
HIERARCHICAL CONTROL RECONFIGURATION

FOR A CLASS OF HYBRID SYSTEMS

By

Tal Pasternak

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

in

Electrical Engineering

August, 2002

Nashville, Tennessee

Approved: Date:

__ ____________________

__ ____________________

__ ____________________

__ ____________________

__ ____________________

 Copyright by Tal Pasternak 2002

All Rights Reserved

 iii

 לא מצאתי לגוף טובו ,כל חיי גדלתי בין החכמים"
 ".ולא המדרש הוא העיקר אלא המעשה. אלא שתיקה

"All my life I grew up among the wise, and I have found naught good
for oneself but silence. And it is not the study that is important but the practice."

Raban Shimon Ben Gamliel (Avot 1:17)

To Yehudit,

יכ ז תּ ד ל ר ס י ח עוּר ב נ לוּ תאַה י כּ  ת
תּ כ י ל ר ר אַח בּ ד מּ ץ בּ ר א ה א בּ רוּע ז

I remember for thee the affection of thy youth, The love of thine espousals;
How thou wentest after Me in the wilderness, In a land that was not sown.

Jeremiah 2:2 (AJV)

iv

ACKNOWLEDGEMENTS

Three years ago I didn’t know what a hybrid system is and now I see hybrid systems

everywhere. I have learned a lot in this time. And not just about engineering.

And now for the acknowledgements. To my wife, Yehudit, thanks for suspending

your career for three long years and leaving your home town, family and friends to come

with me to Nashville. To my advisor, Professor Janos Sztipanovits, thanks for the

encouragement, direction and focus which you provided throughout this period. Thanks

to all my committee members: Professor Gautam Biswas, Professor Gabor Karsai,

Professor Greg Nordstrom, and Professor Mark Sapir.

Thanks to Drs. Eric Kerrigan, Domenico Mignone, and Xenofon Koustoukos, on

whose research this thesis draws a great deal. To Jonathan Sprinkle, Brandon Eames Dr.

Sherif Abdelwahed. Jason Scott, Dr. Sandeep Neema, Dr. Jeff Gray, Dr. Bubba (James R.

Davis), Beatrice Richardson, and all the ISIS team.

The funding provided by DARPA via grant F33615-99-C-3611 as part of the

Software Enabled Control program, and by Vanderbilt University via a University

Graduate Fellowship are greatly appreciated. Thanks to Boeing Corp. for collaborative

work.

Last but not least, thanks to Joseph Kudish and Dr. Jonah Lavie, on whose advice

and recommendation I chose to study with Professor Sztipanovits.

v

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS... iv

LIST OF FIGURES ... viii

LIST OF TABLES... ix

LIST OF ABBREVIATIONS... x

CHAPTER

I. INTRODUCTION .. 1

Motivation.. 2
The Problem... 2
The Solution... 5
Contributions.. 8
Overview.. 9

II. BACKGROUND .. 10

System Models... 10
Hybrid Automata .. 12
Piecewise-Affine Systems .. 15

Control Systems ... 17
Example - Thermostat... 18
Hybrid Control .. 19

Fault-Tolerant Control Architecture .. 20
Fault Tolerant Control.. 20

Passive Methods.. 21
Switching Control ... 22
Reconfigurable Control... 23
Diagnosis of PWA systems... 25

III. PROBLEM DEFINITION AND SCOPE... 27

vi

System Model and Assumptions.. 27
Problem.. 27

Multi-Phase Fault Accommodation .. 28
Problem Breakdown and Scope ... 29

IV. RELATED WORK ... 33

Model Predictive Control of Piecewise-Affine Systems 33
Model Predictive Control.. 33
Mixed Logic Dynamic Systems.. 34

Set Invariance in Control ... 39
System Models.. 39
The One-Step Set .. 40
Positively Invariant and Control Invariant Sets .. 42
Robust Controllable Sets... 44
Feasibility of Model Predictive Control ... 45

Supervisory and Hierarchical Control ... 46
Supervisory Control .. 47
Hierarchical Control of PWA systems.. 49

V. ARCHITECTURE .. 51

Proposed Architecture.. 51
Motivating Example... 53
Benchmark Problem... 59

VI. RECONFIGURATION... 65

Affine Constrained Systems .. 72
Robust Controllable Sets for PWA systems .. 73
Reconfiguration and Fault-Tolerance .. 74
The Reconfiguration Database... 77

VII. SUPERVISORY CONTROL ... 79

Bisimulation... 79
Quasideterminism .. 80
State Space Partition .. 81

VIII. CONCLUSIONS AND FUTURE WORK ... 91

Minimization of the Number of Manipulable Inputs... 93
Complexity of MPC for PWA systems.. 93
Approximate Calculation of Invariant Sets for Hybrid Systems 94
Tools for Computational Geometry in High Dimensions.................................. 95
Piecewise-Affine-Systems Toolbox... 95
Reconfiguration for Constrained Systems with Polytopic Uncertainty............. 95

vii

APPENDECIES

A MATEMATICAL CONCEPTS.. 97

B CONVEX APPROXIMMATION .. 99

REFERENCES ... 104

viii

LIST OF FIGURES

Figure Page

Figure 1 Three Tank System with Tank 2 Empty...3

Figure 2 Hybrid Automaton of a Bouncing Ball ..14

Figure 3 PWA approximation of bouncing ball...16

Figure 4 Thermostat Control..13

Figure 5 Fault Tolerant Control Architecture ..20

Figure 6 Switching Control Architecture...22

Figure 7 Single Step Reconfiguration..28

Figure 8. A multi-step reconfiguration process.. ...29

Figure 9 Supervisory Control...48

Figure 10. Architecture ..51

Figure 11. Simplified Aircraft Fuel System...54

Figure 12 Example Decision Logic for Fuel System Control..56

Figure 13. Architecture of the Aircraft Fuel Control System ..57

Figure 14. Alternative ending to the leak scenario ..62

Figure 15. Reconfiguration scenario for leak in tank 1 ...63

Figure 16. Refining the final partition87

Figure 17. Envelope of Two Polyhedra ...100

Figure 18 Bisecting Cutting Plane ...101

Figure 19 Convex Approximation ...102

Figure 20 K1,200(Ω,T) for the three-tank switchover..103

ix

LIST OF TABLES

Table Page

Fuel Quantity (lb.) for each tank in the simplified Aircraft Fuel System..........................56

Control Objectives and Configurations. ..64

x

LIST OF ABBREVIATIONS

NTSB – National Transportation Safety Board

MPC – Model Predictive Control

PWA – Piecewise Affine

LTI – Linear Time Invariant

MIQP – Mixed Integer Quadratic Program

KIAS - Knots Indicated Air Speed

1

CHAPTER I

INTRODUCTION

It was 3 pm, a Friday, May 25th, 1979, the eve of Memorial Day Weekend. American

Airlines DC 10, flight 191, carrying 258 passengers and 13 crewmembers, taxied to its

holding point on runway 32R of Chicago-O'Hare Airport, prepared to depart on a non-

stop flight to Los Angeles. What happened moments later is described by the

investigation report of the National Transportation Safety Board (NTSB) [1]:

“Flight 191 was taking off from Runway 32R. The weather was clear and the
visibility was 15 miles. During the takeoff rotation, the left engine and pylon
assembly and about 3 ft of the leading edge of the left wing separated from the
aircraft and fell to the runway. Flight 191 continued to climb to about 325' above
the ground and then began to roll to the left. The aircraft continued to roll to the
left until the wings were past the vertical position, and during the roll, the
aircraft's nose pitched down below the horizon.
 “Flight 191 crashed into the open field and the wreckage scattered into an
adjacent trailer park. The aircraft was destroyed in the crash and subsequent fire.
Two hundred and seventy-one persons on board Flight 191 were killed; two
persons on the ground were killed, and two others were injured. An old aircraft
hangar, several automobiles, and a mobile home were destroyed.”

The investigation also found that

“At the time of DC-10 certification, the structural separation of an engine pylon
was not considered. Thus, multiple failures of other systems resulting from this
single event was not considered.”

In this thesis we address the problem of designing control systems to adapt to failures, so

that disasters such as the flight 191 crash could be avoided.

2

Motivation

Several factors contributed to the crash of flight 191. In hindsight, the flight crew could

have maintained control of the aircraft. The investigation found that1

“The flight-crew flew the aircraft in accordance with the prescribed emergency
procedure, which called for the climb-out to be flown at V2 speed. V2 was 6
KIAS below the stall speed for the left wing. The deceleration to V2 speed
caused the aircraft to stall.”

In other words, the flight-crew’s corrective action caused the aircraft to stall. However,

the aircraft was robust enough to tolerate the separation of the engine. In fact, later

simulations confirmed that control of the aircraft could have been maintained if the speed

was not decreased. Indeed, safety-critical systems such as aircraft possess a great deal of

redundancy and fault-tolerance, often more than their designers are aware of. In one

incident, an Israeli Air-Force pilot was able to land an F-15 with one wing missing [2].

Unfortunately, the system design and emergency procedures for the DC 10 were not

created with the engine separation scenario in mind. The flight-crew had only a few

seconds to react. Once the aircraft rolled with the wings passed the vertical position and

its nosed pitched down below the horizon, the flight-crew lost control of the aircraft and

the crash was inevitable.

The Problem

Fault-tolerant control can be achieved if the control system is robust with respect

to faults, meaning that even when faults occur the control system can still maintain

acceptable performance. This is not always possible, because faults can change the plant

3

behavior dramatically, making it impossible for the same control law to apply to the

nominal and faulty system. In this case the control system must be “reconfigured” to

match the faulty system. This research focuses on such reconfiguration. The problem of

control reconfiguration in fault-tolerant control is concerned with changing the input-

output relation between a plant and its controller in such a way that ensures the

achievement of a control objective [3]. Consider for example, the three-tank system in

Figure 1. Valves and pumps are used by a controller in order to achieve a set-point of

fluid levels. The choice of which valves and pumps are to be used by the controller is a

reconfiguration decision.

Figure 1 Three Tank System with Tank 2 Empty

The three-tank system of Figure 1 is a “hybrid system”. A hybrid system is one

that includes both continuous-state time-driven dynamics such as arise from physical

1 V2 speed is the takeoff safety speed. V2 for a normal, undamaged aircraft was lower than the minimum

4

processes and discrete-state event-driven dynamics such as arise from the operation of

software processes. Analyzing and controlling such systems is a complex task. Moreover

reconfiguration in and of itself is a complex task. The problem is that the systems and

procedures for reconfiguring the control system in the event of faults don’t always

produce the correct response for each particular fault scenario, especially when multiple

faults occur. In order to address every possible fault scenario it would be necessary to do

one of two things: either anticipate every scenario beforehand and prepare a response for

each or equip the system with the capability to compute the right response when a

situation occurs. In their simple form, both solutions are infeasible for all but extremely

small problems because of complexity limitations. Pre-designing the system to react to

every possible multiple-fault scenario is prohibitively complex because the number of

such scenarios grows exponentially with the number of individual faults. Computing a

correct response at runtime is prohibitively complex because it would require a

capability to identify faults correctly, to characterize the faulty system, and then to design

the new control law online, and all this within a real-time feedback loop.

Giving up on this problem by designing only for a limited number of anticipated

faults scenarios is also not advisable. As Murphy’s Law states, “Nature always sides with

the hidden flaw”2. Even when the root cause of failure is a single event, it is not always

controllable speed for the damaged aircraft. Because of damages to the electrical system the flight crew did
not have sufficient feedback to be aware of the need to increase speed.
2 The popular culture of “Murphy’s Law” attributed to the 1940’s US Air Force engineer Edward Murphy
Jr. stipulates that when random events are concerned, everything always goes for the worst. Incidents such
as the Hubble Telescope fiasco, the Challenger disaster, the Ariane 5 self-destruction, the Mars Climate
Orbiter crash, and the Mars Polar Lander disappearance, enhance the popular image of these “laws”,
especially when complex aerospace projects are involved.

5

easy to anticipate what combination of multiple induced faults will result, as with the

example of flight 191.

A design a based on enumeration of faults has the advantage of robustness to all

fault scenarios accounted for, but the limitations of design-time complexity caused by

this enumeration permits only a high-level model of the system, and therefore low-

fidelity control. On the other hand a design based runtime control synthesis permits hi-

fidelity control but robustness to faults is limited because runtime complexity limits the

sophistication of the fault-accommodation measures.

The two approaches – design-time enumeration of faults, and runtime control

synthesis – need to be combined and balanced in a fault-tolerant control architecture. This

is the subject of this thesis. The problem is limited to hybrid systems modeled as

piecewise-affine systems in discrete time, and to control objectives, in which the

requirement is for the state of the system to traverse a sequence of regions in the state

space.

The Solution

The proposed solution is a hierarchical control architecture. At the lowest level the

system is modeled as a piecewise-affine in discrete time, which is an approximation of a

hybrid system. Piecewise-affine systems have been receiving increasing attention by the

control community because they provide a useful modeling framework for hybrid

systems. Discrete-time piecewise-affine systems are equivalent to interconnections of

linear systems and finite automata [4] and to a number of other hybrid models [5]. In

particular, model predictive control can be applied to piecewise-affine systems by

converting them to the equivalent mixed-logic dynamic form [10]. Another approach to

6

control of piecewise affine systems, which is adopted in this thesis, is hierarchical control

[7]. Hierarchical control includes low-level control, which may be implemented by

model-predictive control, for example, and supervisory control, which operates on a

discrete-event abstraction of the hybrid system. The discrete-event abstraction of the

closed-loop system, which includes the low-level control and the plant, is obtained by

reachability calculations that take into account the available plant inputs, which the low-

level control manipulates.

In relation to the problem of control reconfiguration, hierarchical control can

provide fault tolerance at both the supervisory control level and at the low level. Consider

again the three-tank system in Figure 1. The objective of the control system is to regulate

the fluid level in tank 3. If a leak occurs in tank 1, the supervisory controller supervises a

phased process by which tank 1 is emptied and tank 2 is filled until a configuration is

achieved which mirrors the original configuration. In such a multi-phased process the

supervisory controller determines set points to be achieved by the low-level control while

low-level control achieves these set-points using the pumps and valves. In case of a leak

in tank 1, fault-tolerance is achieved by the supervisory controller at a high level by

commanding the shut-down of tank 1 and its replacement by tank 2. The low-level

control reconfiguration provides fault-tolerance by choosing which pumps and valves to

use at each phase in such a way that set-points are reached. For example, if valve V2 is

faulty, low level control will be implemented using valve V23.

At a high level of abstraction, hybrid systems can be seen as discrete systems. At

this level, it is proposed by some researchers to design supervisory decision logic for

fault-accommodation which can change the control structure after the occurrence of

7

major faults [11]. The combinatorial explosion of the number of fault combinations will

affect the size of such a discrete model, which makes this practical only if a single fault is

considered at a time. The problem is that a fault accommodation strategy designed in this

way, while addressing a major fault, may be sensitive to occurrences of additional

changes in the system, which violate the abstracted model.

In this research, hierarchical control of piecewise-affine systems is proposed,

based on partitioning the state and input space. The significance of considering the inputs

when generating the discrete abstraction of the hybrid system is twofold: it is important

both for reconfiguration and for limiting the complexity of the low-level control. With

respect to fault-tolerant control reconfiguration, the input constraints can be interpreted as

control configurations (i.e. which actuators may be used and in what range) as well as

fault conditions (i.e. which actuators are fixed in position due to fault). With respect to

the implementation of the low-level control, the constraints imposed on the inputs affect

the complexity of the problem by determining the number of control variables that can be

manipulated by the low-level controller [31]. For example, in the three-tank system there

are four valves and two pumps, but as will be shown in the next section, only two of these

six actuators need to be used at any given time. By not having to consider the operation

of the other four “stand-by” actuators, the complexity of the low-level control is reduced.

The main contribution of this paper is the reduction in complexity of low-level

control, which enables improved fault-tolerant control reconfiguration strategies for

hybrid systems. Therefore my thesis statement is:

The complexity of fault-tolerant online control synthesis for a discrete-time

piecewise-affine system can be reduced by constraining the operating region in

8

terms of states and inputs and specifying a strategy for fault-adaptive control

reconfiguration as a sequence of reachability problems between convex and compact

polyhedral state sets.

Contributions

This dissertation presents:

• A novel architecture for hierarchical control of hybrid systems modeled as

piecewise-affine systems which enables reduction in complexity of low-

level control. (Chapter V).

• A method for representing actuator configuration as constraints on the

actuator bounds (Chapter VI) which enables reasoning about configuration

with low complexity.

• A transformation of constrained affine systems to LTI system with origin

in interior of constrained space (Chapter VI). Which enables application of

methods, results and tools already developed for LTI systems (with the

origin in the interior of the constrained space) to affine systems.

• Computation of backwards reachability within [i,j] steps for PWA systems

in discrete time (Chapter VI)

• Supervisory control with state space partition based on reachability within

a finite time window for constrained PWA systems in discrete time

(Chapter VII).

9

Overview

Chapter II introduces the topics of fault-tolerant control, reconfigurations, and hybrid

systems. In Chapter III the problem is defined and scoped. Three major topics of related

work are presented in Chapter IV: invariant sets, hierarchical control, and model-

predictive control. These provide the foundation for the architecture suggested in Chapter

V, which is the proposed solution to the problems defined in Chapter III. Chapters VI and

VII provide further detail about how reconfiguration and supervisory control are designed

and performed. Conclusions and future work are suggested in Chapter VIII. Appendix A

provides some mathematical definitions of concepts used in the body of this thesis.

