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Abstract—This paper proposes a new modeling and simulating
environment based on the principles of Model Integrated Com-
puting (MIC) that facilitates the design and analysis of shipboard
power system and other similar distributed and comprehensive
power systems. The conventional simulation platforms such as
Matlab®, Simulink®, PSSE®and VIB®among many require
the designers to have explicit domain specific knowledge of the
syntactic, semantic and presentation information of the desired
domain within the tools. This, however, severely slows down
the design and analysis process, and cross domain and cross-
tool operations remain challenging. Our approach focuses on the
design of a modeling environment that provides generic support
for different application domains (related to shipboard power
systems), but yet explicit enough to capture the properties of
a domain in terms of modeling concepts, composition princi-
ples and operation constraints. The proposed Shipboard Power
System Modeling Environment design concept is demonstrated
and verified through an open source toolkit Generic Modeling
Environment (GME) with two case studies.

I. INTRODUCTION

Shipboard power system (SPS) includes complex interre-
lated dynamics and controls. The main purpose of the system
design is to supply constant power to essential components
including propulsion, weaponry, navigation and communica-
tion systems. The stability and reliability of the system under
different scenarios, especially in the events of battle, is very
critical to the mission of SPS design. Careful modeling and
simulation to analyze such contingent scenarios is critical for
evaluating the survivability of the SPS. In addition, complete
ship building demands the inclusion of multi-disciplinary engi-
neering fields including mechanical, electrical, communication
and thermal dynamics.

Several conventional simulation platforms exists including
Matlab, Matlab Simulink, PSSE, PSCAD, and VTB among
many. These tools provide an ability to model and analyze
specific portions of a complex and multi-disciplinary systems
like shipboard power systems. However, there are some prob-
lems.

e The designer needs to have very explicit knowledge of
the tool in order to develop the application fitting into
the desired specifications and avoid syntactic mistakes,
violating hierarchical component dependencies or other
constraint violations.

e Although similar design concepts can still be used across
different tools, it is still relatively time-consuming and
expensive to transplant the application model due to the
incompatibilities among different tools.

e Limited to the variety of tool-specific syntactic rules and
constraints, it is hard to be expanded for development of
future technologies system updates

Model-integrated concepts has been recently addressed [1]
in power systems domain to integrate modeling tools from
diverse domains. In this paper, a modeling approach based
on Model Integrated Computing (MIC) [2],[3],[4] is proposed
to support the conventional simulation environment. objective
of the approach is to design a flexible and extensible model-
integrated graphical framework that facilitates rapid evaluation
of SPS under different testing scenarios across different do-
mains and platforms.

The paper is organized as follows: Section II provides a brief
review of the software infrastructure of the proposed design.
In Section III, two case studies of the proposed approach are
elaborated with the analysis of the simulation results. Finally,
in Section IV, future work is discussed and the conclusions
are drawn.

II. MODEL INTEGRATED COMPUTING AND GENERIC
MODELING ENVIRONMENT

A. Model Integrated Computing (MIC)

The application development and schematic design for
power systems has always been a challenge. Stringent time
limit, high development and evaluation cost, complex interre-
lated components and availability are the factors that power
engineers cannot solely rely on the physical test bed for
system development[5]. Well stated models explicitly cap-
ture the structure, characteristics of the target system and
the operation environment. On the other hand, models also
provide a flexible and efficient approach to perform system
design, performance analysis, verification and validation, and
artifact synthesis capabilities. MIC approach adopts the model-
based paradigm and provides a high-level, abstracted syntax
and semantics representation for specifying and reasoning
about different design aspects and system properties[2][3]. A



modeling language written using the grammar of this high
level language can be tailored and be made domain specific[6]
and can be made applicable to various control algorithms[7].
Alternatively, it also provides a mechanism for specifying an
abstract integration language that can allow the consolidation
of common semantics of various commercial analysis tools
available for the domain. Then, the challenge remains: how
to accelerate the modeling and analysis process? How to
precisely capture the critical system specifications? How to
extend the design to a variety of applications within different
domains?

The concept of MIC is to facilitate the environment design-
ers, by enabling the definition of the syntax and semantic spec-
ifications in a way that yields a better overall experience during
building and simulating practice of complex applications[6].
For the implementation of MIC, a two level development
process is employed[3][5][8]. Software or system engineers
operate on the meta-level for specifying and configuring a
specific domain; while domain engineers work on the appli-
cation level to create the application model and analyze the
performance. Figure 1 demonstrates the structure of a typical
MIC design work-flow.

