are
parallel state machines that track the state-evolution and /or
the sequence of operations executed in the component and
report violations to the health manager. Basic component
level mitigation commands enable a component developer
to ignore the anomaly, abort the current operation, use
previoues data, or completely stop the execution of the
component. In all cases, the default action is to report the
anomaly and the local mitigation action to the System Level
Health Manager (SLHM), discussed next.

C. System Level Health Manger

In ACM the infrastructure to support system level health
management is created through automated code synthesis
involving additional dedicated components and architectural
extensions to integrate the new components with the existing
functional component assembly. The customized mitigation
strategy that is hosted in the SLHM is auto-generated from
state machine models designed by the system integrator.
These hierarchical state machine models capture the reactive
mitigation action(s) in response to component failure(s), and
aim to restore functionality by cold/warm reset of com-
ponents, activating redundant component(s), de-activating
faulty component(s), rewiring(i.e. instructing components to
use alternate facet providers) etc. Due to space restrictions,
a full list of system mitigation actions is not included here.

Runtime instrumentation of the SLHM strategy captured
in the hierarchical state machines requires additional services
than those offered by the ACM runtime framework. These
additional services include:

1) Instrumentation to communicate the anomalies ob-
served in the components and the local mitigation
action by the CLHM.

2) Aggregation of these component level anomalies/ mit-
igation action to support a system level analysis.

3) System level diagnosis, i.e. identification of the faulty
component that is the root cause of the observed
anomalies.



Figure 2. Hierarchical Layout of Component-Level and System-Level
Health Managers

4) Execution platform for the SLHM strategy based on
the identification of the faulty component.

5) Instrumentation to communicate the mitigation com-
mands to components in the assembly.

6) Instrumenting the components to receive the system
level commands and execute them as needed.

Three special, dedicated components (described below)
are automatically added to the assembly to implement the
System Level Health Manager shown in figure 2. These
components are:

• the Alarm Aggregator : Responsible for collecting and
aggregating anomalous events and the corresponding
mitigation actions from the components and reporting
these events to the Diagnosis Engine component.

• the Diagnosis Engine: Hosts an instance of a diagnosis/
reasoning engine that can isolate the most plausible
fault-source component based on the information ob-
tained by the Alarm Aggregator.

• the SystemHM Mitigation Engine : Receives the diag-
nosis results: the set of faulty components and responds
with an appropriate system-level command(s) to miti-
gate the fault. It executes the code corresponding to
the SLHM strategy captured in the hierarchical state-
machine model.

Interconnections of these components to support data-flow
(information/ command) in support of SLHM, are auto-
matically synthesized by a code generator that operates on
models. The only input required from system integrator is
the fault mitigation specification as a hierarchical timed
state-machine model.

The following sections delve more into the internals of the
SLHM runtime mechanism, the current diagnosis approach
adopted in SLHM and the lessons learned in adapting it to
a software system.

III. DIAGNOSIS IN SLHM

The diagnosis engine in SLHM is a model-based reasoner
that relies on a Timed Failure Propagation Graph (TFPG)

[2], [3] model of the entire component assembly. The TFPG-
based diagnosis engine implements a real-time incremental
reasoning approach that can handle multiple failures includ-
ing sensor/alarm faults. In addition, the underlying TFPG
model can represent a general form of temporal and logical
dependency that directly incorporates the dynamics of multi-
modal systems.

A TFPG is a labeled directed graph where nodes repre-
sent either failure modes (i.e. the fault causes) or discrep-
ancies (i.e. the off-nominal conditions that are the effects of
failure modes). Edges between nodes in the graph capture
the failure propagation effect. While the failure modes are
always the root nodes in the graph, the discrepancy nodes
always have one or more parent nodes which could be
failure mode(s) or other discrepancies. A discrepancy could
be of type OR or AND. The discrepancy type determines
the conditions that need to be satisfied for the discrepancy
(anomaly) to occur. An AND discrepancy (anomaly) could
occur only if the failure effect propagated from all of its
parent nodes, while an OR discrepancy (anomaly) could
occur if the failure propagated from at least one parent
node. Further, some discrepancies are observable as the
associated anomalies can be detected through a monitor,
others are unobservable. To represent failure propagation
in multi-modal (switching) systems, edges in the graph can
be activated or deactivated based on the current operation
mode of the system. The temporal constraints of failure
propagation is captured in the edges as a time interval, where
the lower and upper bound of the time interval represent
the minimum and maximum time for the failure effect to
propagate along the edge when it is active.