Appendix B outlines a method for generating a convex under-approximation of a union

of convex polyhedra. As discussed in Chapter VIII, this topic needs further investigation.

10

CHAPTER II

BACKGROUND

System Models

Complex systems, which include computers and their controlling software in addition to

mechanical, electrical, or chemical sub-systems are known as computer-based systems.

In this sense computer-based systems are a hybrid of hardware/software and physical

systems. As the cost of computing platforms decreases and software technology

advances, more applications are created which embed software into physical systems.

Following advances in computer communications infrastructure, computations become

more distributed and their interactions more complex.

The analysis and design of dynamic systems and their behavior necessitates a

modeling language with which to create models that describe the system. Control Theory

traditionally focused on continuous systems, especially Linear Time-Invariant systems,

modeled by a set of differential equations. For physical systems such as electrical or

mechanical systems, which are governed by Newtonian physics, this is generally a

suitable modeling language.

Digital computers operate in a finite and discrete domain. Finite State Automata

are usually used in the realm of computer science to model behavior of computer

programs. The use of Finite-State Automata dates back to the early days of computer

science. More refined methods to model software behavior, such as Statecharts [12] are

built on the same foundation.

11

When the need arises to model a computer-based system incorporating a physical

system controlled by a discrete-state controller, the choice of either a discrete-state

abstraction or a continuous state-abstraction of the system may not be sufficient. For a

certain class of systems it may be necessary to use a hybrid of both modeling approaches.

Such systems are called Hybrid Systems. Hybrid systems such as Web caching server

farms, computer-controlled chemical plants, and automated highway systems all require

fault-tolerant control to maintain availability and safety.

Following are some definitions regarding systems theory. A simple model of a

discrete-event system is a finite automaton.

Definition 2.1 (Finite-State Automaton with Inputs). A (non-deterministic)

finite state automaton with inputs is three-tuple (I, Q, E) where Q is a finite set

of states and E ⊆ I × Q × Q is the discrete transition relation. Given an initial

state q0 ∈ Q, and a sequence of inputs { } 1
0)(−=

=∈ Nt
tIti any sequence of states

{ } Nt
tQtq =
=∈ 0)(that satisfies

Etqtqti

qq

∈+

=

)1(),(),(

)0(0
 (1)

is a possible state sequence of the system.

Continuous systems operate in a continuous state space, as defined below.

Definition 2.2 (Continuous Time-Invariant System). A discrete-time

continuous-state time-invariant system with n states and m inputs is given by a

vector field f(⋅,⋅) : Rn × Rm → Rn. Where Rn is the state space Rm is the input

12

space. Given an initial state xs∈ Rn and a sequence of inputs { } 1
0)(−=

=∈ Nt
t

mRtu

the sequence of states { } Nt
t

mRtx =
=∈ 0)(is given by the solution of the difference

equation

())(),()1(

)0(0

tutxftx

xx

=+

=
 (2)

Definition 2.3 (LTI System). A discrete-time linear time-invariant (LTI)

system with n states and m inputs is a continuous time-invariant system given

by matrices A ∈ Rn×n and B ∈ Rn×m. Given an initial state xs∈ Rn and a

sequence of inputs { } 1
0)(−=

=∈ Nt
t

mRtu the sequence of states { } Nt
t

mRtx =
=∈ 0)(is

given by the solution of the difference equation

)()()1(

)0(0

tButAxtx

xx

+=+

=
 (3)

Hybrid Automata

To model the continuous and discrete behavior of a hybrid system, various formalisms

have been proposed [16]. A widely used model for hybrid systems is a hybrid automaton

[17]. Hybrid automata are a marriage, so to speak, of finite state automata and continuous

systems in continuous time. A hybrid automaton is a closed system with a discrete

decision logic determining when and how the system switches between its various

discrete modes, where the continuous behavior in each discrete mode is governed by a

vector field.

13

Definition 2.4 (Hybrid Automaton). A hybrid Automaton (Q, X, E, ϕ, I , R ,

G). Q is a finite set of modes.

X is a connected subset of Rn. E ⊆ Q × Q is the discrete transition relation.

ϕ: Q × X × ℝ is a flow on X, giving rise to continuous dynamics in mode q.

Where ℝ represents the valuation set for the time variable.

I: Q → 2X assigns a set of invariant states for mode q ∈ Q

R: E × X → 2X is a reset relation defining the possible successors x’∈ R(q, q’,

x) of a point x ∈ X upon switching from q to q’.

G: E → 2X assigns to each e=(q,q’) a guard condition.

The combination of discrete and continuous formalisms in a hybrid automaton together

gives rise to various problems relating to their interaction. Existence and uniqueness of

executions is not guaranteed. Switching in a hybrid automaton is assumed to be

immediate, while the time spent in each discrete state may vary. This can create a

situation where infinitely many switches occur at a singular point in time, creating a cycle

in which time stops. This can occur, for example, if the guard conditions for moving from

on to off states in a thermostat (see Figure 2) are identical.

Figure 2 Thermostat Control

14

x1= 0 ∧ x2 ≤ 0

x'1= x2

 x'2= -g

x1≥0

x2 := −c x2

Figure 3 Hybrid Automaton of a Bouncing Ball

A more subtle but equally problematic situation is that of “Zeno” behavior3, in

which the progression of time is stopped because the hybrid automaton permits infinitely

many switches to occur in a finite interval of time. The bouncing ball is an example of a

Zeno system. The hybrid automaton for this system is shown in Figure 3. With a

coefficient of restitution 0 < c < 1, the time intervals between impacts will become

shorter, the apex reached by the ball after each impact will be come lower, causing an

infinite number of switches in a finite time interval. Time will approach a limit.

In all, hybrid systems can exhibit very complex behaviors. It was shown [18] that

even for simple configurations stability and reachability analysis is an NP-hard problem

or un-decidable.

3 The Greek philosopher Zeno of the fifth Century BCE claimed that motion is impossible. Zeno’s
argument was that a prerequisite for reaching any point, is reaching halfway; this prerequisite can never be
fulfilled, because an interval in time and space can always be partitioned into two smaller ones.

15

Piecewise-Affine Systems

Piecewise-affine system models are models that can approximate hybrid systems by

modeling their behavior in discrete (sampled) time as well as linearizing the state

evolution within each discrete mode.

Definition 2.5 (Piecewise-Affine System). A Piecewise-Affine (PWA) system

is a system with continuous states X ⊆ Rn, and inputs U ⊆ Rm operating in a

hybrid state space Q × X which is described by a set of |Q| affine state-space

difference equations. PWA systems are described by

x(t+1)= Aqx(t)+ Bqu(t)+fq if qtu
tx

χ∈







)(
)(

 (4)

where is χq ⊆ X × U are convex polyhedra (i.e. given by a finite number of

linear inequalities) in the state and input space. The variables x(t) ∈ X and u(t)

∈ U denote state and input, respectively, at time t. A PWA system is called

well-posed if x(t+1) is uniquely solvable once x(t), u(t) are specified.

Piecewise-affine systems can serve as reasonable approximations of hybrid automata

as shown in the next example.

Example 2.1 (Bouncing Ball) consider the following PWA system with no

inputs approximating the height and velocity of a bouncing ball.

Q = {up, down, bounce} (5)

16

x1 is interpreted as vertical displacement and x2 as velocity.

The polyhedral regions are

χup = {x1, x2 | x2 > 0} (6)

χdown = {x1, x2 | x2 < 0, x1+ x2 > 0.5 } (7)

χbounce = {x1, x2 | x2 < 0, x1+ x2 < 0.5 } (8)

Abounce = [1 -c; 0 -c] (9)

 Aup= Adown = [1 1;0 1] (10)

 f up= f down= f bounce=[-0.5; -1]; (11)

Figure 4 shows the system trajectory with an initial condition of (1000,0) and a

coefficient of restitution c = 0.8

Figure 4 PWA approximation of bouncing ball

17

Evidently, the trajectory of Figure 4 approximates the behavior of a bouncing

ball Hybrid Automaton of Figure 3. This is only an approximation, note that in

Figure 4 the state does not reach the x=[0,0]T surface.

Interconnection of Automata and Discrete-Time Linear Systems

Piecewise-Affine systems can be represented as interconnections of linear systems and

finite automata [4]. Consider the system (4) as an interconnection of |Q| affine systems

and an automaton with finite state space Q and input-value space T.

() ()()()tutxhqq
ftuBtxAtx qqq

,,
)()()1(

δ=
++=+

 (12)

The function h: Rn × Rm → T provides the interface between the automaton and the

continuous-state systems. The state-transition function of the automaton is δ : Q × T →

Q. By defining the functions h and δ as

() ()
()() qk

p
qqq

k

pppq

fuBxAqppuxh
q

=

∈++∀=

,...,

,:,...,

1

1

δ

χ
 (13)

The resulting system is equivalent to the PWA system (4).

Control Systems

A control system is a device that regulates a process or sequence of events. The system in

which the controlled process occurs is often called the plant. Physical processes are time

driven: the passage of time dictates the transfer of energy in the system. A control system

interfacing with a physical plant must have means to measure the plants physical output,

and produce physical input to the plant. Historically, control theory focused on control

18

systems, which process information using physical analog devices. Control systems

which are implemented by software may include decision logic and signal processing

functions. The information processing based on decision logic is more appropriately seen

as an event-driven rather than a time-driven process. While the signal processing can be

modeled as a time-driven process on a discrete (sampled) time line.

The combination of a time-driven physical plant with an event-driven software

controller lends itself to modeling as a hybrid system. Because by such modeling the

important aspects of the system’s behavior are preserved without necessitating the

introduction of undue complexity that would result from using a single-layer modeling

approach.

Example - Thermostat

The following example is taken from [13]. The hybrid system in this example consists of

a typical thermostat and furnace, which are used to control the temperature in a room.

Assuming the thermostat is set at 70ºF, the system behaves as follows. If the room

temperature falls below 70º F, the furnace starts and remains on until the room

temperature reaches 75º. At 75º, the furnace shuts off. For simplicity, we will assume that

when the furnace is on it produces a constant amount of heat per unit time. The plant in

the thermostat/furnace hybrid control system is made up of the furnace and room. It can

be modeled with the following differential equation:

rxTx 1.0)(0042.0 0 +−=& (14)

19

The plant state x is the temperature of the room in degrees Fahrenheit, the input r is the

voltage on the furnace control circuit, and is the outside temperature. The units for time

are minutes.

Figure 2 shows the finite-state machine, which describes the operation of the

controller.

Hybrid Control

A hybrid system executes in a sequence of modes along a trajectory within a hybrid

continuous-discrete state space. Each mode includes a continuous evolution followed by

a discrete, instantaneous transition. In a system consisting of a controller and a plant, both

may have continuous and discrete dynamics

Definition 2.6 (Hybrid State Space). Let Q be a finite set of discrete states,

and X ⊆ ℝ n a finite set of continuous states. Q and X respectively are the

valuation sets for discrete and continuous state variables. The space Q × X is a

hybrid state space.

Definition 2.7 (Hybrid Trajectory) A discrete-time trajectory of a hybrid

system in a space Q × X is a finite or infinite sequence { }iii XxQq ∈∈ ,

Hybrid control seeks to construct a controller such that the system, which consists of

the controller and the plant, shall achieve a prescribed objective, in the sense that the

hybrid trajectory of the plant shall satisfy a specified property.

20

Fault-Tolerant Control Architecture

Fault Tolerant Control may be obtained by a supervisory controller through online

diagnosis, and subsequent remedial action. Figure 5 from [14] shows the general

schematic arrangement appropriate to many fault-tolerant control systems.

Figure 5 Fault Tolerant Control Architecture

The four main components are: the plant with its associated sensors and actuators,

the fault detection and isolation (FDI) unit, the controller, and the supervisory system.

The solid line represents signal flow, and the dashed line represents adaptation (tuning,

scheduling, reconfiguration or restructuring).

Fault Tolerant Control

Approaches to fault tolerance can be divided into passive methods, which achieve fault

tolerance by robust design, and active methods including switching control, which

21

achieves fault-tolerance by switching between alternative control systems and

reconfigurable control, which achieves fault-tolerance via changes to the control system.

Passive Methods

Passive approaches to fault-tolerant control make use of robust control techniques to

ensure that a closed loop system remains insensitive to certain faults using constant

controller parameters without use of on-line fault information. The system is made robust

to a restricted set of anticipated faults.

Robust control traditionally aims to maximize the permissible deviations in the

performance of the plant while maintaining the control objectives. Since the passive

approach to fault-tolerant control implicitly includes the function of fault-diagnosis, the

scheme must also be robust against small deviations, which are harder to detect. As

Patton [14] notes that this point is sometimes overlooked.

Another method of passive fault-tolerance is adaptive control. By tracking the

change in system behavior the controller can adapt to degradation in system behavior and

compensate for it. However, when the degradation continues, it eventually becomes

impossible to compensate for the faults by means of adaptive control, and control

reconfiguration or switching becomes necessary. One of the challenges in this situation is

to detect degradation while still in the region where the controller is able to compensate

for it; but in this region the effects of the fault may be masked by the control loop and are

therefore hard to detect.

22

Switching Control

Switching control is a method of control by online selection between predesigned

controllers.

Definition 2.8 (Switching Controller) A switching controller consists of a

finite state automaton γ with a finite set of states Q, a collection of smooth

vector fields {fq}q∈Q and a switching function f: Q → fq.. The switching control

problem is to define γ and f, given {fq}q∈Q such that the resulting hybrid

automaton shall satisfy a specified control objective.

The switching control architecture is shown in Figure 6

γ

fqf

x ∈ Xq ∈ Q

Figure 6 Switching Control Architecture

Non-linear systems can sometimes be represented as a collection of local linear

models which each apply to certain operating regimes defined under constraints.

23

Switching control is known outside of the hybrid systems community as an approach for

controlling such systems by switching controllers when an operating regime changes

[20].

Morse [29] describes a high level controller called a “supervisor” which is

similar to the switching controller described here. The control problem is for the output

of a plant, modeled by a continuous single-input single-output linear system, to approach

and track a constant reference input. The high level controller is capable of switching a

sequence of controllers into the plant’s feedback path so as to achieve the control

objective.

The switching controller architecture can be used in the context of fault tolerant

control. Asarin et al. [19] present a methodology for synthesizing switching controllers

for the safe operation of systems described by linear differential equations. The approach

is based on reachability analysis and the iterative computation of reachable states. They

formulate the synthesis problem as finding the conditions upon which a controller should

switch the behavior of the system from one “mode” to another in order to avoid a set of

bad states. If we examine a hybrid system, with some of the modes considered as fault

modes [26], then this methodology is applicable for recovery from such faults.

Reconfigurable Control

Reconfiguration differs from switching control in that the controllers are designed online

rather than selected from a predesigned set. Following ideas from [32] the different kinds

of reconfiguration can be classified according to whether or not there is a change in each

of the following:

• The control objective

24

• The control law

• Controller-plant input output relations

The control objective is a predicate which tells which trajectories starting from the

current state are acceptable. It can be in the form of a safety requirement such as never to

allow the state to leave a safe envelope; it can be in the form of a reachability

requirement, such as to reach a target state set. An example objective is “decrease the

climb-out speed to V2”. When a major fault occurs, it may be necessary to alter the

control objectives accordingly. For example, for flight 191 the objective for setting the

speed of the aircraft should have been different.

Achieving a new system configuration may entail several reconfiguration steps,

where at each step a different set of local control objectives apply. The problem of

finding the sequence of control objectives to achieve a global objective, is a planning

problem. The planning problem consists of finding a way to achieve a goal, or objective,

by a sequence of sub-goals.

The control law is the functional relationship between the system state (or

outputs) and its control inputs. The control law can be designed based on feedback or

feed-forward techniques. In feedback, the inputs are calculated as a function of the

current error, defined as the distance between the actual state and target state of the

system. This is a delayed reaction, since the current state is a function of previous inputs

over a period of time. In feed-forward, the inputs are calculated based on projected future

behavior of the system, which, in turn is based on the current and previous measurements

of the state and a model of the system. Feed-forward control has the potential to be more

accurate than feedback control because the additional reasoning performed by predicting

25

future behavior introduces more sophistication in the choice of control actions4.

However, feed-forward control depends critically on the model which is used for

forecasting.

The implementation of a control law depends on the input-output relationship

between the plant and the controller. In a narrow sense this means the selection of

actuators and sensors which provide the inputs to the plants and direct or indirect

measurements of its state. In a broader sense, the activation of plant inputs may be tied to

activation of entire subsystems of the plant. For example, a switch which turns on or off,

engages or disengages a subsystem system, is a system input. Mathematically, if the

system is modeled as a piecewise-affine system, the enabling of certain inputs entails the

enabling of corresponding discrete modes of the system which may define entirely

different behaviors for the system.

Diagnosis of PWA systems

Fault detection and isolation (FDI) constitutes a key point in active approaches to fault-

tolerant control. Before activating reconfiguration, the fault has to first be detected,

isolated, and its severity evaluated. Detection is the information processing task of

determining whether a system or sub-system conforms to expectations. Isolation involves

locating the fault sources, and evaluation consists of estimating the attributes of a fault

(e.g. the degree to which a system parameter deviates from its nominal value).

