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 לא מצאתי לגוף טובו ,כל חיי גדלתי בין החכמים"
 ".ולא המדרש הוא העיקר אלא המעשה. אלא שתיקה

 
"All my life I grew up among the wise, and I have found naught good 
for oneself but silence. And it is not the study that is important but the practice." 
 

Raban Shimon Ben Gamliel (Avot 1:17)  
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תּ  כ  י ל  ר  ר אַח  בּ  ד  מּ  ץ    בּ  ר  א  ה א בּ  רוּע   ז 

 
I remember for thee the affection of thy youth, The love of thine espousals; 
How thou wentest after Me in the wilderness, In a land that was not sown. 

 
Jeremiah 2:2 (AJV) 
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CHAPTER I 

 

INTRODUCTION 

 

It was 3 pm, a Friday, May 25th, 1979, the eve of Memorial Day Weekend. American 

Airlines DC 10, flight 191, carrying 258 passengers and 13 crewmembers, taxied to its 

holding point on runway 32R of Chicago-O'Hare Airport, prepared to depart on a non-

stop flight to Los Angeles. What happened moments later is described by the 

investigation report of the National Transportation Safety Board (NTSB) [1]: 

“Flight 191 was taking off from Runway 32R.  The weather was clear and the 
visibility was 15 miles.  During the takeoff rotation, the left engine and pylon 
assembly and about 3 ft of the leading edge of the left wing separated from the 
aircraft and fell to the runway.  Flight 191 continued to climb to about 325' above 
the ground and then began to roll to the left.  The aircraft continued to roll to the 
left until the wings were past the vertical position, and during the roll, the 
aircraft's nose pitched down below the horizon.  
     “Flight 191 crashed into the open field and the wreckage scattered into an 
adjacent trailer park.  The aircraft was destroyed in the crash and subsequent fire.  
Two hundred and seventy-one persons on board Flight 191 were killed; two 
persons on the ground were killed, and two others were injured.  An old aircraft 
hangar, several automobiles, and a mobile home were destroyed.”  
 

The investigation also found that  

“At the time of DC-10 certification, the structural separation of an engine pylon 
was not considered.  Thus, multiple failures of other systems resulting from this 
single event was not considered.” 
 

In this thesis we address the problem of designing control systems to adapt to failures, so 

that disasters such as the flight 191 crash could be avoided.  
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Motivation 

Several factors contributed to the crash of flight 191. In hindsight, the flight crew could 

have maintained control of the aircraft. The investigation found that1  

“The flight-crew flew the aircraft in accordance with the prescribed emergency 
procedure, which called for the climb-out to be flown at V2 speed.  V2 was 6 
KIAS below the stall speed for the left wing.  The deceleration to V2 speed 
caused the aircraft to stall.”   
 

In other words, the flight-crew’s corrective action caused the aircraft to stall. However, 

the aircraft was robust enough to tolerate the separation of the engine. In fact, later 

simulations confirmed that control of the aircraft could have been maintained if the speed 

was not decreased. Indeed, safety-critical systems such as aircraft possess a great deal of 

redundancy and fault-tolerance, often more than their designers are aware of. In one 

incident, an Israeli Air-Force pilot was able to land an F-15 with one wing missing [2]. 

Unfortunately, the system design and emergency procedures for the DC 10 were not 

created with the engine separation scenario in mind. The flight-crew had only a few 

seconds to react. Once the aircraft rolled with the wings passed the vertical position and 

its nosed pitched down below the horizon, the flight-crew lost control of the aircraft and 

the crash was inevitable.  

 

The Problem 

Fault-tolerant control can be achieved if the control system is robust with respect 

to faults, meaning that even when faults occur the control system can still maintain 

acceptable performance. This is not always possible, because faults can change the plant 
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behavior dramatically, making it impossible for the same control law to apply to the 

nominal and faulty system. In this case the control system must be “reconfigured” to 

match the faulty system. This research focuses on such reconfiguration. The problem of 

control reconfiguration in fault-tolerant control is concerned with changing the input-

output relation between a plant and its controller in such a way that ensures the 

achievement of a control objective [3]. Consider for example, the three-tank system in 

Figure 1. Valves and pumps are used by a controller in order to achieve a set-point of 

fluid levels. The choice of which valves and pumps are to be used by the controller is a 

reconfiguration decision. 

 

 

Figure 1  Three Tank System with Tank 2 Empty 

 

The three-tank system of Figure 1 is a “hybrid system”.  A hybrid system is one 

that includes both continuous-state time-driven dynamics such as arise from physical 

                                                                                                                                                 

1 V2 speed is the takeoff safety speed. V2 for a normal, undamaged aircraft was lower than the minimum 
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processes and discrete-state event-driven dynamics such as arise from the operation of 

software processes. Analyzing and controlling such systems is a complex task. Moreover 

reconfiguration in and of itself is a complex task. The problem is that the systems and 

procedures for reconfiguring the control system in the event of faults don’t always 

produce the correct response for each particular fault scenario, especially when multiple 

faults occur. In order to address every possible fault scenario it would be necessary to do 

one of two things: either anticipate every scenario beforehand and prepare a response for 

each or equip the system with the capability to compute the right response when a 

situation occurs. In their simple form, both solutions are infeasible for all but extremely 

small problems because of complexity limitations. Pre-designing the system to react to 

every possible multiple-fault scenario is prohibitively complex  because the number of 

such scenarios grows exponentially with the number of individual faults. Computing a 

correct response at runtime  is prohibitively complex because it would require a 

capability to identify faults correctly, to characterize the faulty system, and then to design 

the new control law online, and all this within a real-time feedback loop.   

Giving up on this problem by designing only for a limited number of anticipated 

faults scenarios is also not advisable. As Murphy’s Law states, “Nature always sides with 

the hidden flaw”2. Even when the root cause of failure is a single event, it is not always 

                                                                                                                                                 

controllable speed for the damaged aircraft. Because of damages to the electrical system the flight crew did 
not have sufficient feedback to be aware of the need to increase speed. 
2 The popular culture of  “Murphy’s Law” attributed to the 1940’s US Air Force engineer Edward Murphy 
Jr. stipulates that when random events are concerned, everything always goes for the worst. Incidents such 
as the Hubble Telescope fiasco, the Challenger disaster, the Ariane 5 self-destruction, the Mars Climate 
Orbiter crash, and the Mars Polar Lander disappearance, enhance the popular image of these “laws”, 
especially when complex aerospace projects are involved. 
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easy to anticipate what combination of multiple induced faults will result, as with the 

example of flight 191.  

A design a based on enumeration of faults has the advantage of robustness to all 

fault scenarios accounted for, but the limitations of design-time complexity caused by 

this enumeration permits only a high-level model of the system, and therefore low-

fidelity control. On the other hand a design based runtime control synthesis permits hi-

fidelity control but robustness to faults is limited because runtime complexity limits the 

sophistication of the fault-accommodation measures.  

The two approaches – design-time enumeration of faults, and runtime control 

synthesis – need to be combined and balanced in a fault-tolerant control architecture. This 

is the subject of this thesis. The problem is limited to hybrid systems modeled as 

piecewise-affine systems in discrete time, and to control objectives, in which the 

requirement is for the state of the system to traverse a sequence of regions in the state 

space.   