A. Creating TFPG Model from a Component Assembly

The TFPG model of the entire system is automatically
synthesized from the ACM assembly model. The synthesis
follows the component hierarchy, starting with the TFPG
model of the component ports, using these port TFPG model
to build the component TFPG models which are then used
to build the TFPG model of the entire assembly. The well-
defined sequence of operations in every component port
implementation provides a default failure propagation path
across the anomalies that could potentially be observed
within a port’s operation. This is useful in building a
template TFPG model for each component port type. An
earlier version of these templates and how they are used
to build component and then system level TFPG models
was discussed in [12]. Figure 3 shows a portion of the
TFPG model of the GPS Assembly captured in figure 1.
It shows parts of the TFPG of the Sensor component (and
its publisher port: data out), the GPS component (and its
consumer port: data in) and the failure propagation across
these components and their ports.

During the construction of the TFPG model new fail-
ure propagation links are added at each stagem, within a



Figure 3. TFPG model for Sensor-Publisher and GPS-Consumer

component TFPG model and within the assembly TFPG
model. These additional failure propagation links are based
on the failure cascades within a component and across the
component boundaries. The properties governing these new
failure propagation links are discussed in the next section.

B. Failure cascades in ACM Component Assemblies

The anomalies observed within a component port can be
caused by a local component failure (i.e. a latent defect
in the component code) or problems from the component’s
environment (e.g., related to resource sharing) or can be the
result of failure effects cascading from other components in
the assembly. The discussion below summarizes the contexts
that have been considered for failure cascades captured in
the TFPG model of the component assembly.

Correctness contracts and dataflow dependency: For
each component (or component port), the pre- and post-

conditions capture the required guarantees on the input
data and the provided guarantees on the output data. This
relationship across the dataflow in the assembly model leads
to an understanding that for the nominal operation of the
software assembly, the output/contract guarantees (i.e. post-
condition ) of the supplier component port must satisfy the
input contract guarantees (i.e. pre-condition) of the receiver
component. Stated otherwise, when a system integrator is
building a component assembly, care should be taken that
the pre-conditions evaluated on the data should be able
to accommodate the post-conditions verified on the data.
This type of reasoning is critical in achieving modular
certification of software components [26].

This implies that if the rules were followed correctly,
when a pre-condition violation is detected on the receiver, a
post-condition violation in the sender ensures that the fault
is propagating along the direction of data flow. In case of
the TFPG model presented in Figure 3, a post-condition
violation in Sensor component’s publisher port (data out),
can result in a failure propagation that ultimately leads to
a pre-condition violation in the GPS component’s consumer
port (data in).

Timing Constraint dependency: Timing constraints are
enforced in the model through the real-time properties of
the component ports (i.e., periodicity, deadline, and WCET).
Timing constraints to detect staleness in data are captured
through the data validity properties on the consumer ports
[11]. During runtime, it is possible that a deadline viola-
tion in one process (component port) can lead to deadline
violations in other ports of the same component or in ports
sharing the partition. More importantly, if a process (i.e.
component port) depends on the completion of a method call
to another component, the designer should have taken into
account these dependencies. In other words, the TFPG model
is required to have a path for timing constraint violations in
a direction opposite to the direction of invocation. In the
TFPG model presented in Figure 3, a problem with the
timing constraint of the Sensor’s publisher can manifest as
a Deadline Violation anomaly. This can lead to a delayed
or omitted publication of data by the publisher, leading to
Validity constraint violation in the GPS’s consumer.

Combination of constraints on data and timing: Vio-
lations of the constraints on data and timing can affect each
other. For example, a violation on the timing constraint can
lead to a poor or lack of update on the data which can then
affect the constraints on the data flow. Likewise, a violation
on the data constraints, can lead to computational problems
that affect the timing properties associated with component
ports. For example, in Figure 3, violation of the Validity
constraint in the GPS’s consumer port can lead to problems
in consumer port’s code which can lead to a post-condition
violation on the consumer port, resulting in a bad state-
update of the GPS’s state variables by the consumer port.