4 Consider how a human driver uses a stick-shift control while taking into account the road ahead as
opposed to automatic gear system which bases its decision to switch gears only on the current situation

26

A decision on fault accommodation can be taken upon the availability of FDI

information. The success of an active fault-accommodation method depends to a great

degree on the effectiveness of the FDI unit.

Summary

This chapter introduced hybrid systems in general and the discrete-time piecewise-affine

model of a hybrid system. The relevance of hybrid systems to software-based control was

demonstrated. The functional elements of fault-tolerant control were discussed. These

include: supervisory control, fault-diagnosis, reconfiguration and control. Some

approaches to fault-tolerant control were discussed, including passive approaches that

rely on robustness of the control law, and active approaches in which the control law is

changed in response to results of online diagnosis and state estimation.

27

CHAPTER III

PROBLEM DEFINITION AND SCOPE

System Model and Assumptions

The plant is modeled as a piecewise-affine system in discrete time with additive state

disturbance. It is assumed that the disturbance is bounded. It is also assumed that the state

is observable, at least to the degree that thresholds can be detected.

Definition 2.5 (Piecewise-Affine System with Additive Disturbance). A

Piecewise-Affine (PWA) system with additive disturbance is a PWA system

with discrete states Q, continuous states X ⊆ Rn, inputs U ⊆ Rm , and

disturbances D ⊆ Rn acting additively on the state. The system is described by

x(t+1)= Aqx(t)+ Bqu(t) + d(t)+fq if qtu
tx

χ∈







)(
)(

 (15)

d(t) ∈ D (16)

where χq ⊆ X × U are convex polyhedra. The set D bounds the disturbance for

all discrete states q ∈ Q of the system.

Problem

The purpose of fault-tolerant design is to enable the control system to achieve its task in

the presence of faults. In the event that a fault occurs, the system moves from its nominal

trajectory to a state which is not necessarily on any nominal trajectory, but may still be

recoverable. The problem of fault-adaptive control is to find and implement the control

28

actions that would guide the system from that point back to a trajectory that is sufficiently

close to a nominal trajectory satisfying the control objectives.

Multi-Phase Fault Accommodation

The architecture shown in Figure 5 suggests that two separate functions of control and

control reconfiguration are involved in recovery from a fault. The supervisory controller

initiates control reconfiguration in response to information from the FDI unit. After

reconfiguration the reconfigured control system continues to guide the plant on a

trajectory that satisfies the requirements. Figure 7 shows this concept visually. The

dashed line (a) shows the trajectory that would be followed in the absence of a fault and

dashed line (b) shows the trajectory that would be followed in the event of a fault and in

the absence of reconfiguration.

Figure 7 Single Step Reconfiguration

29

The picture shown in Figure 7 is in fact a simplistic one. It shows the recovery action as

composed of two steps: a reconfiguration initiated by the supervisory controller followed

by the control actions of the controller. A complex fault-recovery process may require

more than one such iteration in response to a single fault. In absence of a one-step

reconfiguration action that would produce a suitable control configuration capable of

putting the system on a desired trajectory, the supervisory controller may have to engage

in a planning problem of finding a sequence of reconfiguration actions, at the end of

which the system is placed on a desired trajectory. See Figure 8.

A0 A1

A2 A3 A4

Unrecoverable
States

Unrecoverable
States

nominal trajectory

Figure 8. A multi-step reconfiguration process. Due to a fault the nominal trajectory
cannot be followed. The supervisory controller dictates a multi-step process of guiding
the system through regions A2, A3 and A4, until the trajectory of the system returns to its
regular course. At each step reconfiguration may be required.

Problem Breakdown and Scope

As stated earlier, the problem of finding the sequence of control objectives to achieve a

global objective is a planning problem.

30

Problem 3.1 (Planning) Given a control objective O, the planning problem is

to find a sequence of control objectives (o1,o2,…on) such that when achieved

sequentially, the objective O is achieved.

Planning can be performed either by an online automated planning module or a human

operator, or it can be prescribed at design time. The latter shall be assumed, and the

planning problem is beyond the scope of this research. The consequence of this

assumption is that the design is aimed at the ability of the system to execute a limited set

of pre-designed plans (i.e. sequences of objectives).

Definition 3.1 (Global Control Objective) Given a set Bad ⊆ X and a finite

collection of sets Ak ⊆ X , k ∈ K, that includes an initial set A0 ⊆ X, with Ak ∩

Bad = ∅, a set valued map next: K→2K and a function time: K×K→ Z+ the

global control objective is that for the system with initial conditions x ∈ A0

the continuous state will remain in any set Ak for t time steps and subsequently

leave Ak and cross into set Ak’ for some k’∈ next(k) for which t ≤ time(k,k’).

Formally:

x(t0) ∈ Ak ⇒

∃k’∈ next(k): ∃t ≤ time(k,k’) :

 x(t0+t) ∈ Ak’ ∧ ∀ 0 ≤ t’< t, x(t0+t’) ∈ Ak

(17)

Remark 1. Definition 3.1 (Global Control Objective) applies for the nominal

case. In case of a fault, which necessitates reconfiguration, a degraded

performance is assumed to be acceptable in which time constraints do not

apply. In this case the global control objective requires an event sequence

31

specified by the next relation, while the constraints specified by the function

“time” do not apply.

Remark 2. Definition 3.1 (Global Control Objective) does not depend on the

model of the system. Whether or not a control objective is achieved is an

assertion about the actual system, not about its model.

 The global control objective can be achieved by a series of control objectives.

Definition 3.2 (Control Objective). For a system operating in state space X,

given state sets T, Ω ⊆ X, a control objective is a 3-tuple (T, Ω, t). The control

objective for the system at time t0 is to reach a state x(t0+k) ∈ T, with x(t0+j) ∈

Ω, ∀ 1 ≤ j≤ k-1, for some 1 ≤ k ≤ t.

Assuming that a (possibly prioritized) list of control objectives is available and that a set

Ū ⊆ 2U represents all possible configurations, where U is the valuation set for the plant

inputs. The problem of achieving one of the control objectives is broken down into two

levels.

Problem 3.2 (Reconfiguration). Given system (1), a set of control objectives

O, a state and fault detection Xe, D, Uf, and a set of possible input constraints,

Ū ⊆ 2U determine input constraints Ul ∈ Ū and a control objective (T, Ω, t) ∈

O, such that system (1) with constraints u ∈ Ul and disturbance set D can be

driven to target set T, within k time steps, with 1 ≤ k ≤ t while staying in Ω for

the first k-1 time steps and that u ∈ Ul ⇒ u ∈Uf.

32

Problem 3.3 (Low-Level Control). Determine input values u(t) ∈ Ul needed

to reach T within k time steps, with 1 ≤ k ≤ t while staying in Ω for the first k-1

time steps.

The main problem that this research addresses is how to maintain fault-tolerance while

keeping the complexity of Problem 3.2 (Reconfiguration) and Problem 3.3 (Low-Level

Control) low. Note that half the solution lies in the fact that Problem 3.1 (Planning) is

assumed to be solved so that the control objective which needs to be addressed is

relatively simple.

Summary

In this Chapter the problem with which this thesis is concerned was defined and put into

context. The problem is how to achieve reconfiguration, while lowering the complexity

of low-level control The context in which a multi-phase fault-accommodation scenario

takes place provides the motivation to study the reconfiguration problem, where a

supervisory controller is present which directs the phases of a fault-accommodation

strategy, while reconfiguration provides fault-tolerance at each phase.

33

CHAPTER IV

RELATED WORK

Model Predictive Control of Piecewise-Affine Systems

Model Predictive Control

Model predictive control (MPC) [8] is a feed-forward optimal control technique

which determines the values of control inputs to a plant by solving an optimization

problem online. The objective function in the optimization problem represents a measure

of forecasted behavior of the plant; the decision variables are the manipulable inputs; and

the constraints represent the system dynamics. Discrete-time state-space models are

commonly used to represent system dynamics because they are convenient for computer-

based implementation. These system models include the standard difference equations

and also constraints on the admissible values for the states and inputs. Typical measures

represented in the objective function include distance of the plant output values from a

target and the energy expended in the inputs.

In the following problem formulation the state vector is assumed to be identical to

the output vector.

Problem 4.1 (Model Predictive Control) given x(k), find u(k),…u(k+P-1)

such that

min ∑ ++++
−

=

1

0
))(),(())((

P

i
kiukixLkPxF (18)

 is achieved subject to constraints

34

x(k+l+1)=f(x(k+l), u(k+l)) (19)

x(k+l) ∈ X, u(k+l) ∈ U l =0,..,P-1 (20)

x(k+P) ∈ T (21)

The variable P is the prediction horizon. T is the terminal constraint set, T ⊆

X. The system model is specified by f(⋅ , ⋅), X, and U. P, F(⋅) and L(⋅ , ⋅) and T

are design variables. X and T are closed and U is compact. It is assumed that

the origin is an equilibrium point contained in T and in the interior of X. The

origin in the input space is contained in the interior of U. The aim of the

control is to regulate the states and inputs to the origin. L(⋅ , ⋅) is a continuous

non-negative, time-invariant function defined on X × U and F(⋅) is a

continuous non-negative, time-invariant function defined on X. F(⋅) and L(⋅ , ⋅)

achieve their minimum at the regulation point.

Mixed Logic Dynamic Systems

The Mixed-Logic Dynamical (MLD) system model [10] is a discrete-time model of a

dynamic system, which is equivalent to the Piecewise Affine model [5]. The MLD model

incorporates both the continuous dynamics and logic conditions as a set of mixed-integer

linear constraints. This unification allows reasoning about the system dynamics using

mixed-integer optimization techniques for the purpose of control, state estimation and

verification [6], specifically it enables the application of Model-Predictive Control to

Piecewise-Affine systems.

35

Hybrid systems are generally governed by interdependent physical laws, logic rules, and

operating constraints. The MLD framework is based upon transforming propositional

logic statements into linear inequalities involving integer variables and continuous

variables. Logic propositions can be represented as integer inequalities involving integer

variables that are constrained to values of 0 and 1 [37]. For example, the logical

proposition x1 ∨ x2 is equivalent to the integer inequality δ1 + δ2 ≥1, where the integer

values of 0,1 encode the logical values of false and true respectively. Other logical

connectives follow in a similar fashion.

Conditions on real functions over a bounded domain are encoded by integer

variables in the following manner. Given a function f:ℜn→ℜ, and bounds Xn ⊂ ℜn on the

domain, the constants)(max xfM
Xx∈

= ,)(min xfm
Xx∈

= are defined. A continuous

inequality f(x) ≥ 0 can be represented by an integer variable δ, such that δ=1 if and only if

f(x) ≥ 0 by introducing the mixed integer inequalities:

f(x) ≤ M(δ-1) (22)

f(x) ≥ ε+ (m-ε) δ (23)

where (ε>0) represents the numerical precision of the computation.

Example. Let X = {x | -2 ≤ x ≤ 4 }, f(x) = x2 - 6. The bounds on f(x) are

10)(max ==
∈

xfM
Xx

and 6)(min −==
∈

xfm
Xx

. Let the numerical precision

be ε=0.001. Then the inequalities which enforce δ=1 ⇔ f(x) ≥ 0 are

f(x) ≤ 10 δ -10 (24)

f(x) ≥ - 6.001 δ + 0.001 (25)

36

Defining an auxiliary variable z=δf(x) allows for representing functions involving both

logical and continuous parts. In this relation δ=1 implies z=0 and δ=0 implies z= f(x). The

nonlinear equation z=δf(x) is enforced by the following set of linear mixed-integer

inequalities:

z ≤ Mδ (26)

z ≥ mδ (27)

z ≤ f(x) - m(1-δ) (28)

z ≥ f(x) - M(1-δ) (29)

Integer variables representing each discrete mode q ∈ Q of a PWA system are defined by

associating a logical variable δi(t) with each discrete mode, i.e. ()[] [][]i
x
ui t χδ ∈⇔= 1 ,

and imposing an exclusive-or condition ()[]11 =⊕ = ti
s
i δ . By using auxiliary variables as

shown above, the system equations for each mode can be activated only when the system

is in the corresponding discrete mode. A more detailed explanation of the construction of

mixed-integer inequalities from the logical and dynamical equations is found in [37]. The

resulting model is the MLD model of the hybrid system, shown in equation (30).

54132

321

)()()()(
)()()()()1(

EtxEtuEtzEtE
tzBtBtuBtAxtx

++≤+
+++=+

δ
δ

(30)

Where each of the vectors x(state), u (input), is partitioned into discrete and continuous

components, e.g.

{ } { } cllc rr
lc

n
l

n
c

l

c Rznnnxx
x
x

x ∈∈+≡∈∈







= 1,0,1,0,R, δ (31)

37

x are the continuous and binary states, u are the continuous and binary inputs, δ and z

represent binary and continuous variables respectively. Outputs can be added to the

model as an additional vector y(t) and an additional set of equations. Fault conditions can

be added as an additional input vector φ(t), with corresponding terms in the equations and

inequalities [6]. A well posed MLD system results in a unique solution to the inequalities

effectively defining the system model (f(⋅ , ⋅), X, U) which can be used for Model

Predictive Control. Equations (32), (33) constitute a model-predictive control problem

with a MLD system model

222

21

0 432
1

)()()()(min
QfQfQf

Q

P

t
f xtxztztutuJ −+−+−+−=∑

−

=
δδ (32)

subject to

fxPx
EtxEtuEtzEtE

tzBtBtuBtAxtx

=−
++≤+
+++=+

)1(
)()()()(

)()()()()1(

54132

321

δ
δ

 (33)

where

 Qxxx T
Q

=2

4
, Qi=Qi

T≥0, i=1,…5, (34)

 are given weight matrices.

The target values xf, uf, δf, zf, are chosen to be consistent values corresponding the desired

regulation point.

The complexity of the MPC optimization problem is a function of the prediction

horizon P, the number of manipulable inputs u, and the complexity of the MLD model.

For a given system, the complexity can be reduced by reducing the number of

manipulable variables (i.e. choosing fixed values for non-manipulable variables) and

38

reducing the prediction horizon. This will reduce complexity and also lead to a less

optimal solution, and possibly to infeasibility of reaching the desired set point within the

required time.

Tsuda et al. [31] propose using MPC for reconfiguration. The MLD model is

extended to include faults and controller configurations. In the event of a detected fault,

the MPC algorithm searches for the best possible values of all input variables, rather than

just the input variables which are used under nominal control conditions. There are two

problems with this approach: one which is addressed in [31] is that the complexity of the

MPC problem is increased by expanding the number of manipulable variables. The

second problem is that the prediction which may be needed for reconfiguration might be

further than the prediction needed for nominal control. Unless the reconfiguration

consists of replacing failed actuators with stand-by actuators performing almost the same

function, it is likely that a change in set-point will be needed. Recovery from a fault may

involve a multi-stage process by which short-term goals are compromised in favor of

long term goals. A reconfiguration method, which seeks to optimize the same objective

function as is used for control, will not be suited to such a situation. The MPC-based

reconfiguration alone is therefore limited to short-term reasoning, and can benefit from a

reduction of the search space in the form of a reduced set of manipulated input variables.

The issue is therefore how to reduce complexity while maintaining feasibility of

the model-predictive control solution. The next section presents the theory of invariant

sets which is needed to address the feasibility issues. The following section deals with

hierarchical control, which is employed in this research as a means to deal with the

complexity issues.

39

Set Invariance in Control

In control theory robustness to disturbances and uncertainty has often been studied by

assuming a noise model and analyzing the behavior of a system based on random signal

theory. A different approach, which was studied as far back as 1971 [9] is that of

determining the system behavior under all allowable disturbance sequences. More

specifically, determining the subset of the state space from which the system can be

steered to a given target state set, while guaranteeing that the state and input constraints

will be satisfied for all allowable disturbance sequences. A comprehensive survey of

papers on set invariance is given in [38]. The notation used here follows that of [15].

System Models

The following discrete-time system models are defined.

Definition 4.1 (Constrained System) A constrained continuous-state discrete-

time time-invariant system is given by a vector field f(, ,), a state set X ⊆ Rn,

an input set U⊂ Rm and a disturbance set D ⊂ Rl. The set U is compact and the

sets X and D are closed. The evolution of the system is given by

))(),(),(()1(tdtutxftx =+ (35)

with t ∈ Z. The following constraints apply for all t ∈ Z

Dtd
Utu
Xtx

∈
∈
∈

)(edisturbanc
)(input
)(state

 (36)

40

Definition 4.2 (Allowable Disturbance) An allowable disturbance sequence

for a constrained system is one that satisfies the constraint d(t) ∈ D

Definition 4.3 (Admissible Input) An admissible input for a constrained

system is one that satisfies the input constraint u(t) ∈ D

Definition 4.4 (Constrained System with Additive State Disturbance) A

constrained continuous-state discrete-time time-invariant system with additive

state disturbance is given by a vector field f(· ,·), a state set X ⊆ Rn, an input set

U⊂ Rm and a disturbance set D ⊂ Rn. The set U is compact and the sets X and

D are closed. The evolution of the system is given by

)())(),(()1(tdtutxftx +=+ (37)

Definition 4.5 (Autonomous System). An autonomous system with

disturbance is given by

()
Dtd

tdtxftx
∈

=+
)(

)(),()1(
 (38)

The One-Step Set

The one-step set represents backwards reachability of a system.