 

The Solution  

The proposed solution is a hierarchical control architecture. At the lowest level the 

system is modeled as a piecewise-affine in discrete time, which is an approximation of a 

hybrid system. Piecewise-affine systems have been receiving increasing attention by the 

control community because they provide a useful modeling framework for hybrid 

systems. Discrete-time piecewise-affine systems are equivalent to interconnections of 

linear systems and finite automata [4] and to a number of other hybrid models [5].  In 

particular, model predictive control can be applied to piecewise-affine systems by 

converting them to the equivalent mixed-logic dynamic form [10]. Another approach to 
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control of piecewise affine systems, which is adopted in this thesis, is hierarchical control 

[7]. Hierarchical control  includes low-level control, which may be implemented by 

model-predictive control, for example, and supervisory control, which operates on a 

discrete-event abstraction of the hybrid system. The discrete-event abstraction of the 

closed-loop system, which includes the low-level control and the plant, is obtained by 

reachability calculations that take into account the available plant inputs, which the low-

level control manipulates. 

In relation to the problem of control reconfiguration, hierarchical control can 

provide fault tolerance at both the supervisory control level and at the low level. Consider 

again the three-tank system in Figure 1. The objective of the control system is to regulate 

the fluid level in tank 3. If a leak occurs in tank 1, the supervisory controller supervises a 

phased process by which tank 1 is emptied and tank 2 is filled until a configuration is 

achieved which mirrors the original configuration. In such a multi-phased process the 

supervisory controller determines set points to be achieved by the low-level control while 

low-level control achieves these set-points using the pumps and valves. In case of a leak 

in tank 1, fault-tolerance is achieved by the supervisory controller at a high level by 

commanding the shut-down of tank 1 and its replacement by tank 2. The low-level 

control reconfiguration provides fault-tolerance by choosing which pumps and valves to 

use at each phase in such a way that set-points are reached. For example, if valve V2 is 

faulty, low level control will be implemented using valve V23. 

At a high level of abstraction, hybrid systems can be seen as discrete systems. At 

this level, it is proposed by some researchers to design supervisory decision logic for 

fault-accommodation which can change the control structure after the occurrence of 
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major faults [11]. The combinatorial explosion of the number of fault combinations will 

affect the size of such a discrete model, which makes this practical only if a single fault is 

considered at a time. The problem is that a fault accommodation strategy designed in this 

way, while addressing a major fault, may be sensitive to occurrences of additional 

changes in the system, which violate the abstracted model.  

In this research, hierarchical control of piecewise-affine systems is proposed, 

based on partitioning the state and input space. The significance of considering the inputs 

when generating the discrete abstraction of the hybrid system is twofold: it is important 

both for reconfiguration and for limiting the complexity of the low-level control. With 

respect to fault-tolerant control reconfiguration, the input constraints can be interpreted as 

control configurations (i.e. which actuators may be used and in what range) as well as 

fault conditions (i.e. which actuators are fixed in position due to fault). With respect to 

the implementation of the low-level control, the constraints imposed on the inputs affect 

the complexity of the problem by determining the number of control variables that can be 

manipulated by the low-level controller [31]. For example, in the three-tank system there 

are four valves and two pumps, but as will be shown in the next section, only two of these 

six actuators need to be used at any given time. By not having to consider the operation 

of the other four “stand-by” actuators, the complexity of the low-level control is reduced. 

The main contribution of this paper is the reduction in complexity of low-level 

control, which enables improved fault-tolerant control reconfiguration strategies for 

hybrid systems. Therefore my thesis statement is: 

The complexity of fault-tolerant online control synthesis for a discrete-time 

piecewise-affine system can be reduced by constraining the operating region in 
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terms of states and inputs and specifying a strategy for fault-adaptive control 

reconfiguration as a sequence of reachability problems between convex and compact 

polyhedral state sets. 

 

Contributions  

This dissertation presents: 

• A novel architecture for hierarchical control of hybrid systems modeled as 

piecewise-affine systems which enables reduction in complexity of low-

level control. (Chapter V). 

• A method for representing actuator configuration as constraints on the 

actuator bounds (Chapter VI) which enables reasoning about configuration 

with low complexity. 

• A transformation of constrained affine systems to LTI system with origin 

in interior of constrained space (Chapter VI). Which enables application of 

methods, results and tools already developed for LTI systems (with the 

origin in the interior of the constrained space) to affine systems. 

• Computation of backwards reachability within [i,j] steps for PWA systems 

in discrete time (Chapter VI) 

• Supervisory control with state space partition based on reachability within 

a finite time window for constrained PWA systems in discrete time 

(Chapter VII). 
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Overview  

Chapter II introduces the topics of fault-tolerant control, reconfigurations, and hybrid  

systems. In Chapter III the problem is defined and scoped. Three major topics of related 

work are presented in Chapter IV: invariant sets, hierarchical control, and model-

predictive control. These provide the foundation for the architecture suggested in Chapter 

V, which is the proposed solution to the problems defined in Chapter III. Chapters VI and 

VII provide further detail about how reconfiguration and supervisory control are designed 

and performed.  Conclusions and future work are suggested in Chapter VIII. Appendix A 

provides some mathematical definitions of concepts used in the body of this thesis. 

Appendix B outlines a method for generating a convex under-approximation of a union 

of convex polyhedra. As discussed in Chapter VIII, this topic needs further investigation. 
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CHAPTER II 

 

BACKGROUND 

 

System Models 

Complex systems, which include computers and their controlling software in addition to 

mechanical, electrical, or chemical sub-systems are known as computer-based systems.  

In this sense computer-based systems are a hybrid of hardware/software and physical 

systems. As the cost of computing platforms decreases and software technology 

advances, more applications are created which embed software into physical systems. 

Following advances in computer communications infrastructure, computations become 

more distributed and their interactions more complex.  

The analysis and design of dynamic systems and their behavior necessitates a 

modeling language with which to create models that describe the system. Control Theory 

traditionally focused on continuous systems, especially Linear Time-Invariant systems, 

modeled by a set of differential equations. For physical systems such as electrical or 

mechanical systems, which are governed by Newtonian physics, this is generally a 

suitable modeling language. 

Digital computers operate in a finite and discrete domain. Finite State Automata 

are usually used in the realm of computer science to model behavior of computer 

programs. The use of Finite-State Automata dates back to the early days of computer 

science. More refined methods to model software behavior, such as Statecharts [12] are 

built on the same foundation.  
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When the need arises to model a computer-based system incorporating a physical 

system controlled by a discrete-state controller, the choice of either a discrete-state 

abstraction or a continuous state-abstraction of the system may not be sufficient. For a 

certain class of systems it may be necessary to use a hybrid of both modeling approaches. 

Such systems are called Hybrid Systems. Hybrid systems such as Web caching server 

farms, computer-controlled chemical plants, and automated highway systems all require 

fault-tolerant control to maintain availability and safety. 

Following are some definitions regarding systems theory. A simple model of a 

discrete-event system is a finite automaton. 

Definition 2.1 (Finite-State Automaton with Inputs). A (non-deterministic) 

finite state automaton with inputs is three-tuple (I, Q, E) where Q is a finite set 

of states and E ⊆ I × Q  × Q is the discrete transition relation. Given an initial 

state q0 ∈ Q, and a sequence of inputs { } 1
0)( −=

=∈ Nt
tIti   any sequence of states 

{ } Nt
tQtq =
=∈ 0)(  that satisfies  

Etqtqti

qq

∈+

=

)1(),(),(

)0( 0
    (1) 

is a possible state sequence of the system. 

Continuous systems operate in a continuous state space, as defined below. 