It should be noted that the problems associated with



timing and data constraint violation manifest because of (i)
latent bugs (FM Code in GPS and Sensor components of the
TFPG model in figure 3), (ii) or problems associated with
operating environment of the component (FM Env in the
GPS and Sensor components of the TFPG model in figure 3).
Propagation of these failures that cause anomalies in other
parts of the assembly model is dependent on the kind of
interaction pattern being considered, as follows.

Synchronous Interactions: These interactions between
a required (receptacle) port and a provided (facet) port are
affected by failure propagations associated with constraint
violations on timing and data. A requires port can supply
bad data to a provider port, there by affecting the state in
the provider component. Similarly, a bad state in a provider
component can propagate to the component hosting the
requires interface via the returned data value. In case of
a violation of timing constraints, a deadline violation of the
provider can lead to a deadline violation in the requires port.

Asynchronous Interactions: Unlike synchronous inter-
actions, failure propagation in asynchronous interactions
proceeds in only one direction - from the publisher to
the consumer. For example, the TFPG model in figure 3
which shows the failure propagation interaction between the
Sensor’s publisher and the GPS’s consumer . While violation
of constraints associated with data propagates directly from
the publisher to the consumer, the problems associated with
timing do not have a direct relationship like the synchronous
interaction. However, it is possible that a periodic consumer
can be affected with data-validity violations of a stale data
if the publisher violates its deadline or fails to publish the
data.

Invocation Interactions: Ports (or processes) within the
same component can be affected by a fault propagation
associated with timing constraint violations when the busi-
ness logic associated with a port invokes another aperiodic
publisher port or a required port. In this case, deadline
violation propagates backwards along the invocation chain.

IV. DISCUSSION

In this section, we identify and discuss several issues
pertinent to effective diagnosis of distributed software com-
ponent assembly. We do not focus on the performance
or quantitative aspects of the diagnosis problem or the
associated health management architecture. Rather we focus
on some interesting aspects that crop up while adapting
system health management approaches to support software
health management, especially as observed in the context
of ACM software framework. We also discuss potential
strategies (some of which have already been implemented) to
account for these problems, thereby improving the software
health management architecture.

A. Effects of Local Mitigation: The support for local
mitigation actions provides a quick local response to an
anomaly. However, this can have the effect of creating a

modified failure cascade. For example, consider the case
in which CLHM receives a pre-condition violation on a
publisher, and decides to abort the publisher operation.
While it prevented the publication of bad data (that could
have potentially violated the contracts), the lack of data
published can lead to a problem on the consumer side.
Now, if the downstream consumer is periodic, it will get
a validity violation because the sampled data has not been
updated by the publisher. To account for the modified fault
cascades, we added modes based on the CLHM action (in
the generated TFPG model) to activate or deactivate certain
failure propagation paths. Also, the CLHM actions (along
with the anomalies) were reported to SLHM in order to aid
in proper diagnosis.

B. Alarm Timing Issues: In our architecture all anoma-
lies detected are time stamped using the local module
clock. However, unless a reliable and deterministic network
such as Time-Triggered Ethernet [15] is being used, it is
possible that alarms do not arrive at the SLHM modules
in the order of their detection. This can be either due to
the varying network latency or task preemption. To ensure
the consistency of the diagnosis , the received alarms are
aggregated and sorted by detection time in a moving window
and supplied to the diagnosis engine (by AlarmAggregator
component). The window size is set based on the higher
of the two values: the system hyper period, and the worst-
case network latency. In our implementation, this window-
size or delay has been set to the system hyper period
as it was much bigger than the network latency. Further,
this also assumes that the schedule generation ensures that
a partition associated with each active component port is
triggered at least once in every system hyper period. An
alternative approach to this problem involves re-computing
hypothesis(in the diagnosis engine) to tolerate the delayed
alarm reporting. However, this is not yet implemented.