Definition 4.6 (One-Step Set). [15] For a constrained system with inputs u(t)

⊆ Ul and disturbances d(t) ≡ 0 , the one-step set Q(Ω) is the set of states in X

41

for which an admissible control input exists which will drive the system to Ω

in one step

Q(Ω) = { x ∈ X | ∃u∈U: f(x, u) ∈ Ω }.

(39)

For a piecewise-affine system the one step set is

Q(Ω) = { x ∈ X | ∃u∈U, ∃q∈Q : (x, u) ∈ χq, Aq x+ Bqu + fq) ∈ Ω }.

(40)

Proposition 4.1 [23] if Ω is given by the union

U
i

iΩ=Ω
(41)

then

() ()U
i

iQQ Ω=Ω (42)

Definition 4.7 (Robust One-Step Set). [15] For a constrained system, with

inputs u(t) ⊆ Ul and disturbances d(t) ∈ D, the robust one-step set Q̃(Ω) is the

set of states in X for which an admissible control input exists which will drive

the system to Ω in one step, for any disturbance d(t) ∈ D i.e

Q̃(Ω) = { x ∈ X | ∃u∈U: f(x, u) ∈ Ω }. (43)

Proposition 1 [23] For an LTI system with additive state disturbance, the

robust one-step set has the following properties:

42

1. If Ω is compact then the set Q̃(Ω) is closed.

2. If Ω is convex then the set Q̃(Ω) is convex.

3. If Ω is a polyhedron then the set Q̃(Ω) is a polyhedron.

4. If A is non singular and Ω is compact, then the set Q̃(Ω) is also

compact.

Proposition 4.3 [23] For all Ω1, Ω2

Ω1 ⊆ Ω2 ⇒ Q̃(Ω1) ⊆ Q̃(Ω2) (44)

Positively Invariant and Control Invariant Sets

Positively invariant sets and control invariant sets are sets in which an

autonomous or controlled system, respectively, can remain for all disturbances.

Definition 4.8 (Robust Positively Invariant Set). [38] The set Ω ⊂ Rn is a

robust positively invariant set for an autonomous system if and only if

 x(t) ∈ Ω ⇒ x(t+1) ∈ Ω ∀d ∈ D (45)

Proposition 4.5 The union of two robust positively invariant sets is a

positively invariant set.

Definition 4.9 (Maximal Robust Positively Invariant Set). [23] The set

Õ(Ω) ⊂ Rn is the maximal robust positively invariant set for an autonomous

43

system if and only if it is robust positively invariant and contains all the robust

positively invariant sets contained in Ω.

Definition 4.10 (Robust Control Invariant Set). [38] The set Ω ⊂ Rn is a

robust control invariant set for a constrained system if and only if there exists

a feedback control law u(t)=h(x(t)) such that Ω is a robust positively invariant

set for the closed-loop system

x(t+1)=f(x(t),h(x(t)),d(t)) (46)

and

u(t) ∈ U ∀ x(t) ∈ Ω (47)

Remark 4.1 The phrase ‘exists a feedback control law’ does not necessarily

mean to imply any structure on the control law. The function h(x(t)) can be

constructed to serve as a feedback law by finding for each x(t) ∈ Ω a value u(t)

∈ U such that x(t+1)=f(x(t), u(t), d(t)) ∀ d(t) ∈ D.

Proposition 4.5 The union of two robust control invariant sets is a control

invariant set.

Definition 4.11 (Maximal Robust Control Invariant Set). [40] The set C ̃(Ω)

⊂ Rn is the maximal robust control invariant set for a constrained system if

and only if it is robust control invariant and contains all the robust control

invariant sets contained in Ω.

44

The following result follows immediately from the definitions.

Proposition 4.6 Given a constrained system, there exists an admissible control

law such that the state constraints can be satisfied for all time t ∈ N and for all

allowable disturbance sequences if and only if the initial state x0 ∈ C ̃(X) ⊆ X.

The following is simple condition that checks if a set is control invariant..

Theorem 4.1 (Geometric Condition for Invariance) [41] The set Ω ⊂ Rn is a

robust control invariant set for a constrained system if and only if

Ω ⊆ Q̃ (Ω) (48)

Corollary 4.1 The set Ω ⊂ Rn is a robust control invariant if and only if

Ω = Q̃ (Ω) ∩ Ω (49)

Robust Controllable Sets

Controllable sets are sets from which a system can be driven to a target set.

Definition 4.12 (i-step Robust Controllable Set). [23] The set K̃i(Ω,T) ⊆Rn is

a robust controllable set for a constrained system if and only if the system can

be driven to T in i steps while not leaving Ω for the first i-1 steps, for all

allowable disturbance sequences.

Remark 4.2 Ki(Ω,T) denotes K̃i(Ω,T) for d(t)≡0.

45

Feasibility of Model Predictive Control

A model predictive control problem may be infeasible if there is no solution within the

constraints specified by the sets X, T, and U. The feasible set XF(T, P) of the MPC

control problem is the set of states x(k), for which a feasible control sequence to the MPC

control problem exists. A feasible control sequence is a sequence of inputs u(k+l) ∈ U, l

=0,..,P-1 driving the system x(k+l+1)=f(x(k+l), u(k+l)) from to x(k) to x(k+P) such that

x(k+l) ∈ X and x(k+P) ∈ T.

Theorem 4.2 (Feasibility of Model Predictive Control)5 [15] The feasible set

XF(T, P) of the MPC problem is given by

 X F(T, P)=KP(X,T) (50)

Proof From the constraints of the MPC problem, the solution has to satisfy

x(k+P) ∈ T, it is also required that u(k+l) ∈ U and x(k+l) ∈ X for all

l=0,..,P-1. It follows that there exists a control sequence of length p, such that

these constraints can be satisfied if and only if x(k)∈ Kp(X,T), where Kp(X,T)

is the p-step robust controllable set.

The above theorem can be extended to the case of robust feasibility: the MPC

problem is robustly feasible if it is feasible for all disturbance sequences within given

constraints and the feasible set for the MPC problem is given by the robust controllable

set. Given the feasible set for the nominal MPC problem, robust feasibility of the MPC

problem for PWA systems with polyhedral constraints and additive state disturbance can

46

be tested without the need to compute the robust controllable sets [24]. This is based on

the observation that the MPC controller is robustly feasible if and only if the nominal

feasible set is a robustly positively invariant set for the closed loop system. By this

observation, given the nominal feasible set, it is only necessary to test one-step

reachability.

Supervisory and Hierarchical Control

Many control design problems for complex dynamic systems can approached by

modeling the plant as a Discrete Event System. It is possible that the same system can be

modeled as a continuous system, a hybrid system, or a discrete-event system, all

depending on the purpose that the model serves. The starting point for modeling an actual

plant is a model that is identified experimentally, derived from first principles or both.

This model is referred to as the ‘real’ system model. The model of the ‘real’ system can

then be further abstracted to fit the task at hand. Loss of model precision in the

abstraction process is permitted to the degree that it does not affect the purpose of the

model. On the other hand, it is necessary to decrease precision in order to meet

computational complexity requirements. An illustrative everyday example is motion

planning: driving directions can generally be given in terms of left and right turns and

distances, while parallel parking instructions require much more detail; it is not

reasonable, however, to prescribe driving directions with the same detail because of the

resulting complexity. Hierarchical control is an approach that uses increasingly abstracted

5 This is a simplified version of Theorem 3.1 from [23], for the case of equal prediction and control
horizons.

47

models for tasks which require planning further into the future, but with decreasing

precision.

Supervisory control is the application of a DES controller to a dynamical system.

When the ‘real’ plant model is a hybrid system, it may be abstracted as a Discrete-Event

System for the purpose of supervisory control. A more specific case is when the plant, or

the plant lumped with previously-designed controllers is modeled as a continuous system,

and the supervisory controller is a discrete-event system. The plant and controller are

connected via interfaces mapping the countable set of states of the DES to the non-

countable set of states of the continuous system. In both cases, the closed-loop system

comprised of the controller and plant is a hybrid system.

Supervisory Control

The Supervisory Control Architecture

The supervisory control system consists of a plant defined by a differential equation

),(uxfx =& , with, x ∈ X, u ∈ U, an actuator map β: C→ U, which generates a piecewise

constant signal in U from the control alphabet C, of the supervisory controller, and a

generator map α: X→ P. The function α determines a finite partition of the plant state

space X with equivalence classes Ap = {x ∈ X | α(x)=p} indexed with plant events p ∈ P.

The supervisory control architecture is depicted in Figure 9. The supervisory controller is

a finite state automaton, possibly non-deterministic. For the purposes of the following

proposition, only the input-output relation γ: P→ 2C describing the supervisory controller

is needed, which in general is set-valued even when the controller is deterministic.

48

Proposition 4.7 [16] Given a control loop L described by α, β, γ, f as in

Figure 9, there exists a hybrid automaton H, such that the trajectories of H are

in one-to-one correspondence with the closed-loop trajectories of L.

γ

f

αβ

u x

Q ⊆ Pq ∈ C

Figure 9 Supervisory Control

The system defined by this architecture specifies a hybrid automaton. The

supervisory control problem is to define α, P, and γ, given C, β and f, in such a way, that

the resulting hybrid automaton shall satisfy a control objective, e.g. the event sequence

control objective mentioned above.

Discrete Abstractions of Continuous Systems

Consider the architecture of Figure 9 with a set P which includes a silent event ε. The

function α: X→ P generates a non-silent event when boundaries in X are crossed in a

specified direction [13]. The continuous system),(uxfx =& with the actuator β and

generator α, form a non-deterministic finite state automaton G = (S, P, C, ψ, λ) where S

is the discrete plant state, P is the set of plant symbols, C is the set of control symbols, ψ:

49

S × C → 2S is the state transition function, and λ: S × S → 2P the output function. The

state s ∈ S is corresponds to the most recently entered region of the plant state space.

The Discrete Event System plant model G is a non-deterministic automaton. This

abstraction permits application of discrete domain methods for designing the controller to

satisfy control specifications using DES control methods. The key to successful design is

to choose the state space partition such that the properties of interest are preserved [21]. It

should be possible to design the supervisory controller to achieve the desired closed-loop

behavior despite the non-determinism that is introduced in the abstraction process.

The discrete abstraction approach, presented above for the continuous system, can

be applied to hybrid systems in general. Given a hybrid system and some desired

property, one extracts a finite, discrete system while preserving all properties of interest

[22]. Once the discrete abstraction is obtained discrete-domain methods can be used for

control design.

Hierarchical Control of PWA systems

Supervisory control is concerned with the control of continuous (or hybrid systems) by

abstracting them into discrete-event systems. The continuous system is driven by a piece-

wise constant input signal, which may be processed at the input to the continuous system

to take a different form e.g. a ramp, but nonetheless is determined by the supervisory

controller. Hierarchical control [7], in contrast, delegates some of the control task to

continuous-state controllers, which form a layer between the plant and the supervisory

controller. It is assumed that some given closed-loop specifications are satisfied by the

combination of the plant and the continuous-state controllers. The supervisory controller

50

is designed with relation to the closed-loop specifications but without knowledge of the

control laws governing the controllers’ behavior.

Summary

This Chapter surveyed related work. The work presented provides three major building

blocks which are put to use to solve the reconfiguration problem.

 The theory of invariant sets in control provides the mathematical tools for

calculating necessary conditions for existence of a control law in a constrained system.

Hierarchical control is provides the framework in which a supervisory controller

transitions between modes, based on existence of control inputs that guarantee

reachability in a constrained system.

Model-Predictive Control serves as a candidate implementation of low-level

control in the hierarchical control architecture presented in the next Chapter. The interest

in Model-Predictive Control is that its complexity problems can be alleviated using the

methodology of this thesis and that necessary and sufficient conditions for feasibility of

MPC are known, which are based on invariant sets.

51

CHAPTER V

ARCHITECTURE

Proposed Architecture

The control architecture shown in Figure 10 describes the proposed hierarchical fault-

tolerant control architecture.

Fault and State
Detector

Supervisory
Controller

Configuration
Manager

Plant
x

Xe, D, Uf

u∈Ul

Ul

T, Ω, t

low-level control

Figure 10. Architecture

The plant is modeled as a piecewise-affine system as defined in Definition 2.5 with

continuous states X ⊆ Rn, a finite set of discrete states Q, and inputs U ⊆ Rm operating in

52

a hybrid state space Q × X. An additive state disturbance is assumed, taking values in a

polyhedral region D ⊆ Rn. Actuator faults are manifested as limitations which constrain

the input values to a reduced input set Uf ∈ U.

The fault and state detector identifies the plant state as a set Xe ⊆ X which

determines the possible values of the state vector x(t). The state detection is based on

partitioning the state space and generating an event when partitions are crossed, in a

similar fashion to what was described in the previous chapter. The fault and state detector

also determines the disturbance set D and the fault-induced input constraints Uf.. The sets

Xe, D, Uf are assumed to be available correct conservative approximations, which are

continually updated at each time step. All the sets are assumed to be convex polyhedra.

The system is designed with respect to a global control objective as defined in

Definition 3.1 (Global Control Objective). Based on the global control objective, the

supervisory controller determines a control objective as in Definition 3.2 (Control

Objective) for the low level control and the configuration manager.

The supervisory controller specifies a set of alternate control objectives. The set

of control objectives can be passed on to the lower levels as a prioritized list. If the

objectives are not prioritized an arbitrary prioritization will be imposed in order to choose

one control objective. The problem of achieving one of the control objectives is broken

down into two sub-problems.

Problem 5.1 (Reconfiguration). Given system (1), a set of control objectives

O, a state and fault detection Xe, D, Uf, and a set of possible input constraints,

Ū ⊆ 2U determine input constraints Ul ∈ Ū and a control objective (T, Ω, t) ∈

53

O, such that system (1) with constraints u ∈ Ul and disturbance set D can be

driven to target set T, within k time steps, with 1 ≤ k ≤ t while staying in Ω for

the first k-1 time steps and that u ∈ Ul ⇒ u ∈Uf.

Problem 5.2 (Low-Level Control). Determine inputs u(t) ∈ Ul needed to

reach T within k time steps, with 1 ≤ k ≤ t while staying in Ω for the first k-1

time steps.

The low-level control problem is solved continuously by the low-level control module.

When a control objective is achieved, the supervisory controller sets a new set of control

objectives. Reconfiguration occurs when either of the following happens:

• The set of control objectives specified by the supervisory controller is changed,

and no longer includes the current objective.

• The fault-induced input constraints become more restrictive and violate the

current configuration. (i.e. Ul ⊈ Uf.)

• The disturbance set becomes larger and violates the current configuration.

When reconfiguration occurs, the configuration selects one of the control objectives from

the set specified by the supervisory controller, and selects input constraints u ∈ Ul for

reconfiguration.

Motivating Example

To understand better what is proposed for hierarchical control architecture it is useful to

compare it to the state of the art. Rather than presenting the latest mathematical advances

54

in hybrid systems control, this section will present a real-life system in development. The

system is a simplified model of an aircraft fuel system.

The aircraft fuel system consists of six of interconnected tanks of fuel shown in

Figure 11

Right
Feed
Tank

Right
Wing
Tank

Right
Fuselage

Tank

Left
Feed
Tank

Left
Wing
Tank

Left
Fuselage

Tank

Right Engine

Left Engine

Figure 11. Simplified Aircraft Fuel System

The six tanks are in order: the left and right feed tanks which directly feed the engines,

the left and right wing tanks located at the wings, and the left and right fuselage tanks

located at the central body of the aircraft. The state of the system is given by a vector x(t)

= [x1(t), x2(t), x3(t), x4(t), x5(t), x6(t)]T which is interpreted as the amount of fuel in each of

the six tanks. The inputs, u(t), to the control system are commands to valves and pumps,

which control the flow between the interconnected tanks. The discrete state of the system

q(t) is mainly a function of the positions of the valves. The fuel consumption is modeled

as a disturbance d(t) which acts additively on the state x(t). Clearly, this system falls

55

nicely into the model (1) if the evolution of x(t) in each discrete state can be modeled as

discrete-time affine function. The model will not be detailed here, but it can be readily

obtained from data or from a hybrid model.

Ample fuel supply to the engines is provided by keeping the feed tanks almost full

at all times. Center of gravity is maintained by following the global control objective

defined as follows:

Definition 1 (Fuel System Global Control Objective). The state of the fuel

tank system x will start at x0 ∈ A1, as defined in Table 1. When the state leaves

A1 it will enter A2, and so forth until it reaches [0, 0, 0, 0, 0, 0]T ∈ A6 .

Obviously, the state of zero total fuel should never be reached, but this is not a fuel-

system control issue, but a mission planning issue. The regions Ak are given in Table 1.

The control system operates pumps and valves (not shown in Figure 11) to move

fuel from more remote fuel transfer tanks to engine feed tanks. The primary objective is

to keep the engine feed tanks near full at all times, such that if failure occurs upstream, as

much fuel as possible is available directly to the engines. The secondary objective is to

transfer fuel in a sequence which results in proper aircraft center of gravity.

The design of the control system for controlling the pumps which transfer fuel

from the transfer tanks is based on decision logic which implements the transfer sequence

of Table 1. For example, when the system is in regions A3, A4 and A5 fuel is pumped from

the wing tanks according to the logic in Figure 12.

56

Table 1. Fuel Quantity (lb.) for each tank in the simplified Aircraft Fuel System, the
configurations are symmetric.