Definition 2.2 (Continuous Time-Invariant System). A discrete-time 

continuous-state time-invariant system with n states and m inputs is given by a 

vector field f( ⋅,⋅) : Rn × Rm → Rn. Where Rn  is the state space Rm  is the input 
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space. Given an initial state xs∈ Rn and a sequence of inputs { } 1
0)( −=

=∈ Nt
t

mRtu  

the sequence of states { } Nt
t

mRtx =
=∈ 0)( is given by the solution of the difference 

equation 

( ))(),()1(

)0( 0

tutxftx

xx

=+

=
      (2) 

Definition 2.3 (LTI System). A discrete-time linear time-invariant (LTI) 

system with n states and m inputs is a continuous time-invariant system given 

by matrices A ∈ Rn×n and B ∈ Rn×m. Given an initial state xs∈ Rn and a 

sequence of inputs { } 1
0)( −=

=∈ Nt
t

mRtu  the sequence of states { } Nt
t

mRtx =
=∈ 0)( is 

given by the solution of the difference equation 

)()()1(

)0( 0

tButAxtx

xx

+=+

=
     (3) 

 

Hybrid Automata 

To model the continuous and discrete behavior of a hybrid system, various formalisms 

have been proposed [16]. A widely used model for hybrid systems is a hybrid automaton 

[17]. Hybrid automata are a marriage, so to speak, of finite state automata and continuous 

systems in continuous time. A hybrid automaton is a closed system with a discrete 

decision logic determining when and how the system switches between its various 

discrete modes, where the continuous behavior in each discrete mode is governed by a 

vector field.   
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Definition 2.4 (Hybrid Automaton). A hybrid Automaton (Q, X, E, ϕ, I , R , 

G). Q is a finite set of modes.  

X is a connected subset of Rn. E ⊆ Q × Q is the discrete transition relation.  

ϕ: Q × X × ℝ  is a flow on X, giving rise to continuous dynamics in mode q. 

Where ℝ represents the valuation set for the time variable. 

I: Q → 2X assigns a set of invariant states for mode q ∈ Q  

R: E × X → 2X  is a reset relation defining the possible successors x’∈ R(q, q’, 

x) of a point x ∈ X upon switching from q to q’. 

G: E → 2X  assigns to each e=(q,q’) a guard condition. 

The combination of discrete and continuous formalisms in a hybrid automaton together 

gives rise to various problems relating to their interaction. Existence and uniqueness of 

executions is not guaranteed. Switching in a hybrid automaton is assumed to be 

immediate, while the time spent in each discrete state may vary. This can create a 

situation where infinitely many switches occur at a singular point in time, creating a cycle 

in which time stops. This can occur, for example, if the guard conditions for moving from 

on to off states in a thermostat (see Figure 2) are identical.  

 

 

Figure 2 Thermostat Control 
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x1= 0 ∧  x2 ≤ 0

x'1= x2

 x'2= -g

x1≥0

x2 := −c x2

 

Figure 3  Hybrid Automaton of a Bouncing Ball 

 

A more subtle but equally problematic situation is that of “Zeno” behavior3, in 

which the progression of time is stopped because the hybrid automaton permits infinitely 

many switches to occur in a finite interval of time.  The bouncing ball is an example of a 

Zeno system. The hybrid automaton for this system is shown in Figure 3. With a 

coefficient of restitution 0 < c < 1, the time intervals between impacts will become 

shorter, the apex reached by the ball after each impact will be come lower, causing an 

infinite number of switches in a finite time interval. Time will approach a limit. 

In all, hybrid systems can exhibit very complex behaviors. It was shown [18] that 

even for simple configurations stability and reachability analysis is an NP-hard problem 

or un-decidable. 

 

                                                 

3 The Greek philosopher Zeno of the fifth Century BCE claimed that motion is impossible. Zeno’s 
argument was that a prerequisite for reaching any point, is reaching halfway; this prerequisite can never be 
fulfilled, because an interval in time and space can always be partitioned into two smaller ones. 
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Piecewise-Affine Systems 

Piecewise-affine system models are models that can approximate hybrid systems by 

modeling their behavior in discrete (sampled) time as well as linearizing the state 

evolution within each discrete mode.  

Definition 2.5 (Piecewise-Affine System). A Piecewise-Affine (PWA) system 

is a system with continuous states X ⊆ Rn, and inputs U ⊆ Rm operating in a 

hybrid state space Q × X which is described by a set of |Q| affine state-space 

difference equations. PWA systems are described by   

x(t+1)= Aqx(t)+ Bqu(t)+fq  if qtu
tx

χ∈







)(
)(

     (4) 

where is χq ⊆ X × U are convex polyhedra (i.e. given by a finite number of 

linear inequalities) in the state and input space. The variables x(t) ∈ X and u(t) 

∈ U denote state and input, respectively, at time t. A PWA system is called 

well-posed if x(t+1) is uniquely solvable once x(t), u(t) are specified. 

Piecewise-affine systems can serve as reasonable approximations of hybrid automata 

as shown in the next example.  

Example 2.1 (Bouncing Ball) consider the following PWA system with no 

inputs approximating the height and velocity of a bouncing ball. 

Q = {up, down, bounce}     (5) 
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x1 is interpreted as vertical displacement and x2 as velocity.  

The polyhedral regions are 

χup = {x1, x2 | x2  > 0}      (6) 

χdown = {x1, x2 | x2  < 0, x1+ x2 > 0.5 }    (7) 

χbounce = {x1, x2 | x2  < 0, x1+ x2 < 0.5 }     (8) 

Abounce = [1 -c; 0 -c]      (9) 

  Aup= Adown = [1 1;0 1]      (10) 

  f up= f down= f bounce=[-0.5; -1];     (11) 

Figure 4 shows the system trajectory with an initial condition of (1000,0) and a 

coefficient of restitution c = 0.8 

 

Figure 4 PWA approximation of bouncing ball 
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Evidently, the trajectory of Figure 4 approximates the behavior of a bouncing 

ball Hybrid Automaton of Figure 3. This is only an approximation, note that in 

Figure 4 the state does not reach the x=[0,0]T  surface.  

 

Interconnection of Automata and Discrete-Time Linear Systems 

Piecewise-Affine systems can be represented as interconnections of linear systems and 

finite automata [4]. Consider the system (4) as an interconnection of |Q| affine systems 

and an automaton with finite state space Q and input-value space T. 

( ) ( )( )( )tutxhqq
ftuBtxAtx qqq

,,
)()()1(

δ=
++=+

     (12) 

The function h: Rn × Rm → T provides the interface between the automaton and the 

continuous-state systems. The state-transition function of the automaton is δ :  Q × T → 

Q. By defining the functions h and δ as  

( ) ( )
( )( ) qk

p
qqq

k

pppq

fuBxAqppuxh
q

=

∈++∀=

,...,

,:,...,

1

1

δ

χ
    (13) 

The resulting system is equivalent to the PWA system (4). 

 

Control Systems 

A control system is a device that regulates a process or sequence of events. The system in 

which the controlled process occurs is often called the plant. Physical processes are time 

driven: the passage of time dictates the transfer of energy in the system. A control system 

interfacing with a physical plant must have means to measure the plants physical output, 

and produce physical input to the plant. Historically, control theory focused on control 
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systems, which process information using physical analog devices. Control systems 

which are implemented by software may include decision logic and signal processing 

functions. The information processing based on decision logic is more appropriately seen 

as an event-driven rather than a time-driven process. While the signal processing can be 

modeled as a time-driven process on a discrete (sampled) time line.  

The combination of a time-driven physical plant with an event-driven software 

controller lends itself to modeling as a hybrid system. Because by such modeling the 

important aspects of the system’s behavior are preserved without necessitating the 

introduction of undue complexity that would result from using a single-layer modeling 

approach.  

 

Example - Thermostat 

The following example is taken from [13]. The hybrid system in this example consists of 

a typical thermostat and furnace, which are used to control the temperature in a room. 