C. Masking of Fault Effects: While building a diagnoser
that considers the fault cascades (discussed earlier), we must
consider the effect of component or component groups (such
as voters) that are designed to mask the effect of cer-
tain faults, thereby preventing their cascade to downstream
components. Since the generic TFPG model automatically
synthesized from the assembly model is not aware of this
fault-masking behavior of the component, the diagnosis
process related to these faults is affected. The diagnoser (on
the basis of the incomplete TFPG model) can expect certain
downstream alarms to fire. The masking effect will ensure
that the alarms do not fire and hence lead to less robust
hypothesis and possibly large number of ambiguities. In such
cases, it is important to update the generic TFPG model to
ignore the alarms associated with these faults whose effects
are being masked. Our earlier work presented in [18] shows
an assembly that was setup to tolerate up to two failures
among a class of components.



D. Intermittent Faults/Alarms: It is possible that the
failure source or the alarms associated with the anomalies
are intermittent, i.e. they are observed in one period but
not observed in another. This intermittent behavior can be
caused by a partial masking effect, or intermittent behavior
in the original fault source, or it can be due to the mitigation
actions. TFPG as a diagnosis engine has handled this prob-
lem in the system health management domain [3]. However,
this problem has not been handled in the software health
management framework yet.

E. System Hysteresis: It is possible that the despite the
mitigation action taken at the system-level to remove the
fault source, the fault cascade remains in the system for a
few cycles. Such hysteresis will result in intermittent alarms
during this period and should be ignored by the diagnosis
engine. Furthermore, it is important that the CLHMs report
not only the activation of alarms, but also their deactivation
to the SLHM, thereby improving the quality of future
diagnosis.

F. Alarms ’near’ the Fault Source: It is possible that
certain anomalies in the component assembly are not observ-
able as they do not have an associated alarm. For example,
the developer can choose not to specify a pre-condition for
a port. In such cases, when a failure propagates through this
port, it is not detected. Further, if an anomaly is detected
downstream, the hypothesis ambiguity set could be much
larger than if the pre-condition had been specified. This
is because then the firing or lack of firing of the pre-
condition would eliminate potentially many fault causes.
Also, when the ambiguity set grows the mitigation action
would probably need to be applied to all components or
repetitively to each component until normal functionality
is restored. Since this is not an efficient approach, system
integrators should ensure that all possible monitors that
could be specified are accounted for. This will ensure that
the alarms are mostly close to the fault source and that the
diagnosis process is less ambiguous resulting in faster and
effective mitigation.

G. Distributed SLHM: In case of very large systems,
with a large number of components, it will be useful
to identify component assemblies that have limited or no
interaction and diagnose each independent regions with a
different diagnosis engines. This will allow the diagnosis
engine to focus on a smaller region and provide a real-time
response to the observed fault-effects. In previous work [17]
we have presented a distributed TFPG model. This model
can be applied to a large system wherein the local reasoners
deal with the diagnosis of their almost independent regions
while the global reasoner deals with providing an integrated
view for the entire assembly.

V. RELATED RESEARCH

Our approach focuses on latent faults in software systems,
follows a component-based architecture, with a model-based
development process, and implements all steps in the Col-
lect/Analyze/Decide/Act loop [7].

Conmy et al. presented a framework for certifying In-
tegrated Modular Avionics software applications built on
ARINC-653 platforms in [8]. Their main approach was the
use of ‘safety contracts’ to validate the system at design
time. Nicholson presented the concept of reconfiguration in
integrated modular systems running on operating systems
that provide robust spatial and temporal partitioning in [20].
He suggested use of lookup tables, similar to the health
monitoring tables used in ARINC-653 system specification,
that maps trigger event to a set of system blue-prints
providing the mapping functions.

Rohr et al. advocate the use of architectural models for
self-management [25]. They suggest the use of a runtime
model to reflect the system state and provide reconfiguration
functionality. From a development model they generate a
causal graph over various possible states of its architectural
entities. Garlan et al. [13] and Dashofy et al. [9] have
proposed an approach which bases system adaptation on ar-
chitectural models representing the system as a composition
of several components, their interconnections, and properties
of interest. They make reconfiguration decisions using rule-
based strategies.

While these works have tended to the structural part
of the self-managing computing components, some have
emphasized the need for behavioral modeling of the compo-
nents. For example, Zhang et al. described an approach to
specify the behavior of adaptable programs in [34]. Their
approach is based on separating the adaptation behavior
specification from the non-adaptive behavior specification
in autonomic computing software. They model the source
and target models for the program using state charts and
then specify an adaptation model, i.e., the model for the
adaptation set connecting the source model to the target
model using a variant of Linear Temporal Logic [33].