 Total Left/ Right

Feed

Left/Right

Wing

Left / Right

Fuselage

Region Min. Max. Min. Max. Min. Max. Min. Max.

A1 11200 12000 1500 1500 1600 2000 2500 2500

A2 11000 11200 1500 1500 1600 1600 2400 2500

A3 7800 11000 1500 1500 800 1600 1600 2400

A4 4600 7800 1500 1500 0 800 800 1600

A5 3000 4600 1500 1500 0 0 0 800

A6 0 3000 0 1500 0 0 0 0

Figure 12 Example Decision Logic for Fuel System Control

The feed tanks must provide uninterrupted fuel supply to the engines at all times

to prevent engine failures. The left and right feed tanks, provide fuel to the left and right

engines, respectively. The tanks are interconnected to provide redundancy in case of

57

failures. Fuel flows from the feed tanks to the engine, and can be boosted by a boost press

system on each feed tank. The feed line between the feed tanks and the engines also has

an interconnect to provide redundancy in case of a boost press failure.

Supervisory
Controller

Fault Diagnoser
And State Detector

PlantController

Controller

Controller

Controller

Figure 13. Architecture of the Aircraft Fuel Control System

Conceptually, the architecture for the control system is shown in Figure 13. The

architecture shown in Figure 13 is essentially a switching control architecture similar to

that of Figure 6. In this system the decision logic located at the “supervisory controller”

of Figure 13 determines one of several control laws depending on the fault conditions and

the region in the state space. This addresses the supervision problem (determining the set-

58

points for each tank), the control problem (finding a control law that achieves the set-

point), and the reconfiguration problem (finding the set of actuators – pumps and valves)

at the same level. All three are solved by the supervisory controller which, by applying a

pre-designed decision logic, determines one of a limited set of control laws to use. The

choice of actuators is predetermined for each control law.

The implementation that relies entirely on predetermined logic decisions has the

advantages of being relatively straightforward to verify. However, the number of fault

scenarios for which such a system can be made tolerant is limited. Complications arise

especially when multiple faults occur. For example, the feed line interconnect is opened

in case of a boost system failure so that fuel can flow from both feed tanks to both

engines, thus providing redundancy. But a fall in feed tank pressure resulting from a leak

can also trigger the same response, thus causing even more fuel to be lost through the

leak.

Accounting for multiple-fault scenarios is an inherent difficulty in the design of

fault-tolerant systems. In some cases, such as the flight 171 example cited in the

introduction, the system does in fact posses robustness attributes that can enable it to

overcome a multiple-fault event, but the in the design of the fault-tolerant control system

this robustness is not exploited because it is not exposed. This is one of the issues that can

be addressed by the methods developed in this research.

The next section presents a different system from the same domain of flow-

control.

59

Benchmark Problem

The three-tank system shown in Figure 1 was developed as a benchmark problem for the

European Control of Complex Systems (COSY) project [28]. Several research papers

have been written, which consider control reconfiguration in the event of faults as applied

to this benchmark example [11][31][35][36]. To the best of this author’s knowledge the

only work in the COSY project which considers hierarchical control of this benchmark

problem is [33], which is summarized in [28]. The hierarchical reconfiguration method

presented in [33], in contrast to the method presented here, is validated only by trial and-

error. The non-hierarchical methods suffer from the problems mentioned earlier, namely

poor tradeoff of the quality of control.

In the three-tank system the objective is to regulate the level of fluid in tank 3.

The nonlinear continuous-time hybrid model is detailed in [43]. An approximation of this

hybrid system as a mixed-logical dynamic system is given in [39]. Without going into all

the details, the features of the system are these: the system is characterized by discrete

modes of operation resulting from the levels of the fluid in each tank (above or below the

upper pipe in each tank, 23 = 8 possibilities), the relative fluid level between each two

neighboring tanks (two pairs of tanks: :in each, the right can be fuller than the left or vice

versa: 22 = 4 possibilities) and the position of each valve (four valves, each with an open

and closed position: 24 = 16), in all there are 193 distinct continuous behaviors (of the

512 discrete modes, most are redundant). The flow Q of fluid out of a tank through an

open valve is determined by Toricelli’s law:

hgSaQ z ⋅⋅⋅⋅= 2 (51)

60

where az is a flow correction term, S the cross-section of the valve, g the gravity constant

and h is the level of water in the tank. In case both tanks have fluid above the level of the

valve, the flow is directed from the fuller tank to the emptier one and h is the level

difference between the tanks, i.e.. h=|hi-hj|. The piecewise affine model is generated by

enumerating all the discrete modes which are linked to the values of the state variables

(fluid levels) and inputs (valve control commands), and by linearizing and discretizing

the nonlinear continuous behavior of the flow.

Control of the three-rank system is as follows. In the nominal case, Tank 1 serves

as a buffer tank, and tank 3 is regulated by controlling the flow between tanks 1 and 3

using valve V1. One of the possible faults in the system is a leak in Tank 1. The scenario

for control and reconfiguration of this system is shown in Figure 15. The control

objectives (Ω, T, t) and input constraints Ul for this scenario are shown in Table 2.

The results in Figure 3 and Figure 4 were obtained using the model in [43]. The

low-level control was implemented using PI controllers on the pumps, hysteresis switches

on the valves, and additional simple switching elements. The scenario is comprised of

four phases:

I. The system starts with all tanks empty. Tank 1 and tank 3 are filled to their

nominal levels.

II. The system is regulated at the nominal levels around h1=0.5, h2=0, h3=0.1.

III. Following the detection of a leak in tank 1, the supervisory controller sets the

control objective to filling tank 2, while regulating tank 3 and emptying tank

1.

61

IV. The system is regulated around the set-point h1=0, h2=0.5, h3=0.1, which

mirrors the regulation of phase II

For the valves, a value of 1 is interpreted as the valve open, and a value of 0 as

closed. Note that V23 is never opened in the configurations detailed in Table 1. This

means that the configurations are tolerant to faults which cause V23 to be permanently

closed. Note also that only two actuators are used in each phase.

In phase III shown in Table 2, the supervisory controller specifies a control

objective of reaching the neighborhood of h3=0.1, h2=0.5, and for phase 4, regulation

around that point. Three alternate points specified in order of descending priority are

• h3=0.1, h2=0.3,

• h3=0.1, h2=0.2,

• h3=0.0, h2=0.0.

The last option is a shutdown, a safe state, which covers the case where no other

objective is achievable. Consider two cases where reconfiguration is necessary:

1. Valve V2 is faulty. The configuration shown in Table 1, phase 4, is no longer

valid as it requires V2 to be manipulable. The configuration manager selects a

configuration which uses V23 instead of V2 to achieve the set-point of h3=0.1,

h2=0.3

2. From time t=380 sec onwards valve V23 is permanently open. The configuration

shown in Table 1, phase 4, is no longer valid as it requires V23 to be permanently

closed. In this case the same target set can be achieved, with different input

constraints. Figure 4 shows this scenario. The system can still be controlled using

62

pump Q2 alone. The difference is that when using Q2 alone, the disturbance that

can be tolerated is smaller.

Figure 14. Alternative ending to the leak scenario

Summary

This Chapter presented the proposed architecture for fault-tolerant control of piecewise-

affine systems with additive state disturbance.

The functional elements of the architecture were named as: the supervisory

controller, the fault and state detector, the configuration manager (which performs

reconfiguration), the low-level control and the plant.

The motivation for the architecture and justification for considering the global

control objective was given by a real-life example of an aircraft fuel system and a

benchmark academic example of a three-tank system.

63

Figure 15. Reconfiguration scenario for leak in tank 1

64

Table 2. Control Objectives and Configurations. For each phase the target set T must be
achieved within t=200 time steps

 Ω T Ul

1 {h1, h2, h3 |

 0 ≤ h1 ≤ 0.6,

 0 ≤ h2 ≤ 0,

 0 ≤ h3 ≤ 0.11}

{h1, h2, h3 |

0.45 ≤ h1 ≤

0.55, 0 ≤ h2 ≤ 0,

0.09 ≤ h3 ≤

0.11}

{ V13, V1, V2, V23, Q1, Q2 |

0 ≤ V13 ≤ 1,

0 ≤ V1 ≤ 1,

Q1 = 10-4,

V23= V2=Q2=0}

2 {h1, h2, h3 |

0.45 ≤ h1 ≤ 0.55,

0 ≤ h2 ≤ 0,

0.09 ≤ h3 ≤

0.11}

{h1, h2, h3 |

0.45 ≤ h1 ≤

0.55,

0 ≤ h2 ≤ 0,

0.0905 ≤ h3 ≤

0.105}

{ V13, V1, V2, V23, Q1, Q2 |

0 ≤ V1 ≤ 1,

0 ≤ Q1 ≤ 10-4,

V13= V23= V2=Q2=0}

3 {h1, h2, h3 |

 0 ≤ h1 ≤ 0.55,

 0 ≤ h2 ≤ 0.6,

 0.09 ≤ h3 ≤

0.11}

{h1, h2, h3 |

0 ≤ h1 ≤ 0.2,

0.4 ≤ h2 ≤ 0.6,

0.09 ≤ h3 ≤

0.11}

{ V13, V1, V2, V23, Q1, Q2 |

0 ≤ V1 ≤ 1,

0 ≤ Q1 ≤ 10-4,

V13= V23= V2=Q2=0}

4 {h1, h2, h3 |

0 ≤ h1 ≤ 0.2,

0.4 ≤ h2 ≤ 0.6

0.09 ≤ h3 ≤

0.11}

{h1, h2, h3 |

0 ≤ h1 ≤ 0,

0.45 ≤ h2 ≤

0.55, 0.09 ≤ h3

≤ 0.11 }

{ V13, V1, V2, V23, Q1, Q2 |

0 ≤ V2 ≤ 1,

0 ≤ Q2 ≤ 10-4,

V1= V13= V23=Q1=0}

65

CHAPTER VII

RECONFIGURATION

A fault-tolerant control architecture includes redundant actuators, which are placed in

order to provide the necessary control functionality in the event of faults. In the

hierarchical control architecture, the complexity for low-level control is reduced by

limiting three factors:

• The prediction horizon

• The number of manipulable input variables

• The number of discrete states

The prediction horizon needed for feed-forward control is limited by (i) the fact

that low-level control is aimed at a control objective of reaching a target set in a limited

time, and prediction is not needed beyond that time, and (ii) the fact that reaching a target

set is a relatively simple objective, which can often be translated to an objective of

shortening the distance to the target set, thereby using an even smaller prediction horizon.

The number of manipulated variables is limited, as will be detailed in this chapter

by imposing constraints on the input variables. By staying within a limited state-set as

required by Definition 3.2 (Control Objective) while the inputs also remain in a limited

set, the state and input vector [x(t) u(t)]T is limited to a region, thus simplifying the PWA

model of the system by removing many of the discrete states from consideration. The

simplified model reduces the complexity of the control problem

The purpose of imposing constraints on the inputs is to reduce the number of

manipulatable input variables for the low-level control. If the low-level control is

66

implemented by model-predictive control (MPC) – which is possible for piecewise-affine

systems – the manipulable input variables are decision variables for the MPC

optimization problem and reducing their number reduces the computational complexity

[6]. Clearly, the reconfiguration task is required to have less computational cost than

what is saved by not allowing all input variables to be manipulable by the low-level

control. For this reason, the approach taken here is to perform the reachability

calculations required for reconfiguration at design-time.

The computational complexity of model-predictive control is taken as a case-in-

point because model-predictive control is a method for synthesizing the control law

online which utilizes all the design space available. In MPC, at each time step a mixed-

integer quadratic program with mixed-integer linear constraints is solved.

Definition 7.1 (MIQP) a Mixed-Integer Quadratic Program is an optimization

program of the following from:

{ } dc n
d

n
c

d

c

TT

xRx
x
x

x

dCxts
xbQxx

1,0,

0.
min

∈∈







=

≤+
+

 (52)

In the worst case, the time-complexity depends exponentially on the number of

integer variables and the number of variables involved depends linearly on the prediction

horizon [10].

The discrete modes of the hybrid system are defined as polyhedral regions in the

state and input space. Each polyhedral region in n dimensions is defined by a finite

67

number of facets which are polyhedra in n-1 dimensions (e.g. n+1 facets for a n-simplex,

2n facets for a n-hypercube). The number of integer variables (including auxiliary

variables) is related to the number of facets of each polyhedra. Therefore it is assumed

that the number of integer variables in the optimization problem depends linearly on the

number of manipulated variables.

Besides reducing the number of manipulated inputs, another potentially

significant reduction in complexity is gained by the fact that the control problem is

defined only in a limited region Ω of the state space, where only a subset of the discrete

modes of the hybrid system are active and therefore the control problem is further

simplified. Typically, in a practical application, the system states that the supervisory

controller prescribes follow the behavioral modes of the system and thus the reduction in

complexity is significant indeed. For example, in the three-tank system the three state

variables define eight regions (above or below upper connecting pipe for each tank). But

for the scenario depicted in Figure 15 four of the eight modes are never active, since

under no circumstances is the level in Tank 2 above h2=0.3. Moreover, in all but one of

the reconfiguration phases, only two modes are active. And even this phase can be split

into two supervisory control modes if needed.

Based on the above discussion it is conjectured that the complexity of low-level

control is exponential in the prediction horizon, the number of inputs and the number of

states.

Conjecture 7.1. The complexity of low level control is O(2K+M+N) where N is

the prediction and control horizon, M and K are the number of input and state

variables, respectively, that appear in the inequalities defining the boundaries

68

of the polyhedral regions χq in the system that appear as variables in (4) with

constraints x ∈ Ω and u ∈ Ul.

The significance of this assertion is that by reducing each one these parameters

the complexity of low-level control is reduced.

Reduction in the prediction horizon is made possible by the presence of a

supervisory controller. By assigning the supervisory controller all control tasks that

require significant prediction, the low-level control need only concern itself with

minimizing the distance to a set-point defined by the supervisory controller within a short

prediction horizon. By Theorem 4.2 (Feasibility of Model Predictive Control) the

prediction horizon in the MPC optimization problem to guarantee optimization needs to

be set to the number of time steps in which the target set is required to be reached.

The configuration manager’s task is to select input constraints which will

guarantee reachability from the current state x(t) to a target state set T ⊆ X in t time steps

without leaving Ω ⊆ X for the first t-1 time-steps. In this paper this process is called

reconfiguration. The reconfiguration problem was formally defined in Problem 5.1

(Reconfiguration). It is proposed to perform the necessary reachability calculations at

design time and store the results of these calculations in a reconfiguration database. A

necessary condition for reachability is that a sequence of input vectors which satisfies the

input constraints and the control objective exist.

The reconfiguration problem can be solved by calculating reachability in the

presence of disturbance. For a discrete-time system, reachability in a finite number of

steps can be computed, based on reachability in single steps.

69

Recall Definition 4.6 (One-Step Set) and Definition 4.7 (Robust One-Step Set).

For a PWA with inputs u(t) ⊆ Ul the One-Step set is given by

Q(Ω) = { x ∈ X | ∃u∈Ul ∃q∈Q : (x, u) ∈ χq, Aq x+ Bqu + fq) ∈ Ω }. (53)

And the robust one-step set is given by

Q̃(Ω) = { x ∈ X | ∃u∈U ∃q∈Q : (x, u) ∈ χq, ∀ d∈D (Aq x+ Bqu + fq + d) ∈ Ω }. (54)

For systems with additive state disturbance the robust one-step set can be calculated as a

one-step set to a target set, eroded by the disturbance set as follows.

Definition 7.3 (Pontryagin Difference). Given the sets Ω ⊆ Rn and Θ ⊆ Rn

the Pontryagin difference between Ω and Θ is defined as

{ }.,|~ Θ∈∀Ω∈+∈=ΘΩ θθωω R (55)

Proposition 7.1 [23] For a PWA system with additive state disturbance

Q̃(Ω)=Q(Ω~D), if Ω~D≠∅ (56)

Proof. It follows immediately from the definitions that

 Q(Ω~D) = { x ∈ X | ∃u∈Ul ∃q∈Q : (x, u) ∈ χq, (Aq x+ Bqu + fq) ∈ Ω~D}. (57)

Which is equal to

{ x ∈ X | ∃u∈Ul ∃q∈Q : (x, u) ∈ χq, (Aq x+ Bqu + fq) + d ∈ Ω, ∀ d∈D}

 = Q̃(Ω)..

(58)

The following propositions regarding robust controllable sets for systems with

additive disturbance will be instrumental in calculating the sets needed for

reconfiguration.

70

Proposition 7.2 For a system with additive state disturbance, if Ω is given by

the union

U
i

iΩ=Ω (59)

then

()U
i

i DD ~~ Ω⊇Ω (60)

Proposition 7.3. For a system with additive state disturbance, if Ω is given by

the union (60) then

() ()U
i

iQQ Ω⊇Ω ~~ (61)

Proof.

() () () ()UUU
i

i
i

i
i

i QDQDDQ Ω=Ω=Ω⊇Ω=Ω ~~)~Q()~Q(~ (62)

Definition 7.4 (Robust Controllable [i,j]-step Set). For the system (1), with

inputs u(t) ∈ Ul and disturbances d(t) ∈ D, the robust controllable [i,j]-step set

()TK j
i ,~ Ω is the largest set of states in Ω for which an integer i ≤ k ≤ j exists for

which there exists an admissible control input which will drive the system to T

in exactly k steps, while keeping the evolution of the state inside Ω for the first

k-1 steps, for any time-varying disturbance d(t) ∈ D, i.e.