Meta-level is a domain-independent abstraction that defines
a domain specific environment in terms of modeling con-
cepts, component relations, model-composition principles and
constraints. In other words, meta-level is the specification of
modeling paradigms of system configurations. It contains the
base knowledge of rules and constraints of a specific domain
and the corresponding representations.

Application level provides an environment for application
model customizations. The objective is to let the environment
designers build the model, synthesize executable applications,
and analyze the simulation results on the application level.
Principles of application operations are based on the semantic
representations and paradigms defined in the meta-level. With
changes and updates applied to the system, designers can
easily modify the model and re-synthesize application files.

A model interpreter is used to convert the knowledge
captured in the application models to other useful artifacts[9].
For example, it can be used to generate executable code
and configurations files. Upon user’s request, attributes and
relationships of system components will be acknowledged
and synchronized to an executor, which is normally provided
by the specific domain. The interpreter will then invoke the
executor and generate output in the form of data files, graphs,
etc[4].

B. Generic Modeling Environment (GME)

Developed by the Institute of Software Integrated System at
Vanderbilt University, Generic Modeling Environment (GME)
is a configurable tool that provides a generic solution for model
design and application development for different domain-
specific modeling environments[10](figure 2).

A set of generic concepts have been embedded in GME to
facilitate the creation of sophisticated systems. Typical mod-
eling concepts of GME include: aspects, attributes, hierarchy,
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Figure 2. Generic Modeling Environment (GME)

set, reference, and constraints[11][4]. Within a GME project,
model, atom, reference, connection and set are classified as
first-class objects (FCOs).

e Aroms: the basic, elementary object, which cannot con-
tain any objects inside

e Models: the comprehensive object that can contain other
objects and inner structures

e Hierarchy: the containment relationships between ob-
jects. Every object must have one parent and the parent
must be a model

e Aspects: the control unit of visibility that determines
which part of the model is visible or hidden

e Connection: expresses the relationship between objects
within the same model. In order to make a connection,
the connected objects must be visible to each other, i.e.
in the same aspect

e Reference: expresses relationships between objects in
different system levels or different systems



e Set: relationships among a group of objects under the
same folder with the same aspect

e Attributes: in order to capture information that has no
graphical representations, FCOs are affiliated with at-
tributes. The common available attributes are test, integer,
double, boolean and enumerated

e Constraints: rules made specifically for
composition and attribute specification.

model-

For a given domain, the paradigm is created as a composi-
tion of the modeling concepts as they determine the capacity
of a specific application.

Apart from the effectiveness and expandability introduced
with MIC, GME also offers a user-friendly graphical design
interface. Developing a system model, especially a system with
sophisticated components and hierarchical composition like
ship-board power system, is an error-prone process. However,
instead of the typical, textual representation, GME has offered
designers a better option of a more expressive and readable
system representation that is visible in the GUIL In this
way, the tedious code-based design becomes an easier, more
straightforward and more visualized process.[12]

In summary, GME is a comprehensive toolkit that integrates
the meta-model editor, meta-model interpreter, application
model editor, domain specific codes generator and simulation
execution environment.

III. CASE STUDY

This research work focuses on evaluating and analyzing the
static and dynamic performances of a simplified SPS. In order
to achieve this goal, toolboxes that are specifically designed
for power system analysis and control are carefully studied and
chosen. Typical toolboxes like Matpower, Power System Tool-
box (PST), Power Analysis Toolbox (PAT), Voltage Stability
and Analysis Toolbox (VSAT) and Power System Analysis
Toolbox (PSAT) have been widely utilized to perform different
power system analysis on a variety of simulation platforms.
Common functions supported include the calculation of power
flow, continuation power flow, optimal power flow, and small
signal stability analysis and time domain simulation. In the
following case studies, GME will be integrated with Matpower
and PSAT toolbox individually to create the design environ-
ment.

A. Case study I: Integration with MatPower

For the first case study, Matpower[13], which is primarily
used to solve power flow and optimal power flow problems, is
integrated with the design environment. The basic procedure
for running a simulation in Matpower follows: i),Preparing
of the input data matrices that defines all the relevant system
parameters; ii), Invoking the main function to perform power
flow or optimal power flow calculation, and iii), Displaying
the results and saving simulation data in predefined structures
and directories.