Assuming the thermostat is set at 70ºF, the system behaves as follows. If the room 

temperature falls below 70º F, the furnace starts and remains on until the room 

temperature reaches 75º. At 75º, the furnace shuts off. For simplicity, we will assume that 

when the furnace is on it produces a constant amount of heat per unit time. The plant in 

the thermostat/furnace hybrid control system is made up of the furnace and room. It can 

be modeled with the following differential equation:  

rxTx 1.0)(0042.0 0 +−=&             (14) 
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The plant state x is the temperature of the room in degrees Fahrenheit, the input r is the 

voltage on the furnace control circuit, and is the outside temperature. The units for time 

are minutes.  

Figure 2 shows the finite-state machine, which describes the operation of the 

controller. 

 

Hybrid Control 

A hybrid system executes in a sequence of modes along a trajectory within a hybrid 

continuous-discrete state space.  Each mode includes a continuous evolution followed by 

a discrete, instantaneous transition. In a system consisting of a controller and a plant, both 

may have continuous and discrete dynamics 

Definition 2.6 (Hybrid State Space). Let Q be a finite set of discrete states, 

and X ⊆ ℝ n a finite set of continuous states. Q and X respectively are the 

valuation sets for discrete and continuous state variables. The space Q × X is a 

hybrid state space. 

Definition 2.7 (Hybrid Trajectory) A discrete-time trajectory of a hybrid 

system in a space Q × X is a finite or infinite sequence { }iii XxQq ∈∈ ,  

Hybrid control seeks to construct a controller such that the system, which consists of 

the controller and the plant, shall achieve a prescribed objective, in the sense that the 

hybrid trajectory of the plant shall satisfy a specified property. 
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Fault-Tolerant Control Architecture 

Fault Tolerant Control may be obtained by a supervisory controller through online 

diagnosis, and subsequent remedial action. Figure 5 from [14] shows the general 

schematic arrangement appropriate to many fault-tolerant control systems.  

 

 

Figure 5 Fault Tolerant Control Architecture 

 

The four main components are: the plant with its associated sensors and actuators, 

the fault detection and isolation (FDI) unit, the controller, and the supervisory system. 

The solid line represents signal flow, and the dashed line represents adaptation (tuning, 

scheduling, reconfiguration or restructuring).  

 

Fault Tolerant Control 

Approaches to fault tolerance can be divided into passive methods, which achieve fault 

tolerance by robust design, and active methods including switching control, which 
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achieves fault-tolerance by switching between alternative control systems and 

reconfigurable control, which achieves fault-tolerance via changes to the control system.  

 

Passive Methods 

Passive approaches to fault-tolerant control make use of robust control techniques to 

ensure that a closed loop system remains insensitive to certain faults using constant 

controller parameters without use of on-line fault information. The system is made robust 

to a restricted set of anticipated faults. 

Robust control traditionally aims to maximize the permissible deviations in the 

performance of the plant while maintaining the control objectives. Since the passive 

approach to fault-tolerant control implicitly includes the function of fault-diagnosis, the 

scheme must also be robust against small deviations, which are harder to detect. As 

Patton [14] notes that this point is sometimes overlooked. 

Another method of passive fault-tolerance is adaptive control. By tracking the 

change in system behavior the controller can adapt to degradation in system behavior and 

compensate for it. However, when the degradation continues, it eventually becomes 

impossible to compensate for the faults by means of adaptive control, and control 

reconfiguration or switching becomes necessary. One of the challenges in this situation is 

to detect degradation while still in the region where the controller is able to compensate 

for it; but in this region the effects of the fault may be masked by the control loop and are 

therefore hard to detect. 
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Switching Control  

Switching control is a method of control by online selection between predesigned 

controllers. 

Definition 2.8 (Switching Controller) A switching controller consists of  a 

finite state automaton γ with a finite set of states Q, a collection of smooth 

vector fields {fq}q∈Q and a switching function f: Q → fq.. The switching control 

problem is to define γ and f, given {fq}q∈Q such that the resulting hybrid 

automaton shall satisfy a specified control objective. 

The switching control architecture is shown in Figure 6 

 

γ

fqf

x ∈ Xq ∈ Q

 

Figure 6 Switching Control Architecture 

 

Non-linear systems can sometimes be represented as a collection of local linear 

models which each apply to certain operating regimes defined under constraints. 



 

23 

Switching control is known outside of the hybrid systems community as an approach for 

controlling such systems by switching controllers when an operating regime changes 

[20]. 

Morse [29] describes a high level controller called a “supervisor” which is  

similar to the switching controller described here. The control problem is for the output 

of a plant, modeled by a continuous single-input single-output linear system, to approach 

and track a constant reference input. The high level controller is capable of switching a 

sequence of controllers into the plant’s feedback path so as to achieve the control 

objective.  

The switching controller architecture can be used in the context of fault tolerant 

control.  Asarin et al. [19] present a methodology for synthesizing switching controllers 

for the safe operation of systems described by linear differential equations. The approach 

is based on reachability analysis and the iterative computation of reachable states. They 

formulate the synthesis problem as finding the conditions upon which a controller should 

switch the behavior of the system from one “mode” to another in order to avoid a set of 

bad states. If we examine a hybrid system, with some of the modes considered as fault 

modes [26], then this methodology is applicable for recovery from such faults. 

 

Reconfigurable Control 

Reconfiguration differs from switching control in that the controllers are designed online 

rather than selected from a predesigned set. Following ideas from [32] the different kinds 

of reconfiguration can be classified according to whether or not there is a change in each 

of the following: 

• The control objective 
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• The control law 

• Controller-plant input output relations 

The control objective is a predicate which tells which trajectories starting from the 

current state are acceptable. It can be in the form of a safety requirement such as never to 

allow the state to leave a safe envelope; it can be in the form of a reachability 

requirement, such as to reach a target state set. An example objective is “decrease the 

climb-out speed to V2”.  When a major fault occurs, it may be necessary to alter the 

control objectives accordingly. For example, for flight 191 the objective for setting the 

speed of the aircraft should have been different.  

Achieving a new system configuration may entail several reconfiguration steps, 

where at each step a different set of local control objectives apply. The problem of 

finding the sequence of control objectives to achieve a global objective, is a planning 

problem. The planning problem consists of finding a way to achieve a goal, or objective, 

by a sequence of sub-goals. 

The control law is the functional relationship between the system state (or 

outputs) and its control inputs. The control law can be designed based on feedback or 

feed-forward techniques. In feedback, the inputs are calculated as a function of the 

current error, defined as the distance between the actual state and target state of the 

system. This is a delayed reaction, since the current state is a function of previous inputs 

over a period of time. In feed-forward, the inputs are calculated based on projected future 

behavior of the system, which, in turn is based on the current and previous measurements 

of the state and a model of the system. Feed-forward control has the potential to be more 

accurate than feedback control because the additional reasoning performed by predicting 
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future behavior introduces more sophistication in the choice of control actions4. 

However, feed-forward control depends critically on the model which is used for 

forecasting.  

The implementation of a control law depends on the input-output relationship 

between the plant and the controller. In a narrow sense this means the selection of 

actuators and sensors which provide the inputs to the plants and direct or indirect 

measurements of its state. In a broader sense, the activation of plant inputs may be tied to 

activation of entire subsystems of the plant. For example, a switch which turns on or off,  

engages or disengages a subsystem system, is a system input. Mathematically, if the 

system is modeled as a piecewise-affine system, the enabling of certain inputs entails the 

enabling of corresponding discrete modes of the system which may define entirely 

different behaviors for the system. 