()
(){ }

(){ } (){ }
.

,)(,

:|
,~

1
0

1
0

1
00













∈∀∈Ω∈

∈∃≤≤∃∈
=Ω

−−

−

kk

kn

j
i

DtdTkxtx

UtujkiRx
TK (63)

71

Proposition 7.4.

() .),(~(~,~ j
i

1
1 Ω∩)Ω=Ω+

+ TKQTK j
i (64)

Proof.

Ω∩Ω⊆Ω∩Ω=Ω=Ω
≤≤+≤≤+

+
+)),(~(~)),(~(~),(~),(~

11

1
1 TKQTKQTKTK j

i
jki

k
k

jki

k
k

j
i UU (65)

So that

Ω∩)Ω⊆)Ω+
+),(~(~,(~ j

i
1j
1i TKQTK (66)

If

Ω∩)Ω∈),(~(~ j
i TKQx (67)

then it is in Ω and can be driven to)Ω TK ,(j
i in one step and subsequently to T in

k steps with i ≤ k ≤ j. Therefore

)Ω∈⇒Ω∩)Ω∈ +
+ TKxTKQx ,(~),(~(~ 1j

1i
j

i (68)

and

Ω∩)Ω⊇)Ω+
+),(~(~,(~ j

i
1j
1i TKQTK � (69)

Theorem 7.1. The robust controllable [i,j]-step set can be computed by the

following recursive formula:

()








<)Ω∪Ω∩)Ω
=<Ω∩)Ω
==

=)Ω
jiTKTKQ

jiTKQ
jiT

TK
,(~),(~(~

0,(~~
0

,(~

1-j
i

1-j
i

1-j
1-j

j
i (70)

Proof. For i=j, the algorithm and proof is shown in [9, section 2.6]. For i < j,

by definition

72

),(),(,(1
1j

i TKTKTK j
i

j
i Ω∪Ω=)Ω +

− .

From Proposition 7.4,

() .),((~, 1-j
i1 Ω∩)Ω=Ω+ TKQTK j

i

therefore

.),((~),(,(1-j
i

1j
i Ω∩)Ω∪Ω=)Ω − TKQTKTK j

i �

Affine Constrained Systems

Algorithms and theoretical results developed for constrained linear systems often assume

the origin is in the interior of the admissible set of states and/or inputs [24][4][42] . For

this reason it is useful first to clarify the relation between such systems and constrained

affine system with admissible state and input sets which do not necessarily include the

origin.

A constrained affine system is given by

qtQx

ptPu

ftButAxtx

≤

≤

++=+

)(

)(

)()()1(

 (71)

It is desired to form an equivalent LTI system

qtxQ

ptuP

tuBtxAtx

≤

≤

+=+

)(

)(

)()()1(

 (72)

Where the origin is an interior point of the set of admissible states

73

0>q . (73)

First, an interior point ϕ is found for the polyhedron Qx(t) ≤ q. This can be done by

standard linear programming methods. For the simple case where none of the inequalities

are forced to be tight, the interior point can be found as the point x at which max e, s.t. Q

x + e ≤ q is attained.

The coordinates of the state space are translated by ϕ,

ϕ+=)()(txtx (74)

After transformation the system becomes

()
ϕϕ

ϕϕϕ

++−+=

=+++−=++=+

fAtButxA

ftButxAtxtx

)()(

)()()1()1(

(75)

By augmenting vector u with n inputs fixed at a constant value of ϕϕ Afu −+=′ , an

LTI system is obtained

)()()1(tu
I
B

txAtx 







+=+

(76)

with constraints

ϕ

ϕϕ
ϕϕ

QqtxQ

A
A

p
tu

I
I

P

+≤

















+−
−+≤

















−

)(

 f-
 f)(

0
0

0

(77)

Robust Controllable Sets for PWA systems

Recall from Proposition 7.3 that for a system with additive state disturbance the robust

one-step set Q̃(Ω) is equal to the nominal one-step set Q(Ω~D). This implies that in order

to compute the [i,j]-robust controllable set by the formula presented in Theorem 7.1 it is

74

sufficient to develop procedures to compute the Pontryagin difference Ω~D, the nominal

one-step set Q(Ω~D), the intersection Q(Ω~D) ∩ Ω, and the set union

),(~),(~
1

1 TKTK j
i

j
i Ω∪Ω +

− . The first three issues are addressed in [23]. In computing the

set union, the problem which arises is that the union of two convex sets is not necessarily

convex, or even connected. This is true also for the computation of Q̃(Ω) for a PWA

system, since it consists of a union of all discrete modes q ∈Q of the system. If the robust

controllable set of a polyhedral region T is to be computed exactly this would necessitate

enumeration or introduction of discrete variables to encode the set. The complexity of

such a computation of),(~ TK j
i Ω is exponential in the number of steps j. However, for

practical purposes, the exact computation of),(~ TK j
i Ω is not necessary. An inner

approximation),(ˆ TK j
i Ω , such that),(~),(ˆ TKTK j

i
j

i Ω⊆Ω is sufficient. If an inner

approximation that is convex can be found wherever a union of polyhedra is calculated, it

can be used to reduce the computational complexity of the off-line computations which

generate the reconfiguration database. In any case, such an approximation is needed for

the final iteration of Theorem 7.1 which produces the set which appears in the database.

A method for convexity recognition of a union of polyhedra was shown in [44]. This

approach can be extended for approximating a union of polyhedra as a convex

polyhedron.

Reconfiguration and Fault-Tolerance

Reconfiguration provides fault tolerance by choosing input constraints, which are

compatible with fault conditions. For example, if valve V1 in the three-tank system is

75

fixed in position V1=0, then any configuration constraint which is satisfied by V1=0 is

compatible with this fault.

This method of representing configurations requires some enumeration, although the

enumeration is only of configurations – not faults. This is still more efficient than

approaches that require enumeration of faults, since the fault space is typically much

larger than the configuration space.

Assume all configurations u ∈ Ul are given by rectangular constraints

maxmin uuu ≤≤ (78)

Or in standard form

[]

maxmin

min

max

uu

u
u

u
I

I

≤









−

≤







− (79)

Likewise, the configurations encoding the fault conditions v ∈ Uf are given by

[]

maxmin

min

max

vv

v
v

u
I

I

≤









−

≤







− (80)

This is a reasonable limitation, because the objective of configuration selection is to

minimize the number of manipulated variables, given by the number of inputs for which

0minmax >− ii uu . The dimension of the polyhedron of admissible values of u is all that

matters, not its shape. It is also assumed, with out loss of generality, that

[]1,0, maxmin ∈uu (81)

[]1,0, maxmin ∈vv (82)

Constraints (78), (81) on umin, umax define an actuator that can be either fixed at

76

u=umin=umax=0 (83)

fixed at

u=umin=umax=1 (84)

or manipulated in the range

0 ≤ umin≤ u≤umax≤1 (85)

This representation is very useful since the constraints (78), (81) can be taken into

account implicitly, and the database need only include extra constraints for each

manipulated actuator

1minmax ≥− ii uu (86)

A simple constraint such as nuu
k

i
ii ≥∑ −

=1
minmax can be used to represent the case where n

out of k available actuators can be used to achieve the control objective.

Proposition 7.5. For the sets

Ul = {u | maxmin uuu ≤≤ } (87)

and

Uf = {v | maxmin vvv ≤≤ } (88)









−

≤















−

⇔⊆
min

max

min

max

0
0

v
v

u
u

I
I

UU fl
(89)

77

The Reconfiguration Database

The reconfiguration database consists of six-tuples (X̃̃, D̃, Ũ, T̃,Ω ̃, t̃) for which it has been

determined that X̃̃ is a robust controllable [1,t]-step set K1
t(Ω ̃,T̃) for the system with

disturbance D̃ and input constraints Ũ. At runtime, the configuration manager’s task is to

find a six-tuple from the database, for which Xe ⊆ X̃̃, D ⊆ D̃, Ũ ⊆ Uf, T̃ ⊆ T, t ≤ t̃, Ω ̃ ⊆

Ω, based on Xe, D, Uf supplied by the fault and state detector and Ω, T, t supplied by the

supervisory controller. The sets are all assumed to be convex polyhedral sets, so the

computation of the set inclusions amount to the solution of linear programs. In general

the robust controllable set for a piecewise affine system is not convex; however it is

sufficient for the purpose of reconfiguration to use an inner approximation of the robust

controllable set, which is convex, for the value of X̃ in the database.

By removing all reconfiguration options which do not satisfy the necessary

conditions for reachability, the search space for the low-level control is reduced, while

ensuring the existence of appropriate control inputs to satisfy a control objective. The

problem of designing the low-level control to select the optimal control inputs is beyond

the scope of this paper. One possibility is to apply model-predictive control for which

necessary and sufficient conditions for robust feasibility are known [24].

The reconfiguration database lists six-tuples (X ̃, D̃, Ũ, T̃,Ω ̃, t ̃) for possible

combinations of state and fault identification and control objectives given by the state and

fault detector and the supervisory controller, respectively. The task of partitioning the

state and input sets to determine these sets is the subject of the next section.

78

Summary

In this chapter it was shown how the introduction of a reconfiguration layer

between the supervisory controller and the low-level control of a PWA system can reduce

complexity of low level control by limiting the prediction horizon, number of inputs and

number of discrete states that need to be considered by the low-level control in each

supervisory control mode.

The theory of invariant sets was shown to provide the tools for determining the

initial set from which a specified set can be reached within a specified time for all

allowable disturbances. The robust controllable sets can be computed recursively from

the robust one-step sets using Theorem 7.1. Robust one-step sets can be computed using

already existing tools for LTI systems [23]. Using the transformations introduced in this

chapter these calculations can be applied to each mode of a piecewise-affine system.

Appendix B includes an example of calculating a robust controllable set using

Theorem 7.1, for phase III of the three-tank reconfiguration process shown in Figure 15.

79

CHAPTER VII

SUPERVISORY CONTROL

The supervisory control of a hybrid system can be approached as a discrete-event control

problem, by abstracting the plant into a discrete event system preserving all properties of

interest. In hierarchical control, this is done by forming a partition of the state space, for

which it can be guaranteed that the system can be forced to reach a desired region by

choosing appropriate controls. In this section the subject of partitioning the continuous

state space will be considered. The property of interest is maintaining the control

system’s ability to satisfy the control objectives, which in this case are formulated as

reachability specifications.

For the notations and definitions of mathematical terms used in this chapter see

Appendix A.

Bisimulation

One method for generating discrete abstractions of a hybrid system is

bisimulation. A bisimulation is a reachability preserving quotient system in the sense that

checking a property on the quotient system is equivalent to checking the property on the

original system [34]. If an equivalence relation ~ is a bisimulation, then given two

systems P and Q each with an initial and final set, the states in the initial sets of each

system are mutually equivalent, the states in the final set of each system are mutually

equivalent, and if a state p ∈ P and a state q ∈ Q are equivalent, and p has a next state,

80

then q has a next state which is equivalent to the next state of p. (See Appendix A for

formal definitions).

Bisimulation is a strong property as it provides:

1. Equivalence of states for all the state space of the equivalent systems

2. Preservation of the one-step predecessor (successor) operator.

The first requirement is strong because it means that the abstraction applies to the

entire state space, including regions that are not meant to be reachable. The second

requirement is strong because it applies by induction to all time and it also means that

equivalent trajectories have the same number of time steps.

Quasideterminism

Another method for generating such discrete abstractions is Quasideterminism

[7]. In contrast to bisimulation, Quasideterminism requires equivalence only to the degree

that set membership of a state in equivalence classes of a primary partition be preserved.

If the primary partition is given by an equivalence relation Eπ and the predecessor

operator defines an equivalence relation Epred then the final partition is the meet of Eπ and

and Epred, Eπf = Eπ • Epred [7].

Quasideterminism is a weaker property than bisimulation, but still a stronger

property than what is needed with respect to Definition 3.1 (Global Control Objective).

Several observations can be made:

• Quasideterminism with respect to a primary partition defined by

Definition 3.1 (Global Control Objective) may be hard to achieve because

safety cannot be guaranteed for some of the state space in these regions.

81

However, it may be achievable for a region ψ ⊆ X with ψ ∩ Bad = ∅,

when ψ / Eπ are taken as the regions of the primary partition rather than X

/ Eπ. If it can be guaranteed that the system starting in A0 (from Definition

3.1 (Global Control Objective)) will never leave ψ then it will also not

reach Bad.

• Quasideterminism refers to reachability in one step, whereas Definition

3.1 (Global Control Objective) refers to reachability within a time window

of between one and time(k,l) time steps.

• Quasideterminism enables open-loop control of the system without

knowledge of its exact state. In contrast, assuming an architecture like the

one shown in Figure 10, the state detector can determine to which region

of the final partition the system was driven.

State Space Partition

Given these observations, this chapter seeks to characterize the state-space partition with

respect to Definition 3.1 (Global Control Objective).

 First note that all the regions Ak are assumed to be disjoint sets. If this is a

problem, it can sometime be helpful to use the fact that the following definition of a is

equivalent to Definition 3.1 (Global Control Objective)..

Definition 8.1 (Equivalent Global Control Objective) Given a set Bad ⊆ X

and a finite collection of sets Ak ⊆ X , k ∈ K, that includes an initial set A0 ⊆ X,

with Ak ∩ Bad = ∅, a set valued map next: K→2K and a function time time:

82

K×K→ Z+ the global control objective is that for the system with initial

conditions x ∈ A0 the continuous state will remain in any set Ak and

subsequently cross into set Ak’ after t time steps for some k’∈ next(k) for which

t ≤ time(k,k’), while remaining in Ak ∪ Ak’ for t-1 time steps.

x(t0) ∈ Ak ⇒ ∃k’∈ next(k): ∃t ≤ time(k,k’) :

x(t0+t) ∈ Ak’ ∧ ∀0 ≤ t’< t, x(t0+t’) ∈ Ak∪ Ak’
(90)

Proposition 8.1 Definition 8.1 and Definition 3.1 (Global Control Objective)

are equivalent.

Proof.

(Definition 3.1 ⇒ Definition 8.1) follows from

x(t0+t’) ∈ Ak ⇒ x(t0+t’) ∈ Ak∪ Ak ’ (91)

 (Definition 3.1 ⇐ Definition 8.1) Let t ≤ time(k,k’), x(t0+t) ∈ Ak’. If t=1, then

for t’=0,, x(t0+t’) ∈ Ak. If t>1, x(t0+t’) ∈ Ak∪Ak’ and x(t0+t’) ∉ Ak, then x(t0+t’)

∈Ak’. In particular for t’=1, t’ ≤ time(k,k’), x(t0+t’) ∈Ak’ and +x(t0+t’’), ∀0 ≤ t’’<

t’ €

Example 8.1. The global control objective based on Definition 8.1 is to bring

the state of the three tank system from Ainit={h1, h2, h3 | 0 ≤ h1 ≤ 0.6, 0 ≤ h2 ≤ 0,

0 ≤ h3 ≤ 0.11} to A1={h1, h2, h3 | 0.45 ≤ h1 ≤ 0.55, 0 ≤ h2 ≤ 0, 0.09 ≤ h3 ≤ 0.11}

within 200 time steps while remaining in Ainit = Ainit ∪ A1 for the first 199 time

steps and subsequently to regulate it in A1. Since A1 ⊆ Ainit, by replacing Ainit

83

with A0 = Ainit - A1 the objective can be restated as staying in A0 and then

crossing into A1.

Assumption 8.1. The sets Ak are disjoint.

Definition 8.2. (Primary Partition) Given a global control objective, defining

a collection of sets Ak ⊆ X , k ∈ K, the partition of U
Ni

kAA
...0=

= into sets

forming the collection {Ak}is called the primary partition.

As with bisimulation [34] and quasi-determinism [7], the required partition is

generated by l ∈ next(k) a process of partition refinement resulting in a final partition.

The primary partition π, forms an equivalence relation Eπ. The set of all the partitions of

the state space X with polyhedral equivalence classes is characterized as a lattice, and

partition refinement is defined with respect to the partial order of the lattice [7].

The process of partition refinement results in the partitioning of the state space

into regions which are subsets of the regions {Ak}. The primary partition is refined by

applying a finite number of meet operations, resulting in a final partition. The

requirement from the final partition is that the induced system operating in the quotient

space X / Eπf, can be controlled by the supervisory controller in such a way that the

trajectory in the original system will satisfy the global control objective. The state

identification given by the state detector, in the form of a set K ⊆ X as well as the sets Ω

⊆ X and T ⊆ X in the control objective are regions defined in terms of the final partition.

The partition must be such that when the supervisory controller is given a state and fault

84

identification (K, Uf, D), it can determine the a control objective (Ω,T, t), for which the

system can be forced on a trajectory consistent with the global control objective by

choosing appropriate controls.

Assume a given disturbance set Dk for each region Ak. Let UL⊆ 2U be the set of

admissible input sets. The choice of input constraints is based on two considerations:

fault-tolerance and reducing the number of manipulated variables. A configuration Ul ∈

U will be tolerant to a fault if the configuration admits only input vectors which are not

precluded by the fault. The additive state disturbance can also be used to model certain

input faults (e.g. a leak in the tank, which is an additive state disturbance because the leak

reduces the volume of liquid in the tank – a state variable – by a certain amount at each

time step).