Modeling of Matpower is based on the standard steady-
state power flow analysis models[14]. Equations describing
system components and connections are represented in the

Generator
<<Atom>>

P
Power field |, -

Reactive_Power:  field j o Load
Power_Min field - <<Atom>>
Power_Max field [ «SJZ::\“» | —

Reactive_Min field | |
Reactive_Max: field
MVA_Base field
Voltage_Magnitude : field

7| Load_Active_Power: field
Load_Reactive_Power : field

i [ LoadConnection

BranchConnection
SranchC o <<Connection>>

GenConnection H
<<Connection>> [/~

[ Gen_status :bool

0.

“["Bus_Num field
Bus_Type field
+| Base_v field
V_Magnitude field
V_Angle field
* | V_MAX field
se ) V_MIN field
Shunt_Conductance :field
Shunt_Susceptance : field

Load_Status : bool

bool
Resistance : field
Reactance : field
Susceptance : field
Phase_shift: field
MVA_Rating : field

Figure 3. Meta_Model Design

form of matrices in the Matlab structure. The common fields
of the Matlab structure consist of bus, branch, generator and
generator costs for optimal power flow analysis. Among them,
branches include all the transmission lines, transformers and
phase shifters information, and modeled as a standard pi
transmission line model with series impedance and charging
capacitance. Generators are modeled as complex power injec-
tion at a specific bus with an active part and a reactive part, and
loads are modeled constant consumption of active and reactive
power at a bus. After the specifications of the Matpower struct
or case file, commands like runpf and runopf are invoked to
execute the analysis. The solver of Matpower is relying on the
Matlab extension (MEX) files.

1) Step.1 Create the meta-model: Based on the Matpower
format requirement, the main components in the system can
be summarized into Generators, Buses and Loads (see figure
3). Generator blocks contain most of the attributes for the gen
matrices in the MatPower data file, the Bus blocks contain
most of the attributes for the bus matrices, and the Load
blocks contain the active and reactive power data for the
bus matrices. There are also three types of connections in
the system, branch connections, generator connections, and
load connections. The Branch Connection contains data for
the branch matrices including the destination and source bus
of the connection. The Generator Connection includes data for
which bus a generator is connected to, along with the generator
status for the gen matrices. The Load Connection includes the
information about the bus number a certain load is connected
to and a status attribute indicating the connection status. Once
all the components and attributes are settled in the meta model,
the next step is to create the application model and code the
interpreter.

2) Step.2 Create the application model: The application
model is created to mimic the medium voltage AC baseline
models of shipboard power system developed by the Electric
Ship Research and Development (ESRDC)[15]. The funda-
mental topology includes four turbo-generators connected to
a ring-bus which supplies two propulsion motors and four
zonal loads. Other components like energy storage system or
high-level pulsed load are not included for the simplicity. The
main focus on the application model design is to evaluate the
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Figure 4. Application_Model Design

static state optimal power flow within the system, thus the
control units and dynamic components within the system are
also removed. The demonstration of application model is as
shown in figure 4.

3) Step.3 Interpreter design: To develop the interpreter, the
very first procedure is to collect data from the design interface,
and save them in the correct locations. The next step is to
ensure that all the constraints are satisfied. The final process
in the interpreter is to create the needed m-file and running
the Matlab engine to use the files to get the results back. The
interpreter is programmed in Visual C++ environment. It uses a
dynamically allocated two-dimensional array to save the data.
Sample code below shows a section of codes that collects Bus
data entities from the application model.getAttribute() is one
of the main functions used to collect attributes of particular
names from the system.

// Bus_Data_Collection

if (( it ) — >getObjectMeta().name() == "Bus”){

bus_array [0][ buses]=

(* it ) — >getAttribute("Bus_Num”)— > getIntegerValue();
bus_array [1][ buses]=

(x it ) — >getAttribute("Bus_Type”)— > getIntegerValue();
bus_array [4][ buses]=

(it ) — > getAttribute(”Shunt_Conductance”)— >getReal Value();

}

4) Step.4 Define constraints within the interpreter: The
constraints as shown in the sample script below are described
and implemented from a list of constraints decided by the
users. Many of constraints are checked using a set of flags and
counters during the actual gathering of data. Other constraints,
such as the unique bus number, are checked using multiple
for loops and checking the values from the data collected
earlier. If any of the constraints is true, indicating a constraints
violation; an error flag is set true and the flag will prevent the
file generation as well as the Matlab engine from running. In
addition, when there is an error on building the model, an error
message will be shown on the console of GME describing the
error for the user. If no error has occurred, the interpreter will
continue with the file generation.