 

Diagnosis of PWA systems 

Fault detection and isolation (FDI) constitutes a key point in active approaches to fault-

tolerant control. Before activating reconfiguration, the fault has to first be detected, 

isolated, and its severity evaluated. Detection is the information processing task of 

determining whether a system or sub-system conforms to expectations. Isolation involves 

locating the fault sources, and evaluation consists of estimating the attributes of a fault 

(e.g. the degree to which a system parameter deviates from its nominal value). 

                                                 

4 Consider how a human driver uses a stick-shift control while taking into account the road ahead as 
opposed to automatic gear system  which bases its decision to switch gears only on  the current situation  
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A decision on fault accommodation can be taken upon the availability of FDI 

information. The success of an active fault-accommodation method depends to a great 

degree on the effectiveness of the FDI unit.  

 

Summary 

This chapter introduced hybrid systems in general and the discrete-time piecewise-affine 

model of a hybrid system. The relevance of hybrid systems to software-based control was 

demonstrated. The functional elements of  fault-tolerant control were discussed. These 

include: supervisory control, fault-diagnosis, reconfiguration and control. Some 

approaches to fault-tolerant control were discussed, including passive approaches that 

rely on robustness of the control law, and active approaches in which the control law is 

changed in response to results of online diagnosis and state estimation. 

 



 

27 

CHAPTER III 

 

PROBLEM DEFINITION AND SCOPE 

 

System Model and Assumptions 

The plant is modeled as a piecewise-affine system in discrete time with additive state 

disturbance. It is assumed that the disturbance is bounded. It is also assumed that the state 

is observable, at least to the degree that thresholds can be detected.  

Definition 2.5 (Piecewise-Affine System with Additive Disturbance). A 

Piecewise-Affine (PWA) system with additive disturbance is a PWA system 

with discrete states Q, continuous states X ⊆ Rn, inputs U ⊆ Rm , and 

disturbances D ⊆ Rn acting additively on the state.  The system is described by   

x(t+1)= Aqx(t)+ Bqu(t) + d(t)+fq  if qtu
tx

χ∈







)(
)(

  (15)      

d(t) ∈ D        (16) 

where χq ⊆ X × U are convex polyhedra. The set D bounds the disturbance for 

all discrete states q ∈ Q of the system. 

 

Problem 

The purpose of fault-tolerant design is to enable the control system to achieve its task in 

the presence of faults. In the event that a fault occurs, the system moves from its nominal 

trajectory to a state which is not necessarily on any nominal trajectory, but may still be 

recoverable. The problem of fault-adaptive control is to find and implement the control 
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actions that would guide the system from that point back to a trajectory that is sufficiently 

close to a nominal trajectory satisfying the control objectives. 

 

Multi-Phase Fault Accommodation 

The architecture shown in Figure 5 suggests that two separate functions of control and 

control reconfiguration are involved in recovery from a fault. The supervisory controller 

initiates control reconfiguration in response to information from the FDI unit. After 

reconfiguration the reconfigured control system continues to guide the plant on a 

trajectory that satisfies the requirements. Figure 7 shows this concept visually. The 

dashed line (a) shows the trajectory that would be followed in the absence of a fault and 

dashed line (b) shows the trajectory that would be followed in the event of a fault and in 

the absence of reconfiguration. 

 

 

Figure 7 Single Step Reconfiguration 
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The picture shown in Figure 7 is in fact a simplistic one. It shows the recovery action as 

composed of two steps: a reconfiguration initiated by the supervisory controller followed 

by the control actions of the controller. A complex fault-recovery process may require 

more than one such iteration in response to a single fault. In absence of a one-step 

reconfiguration action that would produce a suitable control configuration capable of 

putting the system on a desired trajectory, the supervisory controller may have to engage 

in a planning problem of finding a sequence of reconfiguration actions, at the end of 

which the system is placed on a desired trajectory. See Figure 8. 

 

A0 A1

A2 A3 A4

Unrecoverable
States

Unrecoverable
States

nominal trajectory

 

Figure 8. A multi-step reconfiguration process. Due to a fault the nominal trajectory 
cannot be followed. The supervisory controller dictates a multi-step process of guiding 
the system through regions A2, A3 and A4, until the trajectory of the system returns to its 
regular course. At each step reconfiguration may be required. 

 

 

Problem Breakdown and Scope 

As stated earlier, the problem of finding the sequence of control objectives to achieve a 

global objective is a planning problem.  
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Problem 3.1 (Planning) Given a control objective O, the planning problem is 

to find a sequence of control objectives (o1,o2,…on) such that when achieved 

sequentially, the objective O is achieved. 

Planning can be performed either by an online automated planning module or a human 

operator, or it can be prescribed at design time. The latter shall be assumed, and the 

planning problem is beyond the scope of this research. The consequence of this 

assumption is that the design is aimed at the ability of the system to execute a limited set 

of pre-designed plans (i.e. sequences of objectives).   

Definition 3.1 (Global Control Objective) Given a set Bad ⊆ X and a finite 

collection of sets Ak ⊆ X , k ∈ K, that includes an initial set A0 ⊆ X, with Ak ∩ 

Bad = ∅, a set valued map next: K→2K and a function time: K×K→ Z+  the 

global control objective is that for the system with initial conditions x ∈ A0  

the continuous state will remain in any set Ak for t time steps and subsequently 

leave Ak and cross into set Ak’  for some k’∈ next(k) for which t ≤ time(k,k’). 

Formally: 

x(t0) ∈ Ak  ⇒  

∃k’∈ next(k):  ∃t ≤ time(k,k’)  :  

 x(t0+t) ∈ Ak’   ∧ ∀ 0 ≤ t’< t,  x(t0+t’) ∈ Ak 

(17)

Remark 1. Definition 3.1 (Global Control Objective) applies for the nominal 

case. In case of a fault, which necessitates reconfiguration, a degraded 

performance is assumed to be acceptable in which time constraints do not 

apply. In this case the global control objective requires an event sequence 
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specified by the next relation, while the constraints specified by the function 

“time” do not apply. 

Remark 2. Definition 3.1 (Global Control Objective) does not depend on the 

model of the system. Whether or not a control objective is achieved is an 

assertion about the actual system, not about its model.  

 The global control objective can be achieved by a series of control objectives. 

Definition 3.2 (Control Objective).  For a system operating in state space X, 

given state sets T, Ω ⊆ X,  a control objective is a 3-tuple (T, Ω, t). The control 

objective for the system at time t0  is to reach a state x(t0+k) ∈ T,  with x(t0+j) ∈ 

Ω, ∀ 1 ≤ j≤ k-1, for some 1 ≤ k ≤ t.  

Assuming that a (possibly prioritized) list of control objectives is available and that a set 

Ū ⊆ 2U represents all possible configurations, where U is the valuation set for the plant 

inputs. The problem of achieving one of the control objectives is broken down into two 

levels. 

Problem 3.2 (Reconfiguration).  Given system (1), a set of control objectives 

O, a state and fault detection Xe, D, Uf, and a set of possible input constraints, 

Ū ⊆ 2U determine  input constraints Ul ∈ Ū and a control objective (T, Ω, t) ∈ 

O, such that system (1) with constraints u ∈ Ul and disturbance set D can be 

driven to target set T, within k time steps, with 1 ≤ k ≤ t while staying in Ω for 

the first k-1 time steps and that u ∈ Ul ⇒ u ∈Uf. 
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Problem 3.3 (Low-Level Control).  Determine input values u(t) ∈ Ul needed 

to reach T within k time steps, with 1 ≤ k ≤ t while staying in Ω for the first k-1 

time steps. 

The main problem that this research addresses is how to maintain fault-tolerance while 

keeping the complexity of Problem 3.2 (Reconfiguration) and Problem 3.3 (Low-Level 

Control) low. Note that half the solution lies in the fact that Problem 3.1 (Planning) is 

assumed to be solved so that the control objective which needs to be addressed  is 

relatively simple. 