Williams’ research [24] concentrates on model-based au-
tonomy. The paper suggests that emphasis should be on de-
veloping techniques to enable the software to recognize that
it has failed and to recover from the failure. Their technique
lies in the use of a Reactive Model-based Programming
Language (RMPL)[31] for specifying both correct and faulty
behavior of the software components. They also use high-
level control programs [32] for guiding the system to the
desirable behaviors.

The work described here is closely related to the larger
field of software fault tolerance: principles, methods, tech-
niques, and tools that ensure that a system can survive
software defects that manifest themselves at run-time [16],
[23]. To the best of our knowledge, this work and similar



work done by our peers [21], [27], [18], [4] comes closest to
applying formal system health management techniques, i.e.
detection, diagnosis, mitigation for dynamic software fault
removal, performed at run-time.

VI. CONCLUSION

This paper summarizes the approach we adopted towards
augmenting a software component assembly with support
for real-time health management. We adapted a diagnosis
scheme, used for Systems Health Management for elec-
tromechanical systems, and applied it towards diagnosing
problems in software assembly, thereby enabling a two-level
software health management scheme. The paper documents
the lessons learned (from a diagnosis perspective) to improve
the quality of software health management.

Acknowledgments: This paper is based upon work sup-
ported by NASA under award NNX08AY49A. Any opin-
ions, findings, and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Aeronautics and
Space Administration. The authors would like to thank Paul
Miner, Eric Cooper, and Suzette Person of NASA Langley
Research Center for their help and guidance on the project.

REFERENCES
[1] Arinc specification 653-2: Avionics application software standard

interface part 1 - required services. Technical report.
[2] S. Abdelwahed and G. Karsai. Notions of diagnosability for timed

failure propagation graphs. In Proc. IEEE Systems Readiness Tech-
nology Conference, pages 643–648, 18–21 Sept. 2006.

[3] S. Abdelwahed, G. Karsai, N. Mahadevan, and S. C. Ofsthun.
Practical considerations in systems diagnosis using timed failure
propagation graph models. Instrumentation and Measurement, IEEE
Transactions on, 58(2):240–247, February 2009.

[4] M. Barry. http://www.kestreltechnology.com/downloads/
FailsafeOverview.pdf, 2008.

[5] A. T. S. Bureau. In-flight upset; 240km NW Perth, WA; Boeing Co
777-200, 9M-MRG. Technical report, August 2005.

[6] A. T. S. Bureau. AO-2008-070: In-flight upset, 154 km west
of Learmonth, WA, 7 October 2008, VH-QPA, Airbus A330-303.
Technical report, October 2008.

[7] e. Cheng, Betty H. Software engineering for self-adaptive systems.
chapter Software Engineering for Self-Adaptive Systems: A Research
Roadmap, pages 1–26. Springer-Verlag, Berlin, Heidelberg, 2009.

[8] P. Conmy, J. McDermid, and M. Nicholson. Safety analysis and
certification of open distributed systems. In International System
Safety Conference,, Denver, 2002.

[9] E. M. Dashofy, A. van der Hoek, and R. N. Taylor. Towards
architecture-based self-healing systems. In WOSS ’02: Proceedings of
the first workshop on Self-healing systems, pages 21–26, New York,
NY, USA, 2002. ACM Press.

[10] R. de Lemos. Analysing failure behaviours in component interaction.
Journal of Systems and Software, 71(1-2):97 – 115, 2004.

[11] A. Dubey, G. Karsai, and N. Mahadevan. A component model for
hard real-time systems: Ccm with arinc-653. Software: Practice and
Experience, 41(12):1517–1550, 2011.

[12] A. Dubey, G. Karsai, and N. Mahadevan. Model-based Software
Health Management for Real-Time Systems. In Aerospace Confer-
ence, 2011 IEEE, pages 1–18. IEEE, 2011.

[13] D. Garlan, S. W. Cheng, and B. Schmerl. Increasing system
dependability through architecture-based self-repair. Architecting
Dependable Systems, 2003.