Interpreter started...
Error: Generator(s) not Connected.
Interpreter completed...

Figure 5. Demonstration of Error Messages in the Console

else if (gen_conn_check > total_gens){

error = true;

Console::Out::

WriteLine(”Error: Multiple connections from a single Generator.”);

}

// Generator_Connection_Check

if (gen_conn_check < total_gens){
error = true;
Console:: Out:: WriteLine(”Error: Generator(s) not Connected.”);

The following constraints are implemented in the interpreter
to ensure the model is created correctly:

e The total available generation power should be greater or
equal to the total power demand

e Every Load can only be supplied from port bus or
starboard bus

e Each Bus in the system must have a unique Bus_Num
attribute

e Each Generator should be connected to the bus at one
and only one spot

e To ensure the continuity of the power flow only one
branch can be switched off at one time

e Bus voltage magnitude should be within V_Max and
V_Min

e Generator active power and reactive power supply should
be within their own limits

If any of these constraints is broken, one of the error
messages from Figure 5 will show up in the GME console.

5) Step.5 Synthesis of configuration information: Sample
script below shows the generated m-file. Once the constraints
are all satisfied, loops need to be created to traverse through
the arrays to print out the data in the correct locations. The
Interpreter also creates the command file to run the case file.
The bus data figures and the branch data figures are saved in
a file for futher examination. Once the data file is ready, the
interpreter will invoke the Matlab engine.

/I Configuration_File_Synthesis

fprintf ( matlab_file , " function mpc = case_1");
fprintf ( matlab_file , “mpc.version = "2°”);
fprintf ( matlab_file , “mpc.baseMVA = 107);
fprintf ( matlab_file , “mpc.bus = [ \n”);
// Print_Bus_Array
for (counter] = 0;counter] < total_buses ;counter]l++){
for (counter2 = 0;counter2 < 11;counter2++){
if (counter2 == 6)
fprintf ( matlab_file ,”\t1”);
if (counter2 == 9)
fprintf ( matlab_file ,”\t1”);
fprintf ( matlab_file ,”\ t%.2f”, bus_array [ counter2 ][ counterl ]) ;

}
fprintf ( matlab_file ,”;\n");

6) Step.6 Invoke Matpower solver to execute the generated
models: Matlab engine contains a series of API functions
which supports C/C++, Fortran among many[16]. These func-
tions are used to invoke Matlab engine and execute Mat-
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Figure 6. Optimal Power Flow Results

lab scripts directly within the other programming environ-
ments. Data (variables, arrays, matrices, etc.) can be trans-
ferred between the C++ workspace and Matlab workspace bi-
directionally. Designers can directly call Matlab functions in
C++ instead of coding the complicated functions by hand.

// Invode_Matlab_Engine_and_Solve

Engine *ep; // define Matlab engine pointer .

char MatlabPath[100]; / current Matlab Path

char p[6000]; // Matlab return buffer

int n=6000;//Matlab return buffer size

ep=engOpen(NULL);

engOutputBuffer(ep, p, n);//push the Matlab output into the buffer
TCHAR NPath[MAX_PATH];//current C++ project path
GetCurrentDirectory (MAX_PATH, NPath);

strepy (MatlabPath,”cd ) ;

strcat (MatlabPath, NPath);

engEvalString (ep,MatlabPath); // change the Matlab project path to the C++ path
engEvalString (ep, "Matpower”);// execute the m—file

Console:: Out:: WriteLine(p);

7) Step.7 Display of the simulation results: The simulation
results are presented in figure 6.

The purpose of integration with MatPower case study is
to provide a tangible approach demonstrating the utility of
the proposed environment. However, Matpower has its own
limitations. In the second case study, we integrate PSAT with
more functionality including dynamics and larger component
libraries.