 

Summary 

In this Chapter the problem with which this thesis is concerned was defined and put into 

context. The problem is how to achieve reconfiguration, while lowering the complexity 

of low-level control The context in which a multi-phase fault-accommodation scenario 

takes place provides the motivation to study the reconfiguration problem, where a 

supervisory controller is present which directs the phases of a fault-accommodation 

strategy, while reconfiguration provides fault-tolerance at each phase. 
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CHAPTER IV 

 

RELATED WORK 

 

Model Predictive Control of Piecewise-Affine Systems 

 

Model Predictive Control 

Model predictive control (MPC) [8] is a feed-forward optimal control technique 

which determines the values of control inputs to a plant by solving an optimization 

problem online. The objective function in the optimization problem represents a measure 

of forecasted behavior of the plant; the decision variables are the manipulable inputs; and 

the constraints represent the system dynamics. Discrete-time state-space models are 

commonly used to represent system dynamics because they are convenient for computer-

based implementation. These system models include the standard difference equations 

and also constraints on the admissible values for the states and inputs.  Typical measures 

represented in the objective function include distance of the plant output values from a 

target and the energy expended in the inputs.  

In the following problem formulation the state vector is assumed to be identical to 

the output vector. 

Problem  4.1 (Model Predictive Control) given x(k), find u(k),…u(k+P-1)  

such that  

min ∑ ++++
−

=

1

0
))(),(())((

P

i
kiukixLkPxF     (18) 

 is achieved subject to constraints  
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x(k+l+1)=f(x(k+l), u(k+l))      (19) 

x(k+l) ∈ X, u(k+l) ∈ U  l =0,..,P-1   (20) 

x(k+P) ∈ T       (21) 

The variable P is the prediction horizon. T is the terminal constraint set, T ⊆ 

X. The system model is specified by f(⋅ , ⋅), X, and U. P, F(⋅) and L(⋅ , ⋅) and T 

are design  variables. X and T are closed and U is compact. It is assumed that 

the origin is an equilibrium point contained in T and in the interior of X. The 

origin in the input space is contained in the interior of U. The aim of the 

control is to regulate the states and inputs to the origin. L(⋅ , ⋅) is a continuous 

non-negative, time-invariant function defined on X × U and  F(⋅) is a 

continuous non-negative, time-invariant function defined on X. F(⋅) and L(⋅ , ⋅) 

achieve their minimum at the regulation point.  

 

Mixed Logic Dynamic Systems 

The Mixed-Logic Dynamical (MLD) system model [10] is a discrete-time model of a 

dynamic system, which is equivalent to the Piecewise Affine model [5]. The MLD model 

incorporates both the continuous dynamics and logic conditions as a set of mixed-integer 

linear constraints. This unification allows reasoning about the system dynamics using 

mixed-integer optimization techniques for the purpose of control, state estimation and 

verification [6], specifically it enables the application of Model-Predictive Control to 

Piecewise-Affine systems. 
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Hybrid systems are generally governed by interdependent physical laws, logic rules, and 

operating constraints. The MLD framework is based upon transforming propositional 

logic statements into linear inequalities involving integer variables and continuous 

variables. Logic propositions can be represented as integer inequalities involving integer 

variables that are constrained to values of 0 and 1 [37]. For example, the logical 

proposition x1 ∨  x2  is equivalent to the integer inequality δ1 + δ2 ≥1, where  the integer 

values of 0,1 encode the logical values of false and true respectively. Other logical 

connectives follow in a similar fashion.  

Conditions on real functions over a bounded domain are encoded by integer 

variables in the following manner. Given a function f:ℜn→ℜ, and bounds Xn ⊂ ℜn on the 

domain, the constants )(max xfM
Xx∈

= ,  )(min xfm
Xx∈

=  are defined. A continuous 

inequality f(x) ≥ 0 can be represented by an integer variable δ, such that δ=1 if and only if  

f(x) ≥ 0 by introducing the mixed integer inequalities: 

f(x) ≤ M(δ-1)        (22) 

f(x) ≥ ε+ (m-ε) δ        (23) 

where (ε>0) represents the numerical precision of the computation. 

 

Example. Let X = {x | -2 ≤ x ≤ 4 },  f(x) = x2 - 6. The bounds on f(x) are 

10)(max ==
∈

xfM
Xx

and 6)(min −==
∈

xfm
Xx

. Let the numerical precision 

be ε=0.001. Then the inequalities which enforce δ=1 ⇔ f(x) ≥ 0 are 

f(x) ≤ 10 δ -10       (24) 

f(x) ≥  - 6.001 δ + 0.001      (25) 
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Defining an auxiliary variable z=δf(x) allows for representing functions involving both 

logical and continuous parts. In this relation δ=1 implies z=0 and δ=0 implies z= f(x). The 

nonlinear equation  z=δf(x) is enforced by the following set of linear mixed-integer 

inequalities: 

z ≤ Mδ         (26) 

z ≥ mδ         (27) 

z ≤ f(x) - m(1-δ)        (28) 

z  ≥ f(x) - M(1-δ)        (29) 

Integer variables representing each discrete mode q ∈ Q of a PWA system are defined by 

associating a logical variable δi(t) with each discrete mode, i.e. ( )[ ] [ ][ ]i
x
ui t χδ ∈⇔= 1 , 

and imposing an exclusive-or condition ( )[ ]11 =⊕ = ti
s
i δ . By using auxiliary variables as 

shown above, the system equations for each mode can be activated only when the system 

is in the corresponding discrete mode. A more detailed explanation of the construction of 

mixed-integer inequalities from the logical and dynamical equations is found in [37]. The 

resulting model is the MLD model of the hybrid system, shown in equation (30). 
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(30)

 

Where each of the vectors x(state), u (input), is partitioned into discrete and continuous 

components, e.g.  
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x are the continuous and binary states, u are the continuous and binary inputs, δ and z  

represent binary and continuous variables respectively. Outputs can be added to the 

model as an additional vector y(t) and an additional set of equations. Fault conditions can 

be added as an additional input vector φ(t), with corresponding terms in the equations and 

inequalities [6]. A well posed MLD system results in a unique solution to the inequalities 

effectively defining the system model (f(⋅ , ⋅), X, U) which can be used for Model 

Predictive Control. Equations (32), (33) constitute a model-predictive control problem 

with a MLD system model  
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where  

 Qxxx T
Q

=2

4
, Qi=Qi

T≥0, i=1,…5,          (34) 

 are given weight matrices. 

The target values xf, uf, δf, zf, are chosen to be consistent values corresponding the desired 

regulation point.  

The complexity of the MPC optimization problem is a function of the prediction 

horizon P, the number of manipulable inputs u,  and the complexity of the MLD model. 

For a given system, the complexity can be reduced by reducing the number of 

manipulable variables (i.e. choosing fixed values for non-manipulable variables) and 
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reducing the prediction horizon. This will reduce complexity and also lead to a less 

optimal solution, and possibly to infeasibility of reaching the desired set point within the 

required time.  

Tsuda et al. [31] propose using MPC for reconfiguration. The MLD model is 

extended to include faults and controller configurations. In the event of a detected fault, 

the MPC algorithm searches for the best possible values of all input variables, rather than 

just the input variables which are used under nominal control conditions. There are two 

problems with this approach: one which is addressed in [31] is that the complexity of the 

MPC problem is increased by expanding the number of manipulable variables. The 

second problem is that the prediction which may be needed for reconfiguration might be 

further than the prediction needed for nominal control. Unless the reconfiguration 

consists of replacing failed actuators with stand-by actuators performing almost the same 

function, it is likely that a change in set-point will be needed. Recovery from a fault may 

involve a multi-stage process by which short-term goals are compromised in favor of 

long term goals. A reconfiguration method, which seeks to optimize the same objective 

function as is used for control,  will not be suited to such a situation. The MPC-based 

reconfiguration alone is therefore limited to short-term reasoning, and can benefit from a 

reduction of the search space in the form of a reduced set of manipulated input variables. 