[14] W. S. Greenwell, J. Knight, and J. C. Knight. What should aviation
safety incidents teach us? In SAFECOMP 2003, The 22nd Inter-
national Conference on Computer Safety, Reliability and Security,
2003.

[15] H. Kopetz and G. Bauer. The time-triggered architecture. Proceedings
of the IEEE, 91(1):112–126, 2003.

[16] M. R. Lyu. Software reliability engineering: A roadmap. In
2007 Future of Software Engineering, FOSE ’07, pages 153–170,
Washington, DC, USA, 2007. IEEE Computer Society.

[17] N. Mahadevan, S. Abdelwahed, A. Dubey, and G. Karsai. Distributed
diagnosis of complex causal systems using timed failure propagation
graph models. In IEEE Systems Readiness Technology Conference,
AUTOTESTCON, 2010.

[18] N. Mahadevan, A. Dubey, and G. Karsai. Application of software
health management techniques. In Proceedings of the 2011 ICSE
Workshop on Software Engineering for Adaptive and Self-Managing
Systems, SEAMS ’11, New York, NY, USA, 2011. ACM, ACM.

[19] NASA. Report on the loss of the mars polar lander and deep space
2 missions. Technical report, NASA, 2000.

[20] M. Nicholson. Health monitoring for reconfigurable integrated
control systems. Constituents of Modern System safety Thinking.
Proceedings of the Thirteenth Safety-critical Systems Symposium.,
5:149–162, 2007.

[21] L. Pike, A. Goodloe, R. Morisset, and S. Niller. Copilot: A hard
real-time runtime monitor. In Runtime Verification, pages 345–359.
Springer, 2010.

[22] J. Potocti de Montalk. Computer software in civil aircraft. In Digital
Avionics Systems Conference, 1991. Proceedings., IEEE/AIAA 10th,
pages 324 –330, oct 1991.

[23] L. L. Pullum. Software fault tolerance techniques and implementa-
tion. Artech House, Inc., Norwood, MA, USA, 2001.

[24] P. Robertson and B. Williams. Automatic recovery from software
failure. Commun. ACM, 49(3):41–47, 2006.

[25] M. Rohr, M. Boskovic, S. Giesecke, and W. Hasselbring. Model-
driven development of self-managing software systems. In Proceed-
ings of the Workshop “Models@run.time” at the 9th International
Conference on model Driven Engineering Languages and Systems
(MoDELS/UML’06), 2006.

[26] J. Rushby. Modular certification. Technical report, Sept. 2001.
[27] J. Schumann, A. Srivastava, and O. Mengshoel. Who guards the

guardians?toward v&v of health management software. In Runtime
Verification, pages 399–404. Springer, 2010.

[28] A. Srivastava and J. Schumann. The Case for Software Health
Management. In Fourth IEEE International Conference on Space
Mission Challenges for Information Technology, 2011. SMC-IT 2011.,
pages 3–9, August 2011.

[29] M. Wallace. Modular architectural representation and analysis of fault
propagation and transformation. Electron. Notes Theor. Comput. Sci.,
141(3):53–71, 2005.

[30] N. Wang, D. C. Schmidt, and C. O’Ryan. Overview of the CORBA
component model. Component-based software engineering: putting
the pieces together, pages 557–571, 2001.

[31] B. Williams, B. Williams, M. Ingham, S. Chung, and P. Elliott.
Model-based programming of intelligent embedded systems and
robotic space explorers. Proceedings of the IEEE, 91(1):212–237,
2003.

[32] B. C. Williams, M. Ingham, S. Chung, P. Elliott, M. Hofbaur, and
G. T. Sullivan. Model-based programming of fault-aware systems.
AI Magazine, 24(4):61–75, 2004.

[33] J. Zhang and B. H. C. Cheng. Specifying adaptation semantics.
In WADS ’05: Proceedings of the 2005 workshop on Architecting
dependable systems, pages 1–7, New York, NY, USA, 2005. ACM.

[34] J. Zhang and B. H. C. Cheng. Model-based development of
dynamically adaptive software. In ICSE ’06: Proceeding of the 28th
international conference on Software engineering, pages 371–380,
New York, NY, USA, 2006. ACM.

http://www.kestreltechnology.com/downloads/FailsafeOverview.pdf
http://www.kestreltechnology.com/downloads/FailsafeOverview.pdf