Let Ψ be a collection of sets Ωk, k ∈K, which appear as invariant sets Ω in the

reconfiguration database, and let Ω0 = A0; Ωk ⊆ Ak ∀k ∈K. It is required that at any

trajectory starting in Ω0 can be driven to follow the global control objective. This can be

assured if

∀ x∈ Ωk, ∃l ∈ next(k), ∃u ∈ UL : x ∈ K1
time(k,l) (Ωk , Ωl). (92)

Where K1
time(k,l) (Ωk , Ωl) is the [1, time(k,l)]-step robust controllable set. In the

nominal case reconfiguration occurs when the system crosses into a target set from which

reachability to the next target set is assured within the required time. When a fault occurs,

the time constraint is not necessarily satisfied; however, the condition of (92) ensures

that the next state is reachable when reconfiguration occurs at any point along the

trajectory. The collection Ψ can be calculated recursively by Algorithm 8.1.

85

Algorithm 8.1. (Compute Collection of Invariant Sets Ψ)

INPUT:

partition π defining regions Ak, k ∈ K

input constraints UL

disturbance set Dk for each Ak

BEGIN

FOR each k ∈ K

 Ω’k = Ak.

 REPEAT

 FOR each k ∈ K,

 Ωk = Ω’k

 FOR each k ∈ K,

 U U
Ll UU knextl

lk
lktime

k K
∈ ∈

ΩΩ=Ω
)(

),(
1),(' ;

 UNTIL Ωk = Ω’k, ∀k ∈ K

END

OUTPUT

Collection Ψ = {Ωk}k ∈ K of invariant sets.

The algorithm succeeds if it terminates and Ω0 = A0. If the algorithm terminates

successfully (92) is satisfied. For practical purposes the number of iterations must be

limited to check for successful termination. What remains is to partition the sets Ψ

={Ωk}k∈K into regions such that from each region, it can be determined which next target

set can be reached and by what configuration. This is performed by Algorithm 8.2.

Algorithm 8.2. (Partition sets Ψ, with configurations UL).

INPUT:

State space X

86

Global control objective: K, {Ak}, time, next

input constraints UL

disturbance set Dk for each Ak

BEGIN

πf := (U
Kk

kAX
∈

\ , A0, Ω1, A1\ Ω1, Ω2, A2\ Ω2, …)

 FOR each k ∈ K, Ul ∈ UL, l ∈ next(k),

 compute partition: π = (X ∩ K1
time(k,l)(Ω k , Ωl) , X \ K1

time(k,l)(Ω k , Ωl))

 Refine: πf := πf ⋅ π

 END

END

OUTPUT:

Refined partition πf.

The final partition resulting from application of Algorithm 8.1 and Algorithm 8.2 for a

set of configurations UL divides the state space into regions that are not necessarily

convex, or even connected, because the robust controllable sets computed for different Ul

∈ UL and l ∈ next(k) can overlap. Therefore, to arrive at a collection of convex and

compact regions, it may be necessary to further divide the regions along the hyperplanes

that define their boundaries. Figure 16 illustrates this process. It would also be possible to

simply partition the state space X along all the hyperplanes, which define the partition π’,

but this would result in a larger number of regions and unnecessarily increase the size of

the reconfiguration database.

87

I

II

III

4

3

1 2

III 5

(a) (b)

ז

ד

ב א

ו

ה
ח

ג

(c)

Figure 16. Refining the final partition (a) into convex and compact regions (b). (c) Shows
the partition along hyperplanes. Note that regions in (b) overlap at the boundaries.

When the system is in region Ak, the supervisory controller sets the control

objective for the configuration manager and low level control as all the 3-tuples (Ω, T, t)

with Ω = Ωk, T = Ωl, , l ∈ next(k), t = time(k,l). The state detector must detect partition

crossing in the final partition so that when the system crosses into Ωl, it can be

determined in which region of the final partition the current state is, so that

reconfiguration can proceed. The reconfiguration database is also constructed based on

the final partition and the possible control objectives. Throughout this section the

disturbance set Dk was assumed to be given for each region Ak of the global control

objective. The disturbance set provides another design parameter, which can be relaxed

or tightened to enable the global control objective to be achieved or to increase

robustness.

After finding the final partition, the supervisory controller and the state detector

can be designed to specify their outputs in terms of the refined partition. Let the final

partition be given by π’ = {P1, P2, …, PN}. Where each Pi is a convex and compact subset

of a region Ak of the primary partition. The supervisory controller can be designed to

specify its outputs in terms of the final partition. If the system crosses into region Ak, at

time tk then the set of control objectives is constructed as follows.

88

Algorithm 8.3. (Construct Control Objective Set).

INPUT:

Final partition π’ defining regions (P1, ….. PM),

Global Control Objective

Collection of regions ψ = {Ω0, ….. ΩN},

Set valued map next: K→2K

A function time time: K×K→ Z+,

A region Ak in the final partition, which has been crossed into.

BEGIN

 S = {};

 FOR each l ∈ next(k),

 FOR each Pi ⊆ Al,

 Add a control objective (Ω, T, t) to S, with Ω = Ωk and T = Pi and t = time(k, l).

 END

END

OUTPUT:

Set of control objectives, S.

The set of control objectives remains the same as long as the system remains in

Ak. The reconfiguration manager takes note of the time tk at which the control objectives

were given. All times in the control objective are relative to this time, so that if a different

control objective is selected, the reconfiguration manager must take the time offset into

account.

Partition Crossing Detection

The state detector must detect partition crossing in the primary partition for the

supervisory controller to generate the control objectives, and in the final partition for the

89

configuration manager to select a configuration, so that when the system crosses into Al, it

can be determined in which region Pj of the final partition the current state is. The state

detection is performed using a threshold function.

The n-dimensional state space X is partitioned by (n-1)-dimensional hyperplanes,

which form the boundaries of the regions Pi. The requirement from the state detector is to

detect when the system crosses each one of these hyperplanes. Following [7], let hi be a

collection { } RRhh n
iNfii →= :,...12 of real valued functions of the form () i

T
ii cxgxh −=

where gi∈Rn and ci∈R. Let Hi be the (n-1)-dimensional hyperplanes given by

{ }.0|)ker(=−=∈== i
T

ii
n

ii cxghRxhH (93)

Let {ĥi } be a collection of threshold functions defined [7] as

()








>−+
=−
<−−

=
01
00
01

ˆ

i
T

i

i
T

i

i
T

i

i

cxgif
cxgif
cxgif

xh (94)

The state detector is composed of two stages. The vector function λ(x) = [ĥ1(x), …, ĥl(x)]T

is a mapping λ : Rn→{-1,0,1}l where there is a bijection between {-1,0,1}l and the set of

all region resulting from partitioning X along the hyperplanes which define π’ [7]. The

next stage is mapping the elements of {-1,0,1}l to the sets in Ψ.

Summary

In this chapter it was shown how a state space partition can be generated that assures that

the global control objective can be achieved in the nominal case and degraded

performance in the case of a fault.

90

Bisimulation and Quasideterminism were introduced in the beginning of the

chapter. In contrast to these approaches, the state space partition refinement method

presented in this chapter is always a finite process. If a partition can be found, the low-

level control can drive the system from one partition to the next within the time

constraints specified. The collection of sets ψ includes the initial state set A0, from which

other sets are reachable. The control system can keep the plant from leaving the sets in ψ

and therefore the rest of the state space is not considered when partitioning the sets.

91

CHAPTER VIII

CONCLUSIONS AND FUTURE WORK

In this research it was shown that the theory of invariant sets can be used to

provide robustness in control of hybrid systems in a practical setting. A hierarchical

architecture was shown to reduce the complexity of low-level control by limiting the

number of inputs used in each supervisory control mode, and thus simplifying the model

of the hybrid system.

To further develop these ideas more work will be needed to implement the

algorithms and software for computing invariant sets for piecewise-affine systems. This

chapter summarizes in detail the contributions and conclusions of previous chapters and

the work that lies ahead.

Contributions

Following is a list of specific contributions presented in this thesis:

• An architecture for reconfigurable hierarchical control Figure 10

• The reconfiguration problem defined in the context of hierarchical control: Problem

5.1 (Reconfiguration)

• Relation of hierarchy to reduction of complexity for low-level control Conjecture 7.1

• Robust reachability of PWA systems within a time window: Proposition 7.2,

Proposition 7.3, Proposition 7.4, Definition 7.4, Theorem 7.1

• Transformation of a constrained affine system to a constrained linear system with the

origin in the interior of the set of admissible states: Equations (76), (77).

92

• Representation of configuration as inequality and integrality constraints on its

bounds: Equations (78)-(89), Proposition 7.5.

• State space partition for supervisory control for Definition 3.1 (Global Control

Objective): Definition 8.1, Proposition 8.1, Equation (92), Algorithm 8.1, Algorithm

8.2, Algorithm 8.3

Conclusions

One of the attributes of the proposed architecture, which makes it useful in a

practical setting, is that from a design perspective the reconfiguration database provides a

decoupling between the mathematical computations, which are based on a PWA model,

with various assumptions about disturbance etc. and the reconfiguration strategies

actually deployed. That is to say, that while this thesis provided the theoretical

justification for a three-layer architecture which uses a “reconfiguration database” in

practice, the entries in the reconfiguration database can be decided upon based upon

simulation, testing or other methods, which require fewer assumptions about the system.

For example, as a design methodology, it is suggested, that the initial values be generated

by calculating the invariant sets based on a discrete-time PWA model with all the

necessary assumptions; subsequently the database entries can be refined by testing them

on more accurate non-linear simulation models and later validated experimentally on a

real system. In contrast, many of the control and reconfiguration methods proposed by

other researchers, though mathematically valid, are not transparent in the sense that the

details of the reconfiguration and control strategies are hidden by the synthesis

algorithms.

93

Minimization of the Number of Manipulable Inputs

The method described in Chapter VII for generating the reconfiguration database, starts

with a given set of configurations UL ⊂ 2U, each of which has a sufficiently small number

of variables for which the values are not fixed.

In order to find the smallest number of variables, that need to be manipulated, it

would be desirable to solve the following optimization problem for all control objectives.

 Problem 9.1 (Minimal Configuration). Given a piecewise-affine system

with inputs u(t) ∈ U , a control objective (Reach T in t time steps, while

staying in Ω for t-1 time steps), and a disturbance set D ⊂ Rn, solve

() (){ }TKUUUdimmin t
ll ,~,: 1 Ω⊆Ω⊆

Complexity of MPC for PWA systems

A comprehensive study of complexity of model-predictive control for PWA systems in

MLD form is not available. Currently there are a number of unknowns that may strongly

affect the complexity. In particular it is not known exactly how the number of constraints

and auxiliary variables in the MLD model grows with the addition of additional discrete

modes to the PWA system. Such a study is needed to establish the scalability of the MLD

modeling approach.

It was conjectured in Chapter VII that the number of integer variables in the

MIQP problem of MPC is proportional to the number of inputs and states of the PWA

system. This is only a coarse estimate. The nature of the transformations needed to

generate the MLD model is complicated and systems that arise in practical applications

94

may have special structures (such as self-similarity). A complexity analysis that ties the

performance of algorithms such as [25] to attributes of the system in some canonical

form, that can be linked to physical attributes such as the number of energy storage

elements, number of switches etc.

Approximate Calculation of Invariant Sets for Hybrid Systems

Invariant sets for piecewise-affine systems can be calculated by the method

outlined in [23]. For the case where there is disturbance but no control input, by the

method of [48]. These methods calculate the invariant sets exactly. But for practical

applications, approximations of the invariant sets are sufficient. The work of [47] on

reachability computations, which applies to hybrid systems, might be extended to the

calculation of invariant sets.

Although one of the main arguments in this thesis was that design-time

calculations can be afforded to be computationally expensive, complexity of these

calculations is nonetheless an issue. The reachability calculations are in general

exponential in the number of discrete modes, and thus do not scale up well. One method

described in Appendix B is an attempt to eliminate the complexity arising from the

discrete modes by performing a convex approximation at each iteration of the algorithm

to compute the robust controllable set. It is not clear, though, what conditions would

make this method work.

95

Tools for Computational Geometry in High Dimensions

Computational geometry has traditionally focused on two- and three-dimensional

problems because applications were in areas such as Computer-Aided Design (CAD).

Clearly, for control-theoretic applications higher dimensions must be considered.

In [51] the idea of “griddy polyhedra” is presented as a means to alleviate the

computational issues arising from the set calculations required to control theory. By the

methods presented in [49][50] this can probably be used to calculate the robust

controllable sets as required for the architecture presented in this thesis.

Piecewise-Affine-Systems Toolbox

Piecewise-affine systems have proven to be convenient approximations of hybrid

systems that lend themselves to relatively simple methods of analysis, verification and

control synthesis. It would be useful to develop a MATLAB toolbox that provides for

defining piecewise-affine systems, analyzing them and using them as building blocks for

composing systems.

For piecewise-linear hybrid dynamical system a toolbox has been recently

developed [55] that calculates backwards and forwards reachability and checks properties

relative to a control objective.

Reconfiguration for Constrained Systems with Polytopic Uncertainty

In this thesis, the faults that were considered are those that can be modeled as

input constraints. These are structural faults that limit the control system’s ability to

influence the plant, typically actuator faults.

96

Faults resulting from changes in physical properties of a system, are often best

modeled as parameter deviations. For LTI systems a bounded uncertainty in parameter

identification can be defined as polytopic uncertainty in the system matrices (A,B). The

system matrices are assumed to lie within a convex hull of a finite number of (A, B)

tuples. Such uncertainty was suggested in [45] as a method for modeling a non-linear

system. It is argued therein that analysis and design methods developed for an

experimentally-obtained model with polytopic uncertainty can be applied to the real non-

linear system. For continuous-state systems with polytopic uncertainty, invariant sets [52]

[23] and MPC [45][53] have been studied.

If combined with diagnosis methods [46] the reconfiguration method presented

here can be applied to LTI systems with polytopic parametric uncertainty. However, the

problem of PWA systems with polytopic uncertainty appears to be much more difficult.

In [56] hierarchical control of piecewise-linear hybrid dynamical systems with polytopic

uncertainty in the matrices associated with each discrete mode is considered. However, it

is assumed in [56] that the uncertainty is given separately for each mode, and the question

of of relating the uncertainty in the system (e.g. uncertainty in value of each physical

parameter) to uncertainty in each entry of the system matrices associated with each

discrete mode is not addressed. To enable reconfiguration of PWA systems with

parametric uncertainty this question must be addressed or a diagnosis method must be

applied that can circumvent this problem by supplying sufficient information for

reconfiguration without explicitly mapping parameter variations to variations in the

matrices of each discrete mode.

97

APPENDIX A

MATHEMATICAL CONCEPTS

Definition A.6. (Partition) A partition of a set A ⊆ X is a collection of non-empty pair-

wise disjoint subsets of A whose union is A. The subsets are called blocks.

Definition A.7. (Refinement) A partition π1 is said to refine another π2, denoted π1 ≤ π2 if

every block of π1 is contained in some block of π2

Definition A.8. (Meet) Given two partitions, π1 and π2, their meet π1⋅π2 is the largest

partition which refines both π1 and π2.

Definition A.9. (Join) Given two partitions, π1 and π2, their join π1+π2 is the smallest

partition which refines both π1 and π2.

The refinement relation is a partial ordering of the poset consisting of all partitions of A.

The blocks of the meet are blocks from all nonempty intersections of a block from π1 and

a block from π2. The blocks of the join are the smallest subsets, which are exactly the

union of blocks from both π1 and π2. The poset Π is a lattice under the meet and join

operations.

98

Definition A.10. (Equivalence Relation) A relation is an equivalence relation if it is

reflexive, transitive and symmetric.

Definition A.11. (Equivalence relation of a partition) Given a set A, and a partition π

of A., the relation Eπ is an equivalence relation defined as a Eπ b ⇔ ∃ B ∈ π : a, b ∈ B.

Definition A.12. (Equivalence Class) Given a set A, an element a ∈ A, and an

equivalence relation E, the equivalence class containing a is {x ∈ A | x E a}.

Definition A.13. (Quotient Space) Given an equivalence relation E, the set consisting

of all equivalence classes of A, is called the quotient space and denoted A/E.

Definition A.14. (Region) A region is a subset P ⊆ A. For a region P and equivalence

class E. P/E denotes all the equivalence classes that intersect P.

Definition A.15. (E-block) Given an equivalence relation E on a set A, a set is called an

E-block if it is a union of equivalence classes.

Definition A.16. (Bisimulation) Given a predecessor operator Pred : 2A→2A

(interpreted as a region of predecessor states of a region in a state space, and sets Ai, Af,

(interpreted as initial and final regions in a state space), an equivalence relation E is a

bisimulation iff Ai, and Af are E-blocks, and the predecessor of every E-blocks is an E-

block.

99

APPENDIX B

CONVEX APPROXIMATION OF THE UNION OF CONVEX POLYHEDRA

In order to compute the robust controllable set using Theorem 7.1 it is necessary

to compute the union of polyhedral sets. Since the union of polyhedral sets is not

guaranteed to be convex, this can lead to a need to compute and represent the robust

controllable set as a union of an exponentially large number of polyhedral sets.

Given that only an under-approximation of the initial set is needed for backwards

reachability, it is suggested to compute the approximation of a union of convex polyhedra

as a convex polyhedron which is included in the union.