The issue is therefore how to reduce complexity while maintaining feasibility of 

the model-predictive control solution. The next section presents the theory of invariant 

sets which is needed to address the feasibility issues. The following section deals with 

hierarchical control, which is employed in this research as a means to deal with the 

complexity issues.  
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Set Invariance in Control 

In control theory robustness to disturbances and uncertainty has often been studied by 

assuming a noise model and analyzing the behavior of a system based on random signal 

theory. A different approach, which was studied as far back as 1971 [9] is that of 

determining the system behavior under all allowable disturbance sequences. More 

specifically, determining the subset of the state space from which the system can be 

steered to a given target state set, while guaranteeing that the state and input constraints 

will be satisfied for all allowable disturbance sequences.  A comprehensive survey of 

papers on set invariance is given in [38]. The notation used here follows that of [15]. 

 

System Models 

The following discrete-time system models are defined. 

Definition 4.1 (Constrained System) A constrained continuous-state discrete-

time time-invariant system is given by a vector field f( , , ), a state set X ⊆ Rn, 

an input set U⊂ Rm and a disturbance set D ⊂  Rl. The set U is compact and the 

sets X and D are closed. The evolution of the system is given by  

))(),(),(()1( tdtutxftx =+     (35) 

with t ∈ Z. The following constraints apply for all t ∈ Z 
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Definition 4.2 (Allowable Disturbance) An allowable disturbance sequence 

for a constrained system is one that satisfies the constraint d(t) ∈ D 

Definition 4.3 (Admissible Input) An admissible input for a constrained 

system is one that satisfies the input constraint u(t) ∈ D 

Definition 4.4 (Constrained System with Additive State Disturbance) A 

constrained continuous-state discrete-time time-invariant system with additive 

state disturbance is given by a vector field f(· ,·), a state set X ⊆ Rn, an input set 

U⊂ Rm and a disturbance set D ⊂  Rn. The set U is compact and the sets X and 

D are closed. The evolution of the system is given by  

)())(),(()1( tdtutxftx +=+    (37) 

 

Definition 4.5 (Autonomous System). An autonomous system with 

disturbance is given by  

( )
Dtd

tdtxftx
∈

=+
)(

)(),()1(
    (38) 

 

The One-Step Set 

The one-step set represents backwards reachability of a system.  

Definition 4.6 (One-Step Set). [15] For a constrained system with inputs u(t) 

⊆ Ul and disturbances d(t) ≡ 0 , the one-step set Q(Ω) is the set of states in X 
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for which an admissible control input exists which will drive the system to Ω 

in one step  

Q(Ω) = { x ∈ X |  ∃u∈U: f(x, u) ∈ Ω }. 

 

(39)

For a piecewise-affine system the one step set is  

Q(Ω) = { x ∈ X |  ∃u∈U, ∃q∈Q : (x, u) ∈ χq, Aq x+ Bqu + fq ) ∈ Ω }. 

 

(40)

Proposition 4.1 [23] if Ω is given by the union  

U
i

iΩ=Ω  
(41)

then  

( ) ( )U
i

iQQ Ω=Ω  (42)

Definition 4.7 (Robust One-Step Set). [15] For a constrained system, with 

inputs u(t) ⊆ Ul and disturbances d(t) ∈ D, the robust one-step set  Q̃(Ω) is the 

set of states in X for which an admissible control input exists which will drive 

the system to Ω in one step, for any disturbance d(t) ∈ D i.e  

Q̃(Ω) = { x ∈ X |  ∃u∈U:  f(x, u) ∈ Ω }. (43)

Proposition 1 [23] For an LTI system with additive state disturbance, the 

robust one-step set has the following properties: 
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1. If Ω is compact then the set Q̃(Ω) is closed. 

2. If Ω is convex then the set Q̃(Ω) is convex. 

3. If Ω is a polyhedron then the set Q̃(Ω) is a polyhedron. 

4. If A is non singular and Ω is compact, then the set Q̃(Ω) is also 

compact. 

Proposition 4.3 [23] For all Ω1, Ω2 

Ω1 ⊆ Ω2 ⇒ Q̃(Ω1) ⊆ Q̃(Ω2) (44)

 

Positively Invariant and Control Invariant Sets 

Positively invariant sets and control invariant sets are sets in which an 

autonomous or controlled system, respectively,  can remain for all disturbances. 

Definition 4.8 (Robust Positively Invariant Set). [38] The set Ω ⊂ Rn is a 

robust positively invariant set for an autonomous system if and only if 

 x(t) ∈ Ω ⇒ x(t+1) ∈ Ω  ∀d ∈ D    (45) 

Proposition 4.5 The union of two robust positively invariant sets is a 

positively invariant set. 

Definition 4.9 (Maximal Robust Positively Invariant Set). [23] The set 

Õ(Ω) ⊂ Rn is the maximal robust positively invariant set for an autonomous 
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system if and only if it is robust positively invariant and contains all the robust 

positively invariant sets contained in Ω. 

Definition 4.10 (Robust Control Invariant Set). [38] The set Ω ⊂ Rn is a 

robust control invariant set for a constrained system if and only if there exists 

a feedback control law u(t)=h(x(t)) such that Ω is a robust positively invariant 

set for the closed-loop system  

x(t+1)=f(x(t),h(x(t)),d(t))     (46) 

and  

u(t) ∈ U ∀ x(t) ∈ Ω      (47) 

Remark 4.1 The phrase ‘exists a feedback control law’ does not necessarily 

mean to imply any structure on the control law. The function h(x(t)) can be 

constructed to serve as a feedback law by finding for each x(t) ∈ Ω a value u(t) 

∈ U such that x(t+1)=f(x(t), u(t), d(t)) ∀ d(t) ∈ D.  

Proposition 4.5 The union of two robust control invariant sets is a control 

invariant set. 

 

Definition 4.11 (Maximal Robust Control Invariant Set). [40] The set C ̃(Ω) 

⊂ Rn is the maximal robust control invariant set for a constrained system if 

and only if it is robust control invariant and contains all the robust control 

invariant sets contained in Ω. 
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The following result follows immediately from the definitions. 

Proposition 4.6 Given a constrained system, there exists an admissible control 

law such that the state constraints can be satisfied for all time t ∈ N and for all 

allowable disturbance sequences if and only if the initial state x0 ∈ C ̃(X) ⊆ X. 

The following is simple condition that checks if a set is control invariant.. 

Theorem 4.1 (Geometric Condition for Invariance) [41] The set Ω ⊂ Rn is a 

robust control invariant set for a constrained system if and only if  

Ω ⊆ Q̃ (Ω)     (48) 

Corollary 4.1  The set Ω ⊂ Rn is a robust control invariant if and only if  

Ω = Q̃ (Ω) ∩ Ω     (49) 

 

Robust Controllable Sets 

Controllable sets are sets from which a system can be driven to a target set.  

Definition 4.12 (i-step Robust Controllable Set). [23] The set K̃i(Ω,T) ⊆Rn is 

a robust controllable set for a constrained system if and only if the system can 

be driven to T in i steps while not leaving Ω for the first i-1 steps, for all 

allowable disturbance sequences. 