B. Case study II: Integration with PSAT

This case study exploits the potential of the proposed
generic modeling concept through well tested open source
tool PSAT[17]. Static and dynamic analysis algorithms defined
within PSAT supports the corresponding models including
power flow data, switches, loads, measurements, loads, ma-
chines, controls, FACTS, and user defined models[18]. PSAT
provides graphical user interface (GUI) with a customizable
Simulink-based library to assist the system design, in addition
to command line interface. In this case, PSAT is explored
through the command line interface rather than existing GUI
to access the global structure, modify component parameters,
set desired options, and directly invoke PSAT engine to
execute configuration files. For the second case study, our main
purpose is to expand the design environment to another domain
specific toolkit with similar data structures and specification
formats. It suggests that the interpreter design, data collection
procedure, constraints settings, and configuration synthesis

process will be of very close patterns from the previous design
in case study two. Thus, the meta-model creation and the
application design are the emphasis with the demonstration
of more functionality, more designer interface flexibility, and
more detailed results analysis capabilities.

1) Create the Meta-Model: The set of rules for meta-model
development follows the similar concept as defined for the first
case study. However, the inclusion of the system dynamics
in PSAT requires more information to reflect the system
characteristics. Thus the meta-model needs to be extended
with more entities and more detailed parameter specifications.
Every power system analysis tool can have their unique data
requirements based on the unique design philosophy. While the
basic information requirement from power system modeling
remains same, upgrading the system utilizing particular tool
operations or adding different functionalities is a common
scenario for meta-model update.

Interactions between generators, transmission line, load and
associated controls, as well as those components themselves,
are supplemented through meta-model as shown in figure 7.
Generators are abstracted by fourth order model and IEEE
type 1 automatic voltage regulator (AVR). Load models are
described in rich details including constant power, ZIP, and
exponential recovery in the meta-model. As testing the vul-
nerability of SPS with various fault scenarios could greatly
strengthen the stability and survivability, this concept is cap-
tured in meta-model as fault atoms with various parameters
including fault interval, resistance and reactance magnitude.
Breakers are made available with switching intervals to trip the
faulted buses. Transformer, cable, bus, and other components
remain same as defined in first case study. Thus generated
library from the meta-model for this case is shown in figure
II-B2. The Running_modes setting in the library, as shown
in figure 9, allows application model designer to specify one
of the operations among power flow, continuous power flow,
time domain and small signal stability analysis (eigenvalue
analysis). Main settings of the system simulation such as
frequency, power base ratings, starting and finishing times,
can also be modified by designers at any time through the
Simulation_parameter setting.

2) Create the Application Model: Application model re-
mains almost same across different tools; however, inclusion
of different features can encourage application developer to
add corresponding functionalities based on the needs. The
application model as shown in figure 11 is similar to the
SPS model presented in Case Study I but, dynamics associated
analysis and evaluations can be accessed by the environment
designers in this case.

3) Verification of Simulation Results: Time-Domain simu-
lation results of bus voltages changing before and after a three
phase fault are presented in Figure 12. The system was in
stable steady state operation before the fault is applied at t=16
seconds. However, after the fault, system voltage oscillates
and becomes unstable. Reconfiguration action is not taken
into account. This is a simple demonstration of a variety of
utilities provided in the design interface. Designers can choose
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different types of analysis to evaluate the comprehensive
performance of the application model.

IV. CONCLUSION AND FUTURE WORK

In this paper, the concept of Model Integrated Computing
is presented to integrate with different power system tool-
boxes, in order to support the development and analysis of
shipboard power system and other similar systems. GME
toolkit is utilized to develop the meta-model and application
model. Currently, Matpower and PSAT toolbox are supported
by the proposed environment for synthesizing applications



Figure 12. Bus Voltage response to fault

and performing various kinds of system analysis. In future,
the current design will be updated and expanded to other
computational platforms to exploit the full potential of the
model-based approach.

One of targeted simulation platform is VTB developed
by South Carolina University[19]. VTB contains an open
simulation framework that supports the development of multi-
scale and multi-disciplined systems, which makes it ideal for
power system analysis. VIB also supports external reuse or
repackage utilizing the framework, solvers and components
through .NET and .COM interfaces.Even, simulation scenarios
and control algorithm needs to be tested in real time before it
gets deployed for application. Dedicated power system simula-
tion platform such as RTDS, with the ability to integrate with
hardware is another potential extention to this work. RTDS
is one of such platform that allows real time applications
testing and faster simulations along with other benefits. The
integration of VIB and RTDS to the present environment
would further prove the extendibility and practicability of the
proposed integrated modeling approach.
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