This method was applied to the computation of the robust controllable set of for

the three-tank benchmark with some success. However, it suffers from several problems

as will be detailed later.

Convexity Recognition

Bemporad et. al. [54] describe a method for recognizing the convexity of a union

of polyhedra. The basics of this method are as follows:

Given two Polyhedra P = {x∈ Rd : Ax ≤ a} and Q = {x∈ Rd : Bx ≤ b} the envelope

is defined as

() { }bxBaxARxQPenv d ≤≤∈= ,:, (95)

where axA ≤ is obtained from Ax ≤ a by removing all the inequalities not valid for the

other polyhedron Q, and bxB ≤ are obtained from Bx ≤ b in a similar way with respect to

100

P. In [54] it is proven that env(P,Q) = P ∪ Q iff P ∪ Q is convex. The algorithm for

implementing this result is given in [54]. Figure 17 shows an example of two polyhedra

an their envelope.

Figure 17. Envelope of Two Polyhedra

When P ∪ Q is not convex, it is desired to find a polyhedron P ∩ Q ⊆ R ⊆ P ∪

Q, such that R is convex. The method which was implemented was is as follows: for each

pair of intersecting hyperplanes, a cutting plane is passed through the hyperplane of

intersection, which bisects the angle between them as shown in Figure 18.

101

α

Figure 18 Bisecting Cutting Plane

If the angle is very obtuse (e.g. cos α > 0.99) then the two intersecting hyperplanes are

included in the convex approximation, and the cutting plane is not. Otherwise the two

intersecting hyperplanes are excluded from the convex approximation and the cutting

plane is included. Also included are all the non-redundant hyperplanes in the envelope.

The result is shown in Figure 19. Note that P ∩ Q ⊆ R ⊆ P ∪ Q.

102

Figure 19 Convex Approximation

This method was implemented and used to compute the robust controllable set for

the switchover phase, phase III, in the three-tank reconfiguration scenario of Figure 15.

The linearized and discretized model of the system, includes two discrete modes:

with valve V13 open (96)and closed (97) respectively.

()
()
()

()
()
()

()















+
















+
































=

















+
+
+

0.0007
0

0.0016-

0
64.93

0

0.985800.0052
010

0.005200.9948

1
1
1

2

3

2

1

3

2

1

tu
th
th
th

th
th
th

pump
 (96)

()
()
()

()
()
()

()















+
















+
































=

















+
+
+

0.0009
0
0

0
64.93

0

0.990900
010
001

1
1
1

2

3

2

1

3

2

1

tu
th
th
th

th
th
th

pump (97)

with constraints

Ω = {h | 0 ≤ h1 ≤ 0.55, 0 ≤ h2 ≤ 0.6, 0.09 ≤ h3 ≤ 0.1} (98)

χ1,2= {h, u | h3 ≤ h1, 0 ≤ h1 ≤ 0.6, 0 ≤ h2 ≤ 0.6, 0 ≤ h3 ≤ 0.6} (99)

U = {u | 0 ≤ upump ≤ 0.0001} (100)

103

T = {h | 0 ≤ h1 ≤ 0.2, 0.4 ≤ h2 ≤ 0.6, 0.09 ≤ h3 ≤ 0.11} (101)

The set K1,200(Ω,T) is shown in Figure 20.

Figure 20 K1,200(Ω,T) for the three-tank switchover

104

REFERENCES

[1] National Transportation Safety Board, “American Airlines, Inc., DC-10, N110AA,
Chicago International Airport, Chicago, IL May 25, 1979”, NTSB-AAR-79-17,
12/21/1979

[2] Merav Halperin and Aharon Lapidot, editors, “Pressure Suit”, Israel Defense
Ministry Press, 1987, pp. 148-153

[3] Blanke M. , Frei C. , Kraus F. , Patton R.J. , and Staroswiecki M “What is Fault-
tolerant Control.”, Plenary address, IFAC Symposium SAFEPROCESS 2000,
Budapest, 14-16 June, pp 40-51, 2000

[4] E.D. Sontag “Interconnected automata and linear systems: A theoretical framework
in discrete time”, in R. Alur, T.A. Henzinger, and E.D. Sontag editors, Hybrid
Systems III- Verification and Control, LNCS 1066, pp. 436-448, Springer-Verlag
1996

[5] Heemels W.P.M.H., B. De Schutter and A. Bemporad, “Equivalence of Hybrid
Dynamical Models”, Automatica 37(7), July 2001

[6] Domenico Mignone, Alberto Bemporad, Manfred Morari “A Framework for
Control, Fault Detection, State Estimation, and Verification of Hybrid Systems”,
Proceedings of the American Control Conference, San Diego, 1999, pp. 134-138

[7] X.D. Koutsoukos and P.J. Antsaklis. “Hierarchical Control of Piecewise Linear
Hybrid Dynamical Systems Based on Discrete Abstractions”, Interdisciplinary
Studies of Intelligent Systems, Notre Dame University, Technical Report ISIS-
2001-001, February 2001

[8] James B. Rawlings “Tutorial Overview of Model Predictive Control” IEEE Control
systems Magazine, June 2000, pp. 38-52

[9] D.P. Bertsekas and I.B. Rhodes “On the minmax reachability of target sets and
target tubes”,Automatica 7:233-247, 1971

[10] Bemporad A. and Morari M. “Control of systems integrating logic, dynamics, and
constraints”, Autmotatica Special issue on hybrid systems, Vol 35, No. 3, pp. 407-
427, July 2000

[11] Lunze, J. and Steffen, T. “Reconfigurable Control of Quantised Systems”,
proceedings of SAFEPROCESS 2000: the 4th IFAC Symposium on Fault Detection
Supervision and Safety for Technical Processes, Budapest, June 2000

[12] Harel, D. “Statecharts: a visual formalism for complex systems.” in Science of
Computer Programming 8,3 pages, 231-274, June 1987.

105

[13] X. Koutsoukos, P.J. Antsaklis, J.A. Stiver, and M.D. Lemmon. “Supervisory
control of hybrid systems”, Proceedings of the IEEE, 88:1026--1049, July 2000.

[14] R. J. Patton, "Fault-tolerant control: The 1997 situation," in proceeding of IFAC
Safeprocess 1997 pp. 1033-1055 in Fault Detection, Supervision and Safety for
Technical Processes, Kingston Upon Hull, UK, pp. 1029--1051, 1997

[15] E.C. Kerrigan and J.M. Maciejowski, "Invariant Sets for Constrained Nonlinear
Discrete-time Systems with Application to Feasibility in Model Predictive Control",
Proceedings of the 39th Conference on Decision and Control, Sydney, Australia,
December 2000

[16] Davoren, J. M., and Nerode, A. “Logics for Hybrid systems”, Proceedings of the
IEEE special isssue on Hybrid Systems Vol. 88, No. 7, 2000

[17] Alur, R., Courcoubetis, C. Henzinger, T.and Ho, P.H. “Hybrid Automata: An
Algorithmic Approach to the specification and verification of Hybrid Systems”, in
Hybrid Systems, Lecture Notes in computer Science 736, 1993.

[18] T.A. Henzinger, J. Raskin: “Robust Undecidability of Timed and Hybrid Systems,”
in Hybrid Systems: Computation and Control, Springer Verlag LNCS Vol. 1790,
edited N. Lynch and B. Krogh., pp. 145-159.

[19] E. Asarin, O. Bournez, T. Dang, O. Maler, A. Pnueli, “Effective Synthesis of
Switching Controllers for Linear Systems”, Proceedings of the IEEE 88, No. 7,
2000, 1011-1025

[20] B.J. Kuipers and K. Astrom, 1994, “The composition and validation of
heterogeneous control laws” Automatica 30(2):233-249

[21] Raisch, J.:” Discrete Abstractions of Continuous Systems - an Input/Output Point of
View. “ Mathematical and Computer Modelling of Dynamical Systems 6(1), 2000,
special issue on Discrete Event Models of Continuous Systems. pp. 6-29.

[22] Alur, R. Henzinger, T., Lefferriere, G. and Pappas, G.”Discrete Abstractions of
Hybrid Systems”, Proceedings of the IEEE special isssue on Hybrid Systems Vol.
88, No. 7, 2000

[23] E.C. Kerrigan. Robust Constraint Satisfaction: Invariant Sets and Predictive
Control. PhD thesis, University of Cambridge, UK, November 2000

[24] E.C. Kerrigan and J.M. Maciejowski. Robust Feasibility in Model Predictive
Control: Necessary and Sufficient Conditions. In Proceedings of the 40th
Conference on Decision and Control, Orlando, Florida, USA, December 2001

[25] A.Bemporad, D. Mignone, M.Morari, “An Efficient Branch and Bound Algorithm
for State Estimation and Control of Hybrid Systems”, Proceedings of the European
Control Conference, Karlsruhe, Germany, August 1999

106

[26] McIlraith, S., Biswas, G., Clancy, D., Gupta, V. “Hybrid Systems Diagnosis”, in
Hybrid Systems: Computation and Control, Springer Verlag LNCS Vol. 1790,
edited N. Lynch and B. Krogh., pp. 283-295.

[27] Stumptner M., Wotawa F. “Reconfiguration using Model-based Diagnosis”,
Proceedings of the Tenth International Workshop on Principles of Diagnosis, Loch
Awe, Scotland, June, 1999.

[28] Astrom, K.P., Albertos, P. , Blanke, M. Isidori, A, Schaufelberger W. and Sanz, R.
”Control of Complex Systems” Springer, London, 2001

[29] A. Morse, “Supervisory control of families of linear set-point con-trollers Part 1:
Exact matching,” IEEE Trans. Automat. Contr., vol. 41, pp. 1271–1281, 1996

[30] Roozbeh Izadi-Zamanabadi,,“Fault Tolerant Supervisory Control – system
Analaysis and Logic Design”, PhD Thesis , Department of Control Engineering,
Aalborg University, Denmark, 1999

[31] Tsuda K., Mignone D., Ferrari-Trecate G. and Morari M., "Reconfiguration
Strategies for Hybrid Systems", in proceedings of the American Control Conference
2001.

[32] Staroswiecki, M. & Gehin, A-L. “From Control to Supervision”, proceedings of
SAFEPROCESS 2000: the 4th IFAC Symposium on Fault Detection Supervision
and Safety for Technical Processes, Budapest, June 2000, pp. 312-323

[33] Kjaerj, J., "A Hybrid System Approach to Fault-Tolerant Control of a 3-Tank
System" Final Engineering Study Project, ESIEE/France, 1998

[34] Lafferriere, G. Pappas, and S. Sastry. “Hybrid systems with finite bisimulations.” In
P. Antsaklis, W. Kohn, M. Lemmon, A. Nerode, and S. Sastry, editors, Hybrid
Systems V, volume 1567 of Lecture Notes in Computer Science, pages 186-203.
Springer, 1999.

[35] Noura, H. Theilliol, D Sauter, D. “Actuator fault-tolerant control design:
demonstration on a three-tank-system”, International Journal of Systems Science,
Vol. 31, No. 9 pp. 1143-1155, 2000

[36] A.L. Gehin and Starosweicki, M. “A formal approach to reconfigurability analysis
application to the three tank benchmark”, Proceedings of the European Control
Conference, Karlsruhe, Germany, August 1999.

[37] Tyler and Morari “Propositional logic in control and monitoring problems”,
Automatica 35 (1999) 565-582

[38] F. Blanchini, "Set invariance in control - a survey", Automatica, Vol 35, no. 11,
pp.1747-1768, November 1999

107

[39] Domenico Mignone, “Moving Horizon Estimation and Fault Detection of Mixed
Logic Dynamical Systems”, Postdiploma Thesis, Automatic Control Laboratory,
Swiss Federal Institute of Technology, Zurich, Switzerland, August 1999

[40] F. Blanchini “Ultimate Boundedness Control for Discrete-Time Uncertain System
via Set Induced Lyapunov Functions”, IEEE Transactions on Automatic Control,
Vol. 39, no. 2, p. 428-433, February 1994

[41] C.E.T. Doréa and J.C. Hennet “(A,B)-invariant polyhedral sets of linear discrete-
time systems” Journal of Optimization Theory and Applications, 103(3), pages 521-
541, December 1999.

[42] F. Blanchini and S Miani, "Any Domain of Attraction for a Linear Constrained
System is a Tracking Domain of Attraction" in SIAM Journal on Control and
Optimization, Vol 38, no. 3. pp. 971-944, March 2000

[43] J. Lunze. Laboratory Three Tanks System Benchmark for the Reconfiguration
Problem. Technical report, Tech. Univ.of Hamburg-Harburg, Inst. of Control. Eng.,
Germany, 1998

[44] A. Bemporad, K. Fukuda, and F. D. Torrisi “Convexity recognition of the union of
polyhedra” Computational; Geometry 18 (3) pages 141-154, April 2001.

[45] M. Kothare, V. Balakrishnan and M. Morari “An LMI approach to robust
constrained model predictive control”, Automatica, vol. 32, no. 10, pages 1361-
1379, November 1996

[46] E. Alcorta Garcia and P.M. Frank, “Multiplicative fault isolation in linear systems”,
Proceedings of the 38th Conference on Decision and Control, Phoenix, Arizona
USA, December 1999.

[47] A. Chutinan and B.H. Krogh. Computing polyhedral approximations to flow pipes
for dynamic systems. In The 37th IEEE Conference on Decision and Control:
Session on Synthesis and Verification of Hybrid Control Laws (TM-01), 1998

[48] A. Bemporad, F.D. Torrisi, and M. Morari. Optimization-based verification and
stability characterization of piecewise affine and hybrid systems. In B. Krogh and
N. Lynch, editors, Hybrid Systems: Computation and Control, volume 1790 of
Lecture Notes in Computer Science, pages 45-58. Springer Verlag, 2000

[49] E. Asarin, O. Bournez, T. Dang, O. Maler and A. Pnueli, “Effective Synthesis of
Switching Controllers for Linear Systems”, Proceedings of the IEEE, Vol. 88, No.
7, July 2000

[50] E. Asarin, O. Bournez, T. Dang, and O. Maler, “Reachability analysis of piecewise-
linear dynamical systems,” in Hybrid Systems: Computation and Control, B. Krogh
and N. Lynch, Eds. Berlin, Germany: Springer-Verlag, 2000, no. 1790, Lecture
Notes in Computer Science.

108

[51] O. Bournez, O. Maler, and A. Pnueli, “Orthogonal polyhedra: Representation and
computation,” in Hybrid Systems: Computation and Control, F. Vaandrager and J.
van Schuppen, Eds. Berlin, Germany: Springer-Verlag, 1999, no. 1569, Lecture
Notes in Computer Science, pp. 20–31.

[52] Elena de Santis “On Invariant Sets for Constrained Discrete time Linear systems
with Disturbances and Parametric Uncertainties.” Automatica, Vol 33. No 11. pp.
2033-2039, 1997

[53] L. Chisci, R Falugi and G. Zappa, “Predictive control for constrained systems with
polytopic uncertainty” Proceedings of the American Control Conference, Arlington,
VA June 25-27, 2001

[54] Bemporad, K. Fukuda, and F. D. Torrisi. “Convexity recognition of the union of
polyhedra”, Computational Geometry, Vol. 18, No. 3, pp. 141-154, April 2001

[55] H. Lin, X.D. Koutsoukos, P.J. Antsaklis “HyStar: a Toolbox for hierarchical control
of Piecewise Linear Hybrid Dynamical Systems”, proceedings of the 2002
American Control Conference, Anchorage Alaska, to appear.

[56] H. Lin, X.D. Koutsoukos, P.J. Antsaklis “Hierarchical control for a class of
uncertain piecewise linear hybrid dynamical systems”, in proceedings of the 15th
IFAC World Congress on Automatic Control, Barcelona, Spain, 2002, to appear.

ELECTRICAL ENGINEERING

HIERARCHICAL CONTROL RECONFIGURATION

FOR A CLASS OF HYBRID SYSTEMS

TAL PASTERNAK

Dissertation under the direction of Professor Janos Sztipanovits

Active approaches to Fault-Tolerant Control seek to maintain safety and

availability of a plant by reconfiguring its control system when a fault occurs. The

fundamental problem in this approach is complexity: closing the diagnosis-

reconfiguration-control loop online poses a major challenge. This is particularly hard for

hybrid Systems, which are as yet not well understood.

In this dissertation a hierarchical approach is considered aimed at lowering the

complexity of low-level control. The hierarchy consist of a supervisory controller that

guides the system through a sequence of regions in the state space, and a configuration

manager that selects the plant inputs for a low-level controller to use, and the low-level

controller. The theory of invariant sets provides the necessary tools for the reachability

calculations, which are performed at design time. Using model-predictive control as a

case in point, it is shown that the hierarchical architecture facilitates the reduction of the

complexity of the low-level control in three ways: reducing the number of discrete modes

of the plant that need to be considered, reducing the prediction horizon needed for control

and reducing the number of plant inputs manipulated by the controller. A three-tank

system is used to illustrate the approach. The system model which is considered is a

constrained discrete-time piecewise-affine system with additive state disturbance.

The architecture requires enumeration of configurations but not enumeration of

faults. A feature of the hierarchical architecture, is that controller configurations can be

designed for each supervisory control mode separately and control laws can be designed

separately for each configuration. The significance from a practical point of view, is that

design of fault-accommodation logic can be simplified by adopting the hierarchical

approach even if it is designed by conventional simulation and testing methods, rather

than formal verification.

Approved__ Date______________