 

Remark 4.2  Ki(Ω,T) denotes K̃i(Ω,T) for d(t)≡0. 
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Feasibility of Model Predictive Control 

A model predictive control problem may be infeasible if there is no solution within the 

constraints specified by the sets X, T, and U. The feasible set XF(T, P) of the MPC 

control problem is the set of states x(k), for which a feasible control sequence to the MPC 

control problem exists. A feasible control sequence is a sequence of inputs u(k+l) ∈ U, l 

=0,..,P-1 driving the system x(k+l+1)=f(x(k+l), u(k+l)) from to x(k) to x(k+P) such that 

x(k+l) ∈ X and x(k+P) ∈ T.  

Theorem 4.2 (Feasibility of Model Predictive Control)5 [15] The feasible set 

XF(T, P) of the MPC problem is given by  

    X F(T, P)=KP(X,T)    (50) 

Proof  From the constraints of the MPC problem, the solution has to satisfy  

x(k+P) ∈ T, it is also required that  u(k+l) ∈ U and  x(k+l) ∈ X  for all  

l=0,..,P-1. It follows that there exists a control sequence of length p, such that 

these constraints can be satisfied if and only if  x(k)∈ Kp(X,T), where  Kp(X,T) 

is the p-step robust controllable set. 

The above theorem can be extended to the case of robust feasibility: the MPC 

problem is robustly feasible if it is feasible for all disturbance sequences within given 

constraints and the feasible set for the MPC problem is given by the robust controllable 

set. Given the feasible set for the nominal MPC problem, robust feasibility of the MPC 

problem for PWA systems with polyhedral constraints and additive state disturbance can 
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be tested without the need to compute the robust controllable sets [24]. This is based on 

the observation that the MPC controller is robustly feasible if and only if the nominal 

feasible set is a robustly positively invariant set for the closed loop system. By this 

observation, given the nominal feasible set, it is only necessary to test one-step 

reachability.  

 

Supervisory and Hierarchical Control  

Many control design problems for complex dynamic systems can approached by 

modeling the plant as a Discrete Event System. It is possible that the same system can be 

modeled as a continuous system, a hybrid system, or a discrete-event system, all 

depending on the purpose that the model serves. The starting point for modeling an actual 

plant is a model that is identified experimentally, derived from first principles or both. 

This model is referred to as the ‘real’ system model. The model of the ‘real’ system can 

then be further abstracted to fit the task at hand. Loss of model precision in the 

abstraction process is permitted to the degree that it does not affect the purpose of the 

model. On the other hand, it is necessary to decrease precision in order to meet 

computational complexity requirements. An illustrative everyday example is motion 

planning: driving directions can generally be given in terms of left and right turns and 

distances, while parallel parking instructions require much more detail; it is not 

reasonable, however, to prescribe driving directions with the same detail because of the 

resulting complexity. Hierarchical control is an approach that uses increasingly abstracted 

                                                                                                                                                 

5 This is a simplified version of Theorem 3.1 from [23], for the case of equal prediction and control 
horizons. 
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models for tasks which require planning further into the future, but with decreasing 

precision. 

Supervisory control is the application of a DES controller to a dynamical system. 

When the ‘real’ plant model is a hybrid system, it may be abstracted as a Discrete-Event 

System for the purpose of supervisory control. A more specific case is when the plant, or 

the plant lumped with previously-designed controllers is modeled as a continuous system, 

and the supervisory controller is a discrete-event system. The plant and controller are 

connected via interfaces mapping the countable set of states of the DES to the non-

countable set of states of the continuous system. In both cases, the closed-loop system 

comprised of the controller and plant is a hybrid system.  

 

Supervisory Control  

The Supervisory Control Architecture 

The supervisory control system consists of a plant defined by a differential equation 

),( uxfx =& , with, x ∈ X, u ∈ U, an actuator map β: C→ U, which generates a piecewise 

constant signal in U from the control alphabet C, of the supervisory controller, and a 

generator map  α: X→ P. The function α determines a finite partition of the plant state 

space X  with equivalence classes Ap = {x ∈ X | α(x)=p} indexed with plant events p ∈ P.  

The supervisory control architecture is depicted in Figure 9. The supervisory controller is 

a finite state automaton, possibly non-deterministic. For the purposes of the following 

proposition, only the input-output relation  γ: P→ 2C describing the supervisory controller 

is needed, which in general is set-valued even when the controller is deterministic. 
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Proposition 4.7  [16] Given a control loop L described by α, β,  γ,  f  as in 

Figure 9, there exists a hybrid automaton H, such that the trajectories of H are 

in one-to-one correspondence with the closed-loop trajectories of L.  

γ

f

αβ

u x

Q ⊆  Pq ∈ C

 

Figure 9 Supervisory Control 

 

The system defined by this architecture specifies a hybrid automaton. The 

supervisory control problem is to define α, P, and γ, given C, β and f, in such a way, that 

the resulting hybrid automaton shall satisfy a control objective, e.g. the event sequence 

control objective mentioned above. 

 

Discrete Abstractions of Continuous Systems 

Consider the architecture of Figure 9 with a set P which includes a silent event ε.  The 

function α: X→ P generates a non-silent event when boundaries in X are crossed in a 

specified direction [13]. The continuous system ),( uxfx =&  with the actuator β and 

generator α, form a non-deterministic finite state automaton G = (S, P, C, ψ, λ) where S 

is the discrete plant state, P is the set of plant symbols, C is the set of control symbols, ψ: 
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S × C → 2S  is the state transition function, and λ: S × S → 2P the output function. The 

state s ∈ S is corresponds to the most recently entered region of the plant state space. 

The Discrete Event System plant model G is a non-deterministic automaton. This 

abstraction permits application of discrete domain methods for designing the controller to 

satisfy control specifications using DES control methods. The key to successful design is 

to choose the state space partition such that the properties of interest are preserved [21]. It 

should be possible to design the supervisory controller to achieve the desired closed-loop 

behavior despite the non-determinism that is introduced in the abstraction process. 

The discrete abstraction approach, presented above for the continuous system, can 

be applied to hybrid systems in general. Given a hybrid system and some desired 

property, one extracts a finite, discrete system while preserving all properties of interest 

[22]. Once the discrete abstraction is obtained discrete-domain methods can be used for 

control design. 

 

Hierarchical Control of PWA systems 

Supervisory control is concerned with the control of continuous (or hybrid systems) by 

abstracting them into discrete-event systems. The continuous system is driven by a piece-

wise constant input signal, which may be processed at the input to the continuous system 

to take a different form e.g. a ramp, but nonetheless is determined by the supervisory 

controller. Hierarchical control [7], in contrast, delegates some of the control task to 

continuous-state controllers, which form a layer between the plant and the supervisory 

controller. It is assumed that some given closed-loop specifications are satisfied by the 

combination of the plant and the continuous-state controllers. The  supervisory controller 
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is designed with relation to the closed-loop specifications but without knowledge of the 

control laws governing the controllers’ behavior.  

 

Summary 

This Chapter surveyed related work. The work presented provides three major building 

blocks which are put to use to solve the reconfiguration problem. 

 The theory of invariant sets in control provides the mathematical tools for 

calculating necessary conditions for existence of a control law in a constrained system.  

Hierarchical control is provides the framework in which a supervisory controller 

transitions between modes, based on existence of control inputs that guarantee 

reachability in a constrained system.  

Model-Predictive Control serves as a candidate implementation of low-level 

control in the hierarchical control architecture presented in the next Chapter. The interest 

in Model-Predictive Control is that its complexity problems can be alleviated using the 

methodology of this thesis and that necessary and sufficient conditions for feasibility of 

MPC are known, which are based on invariant sets. 
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CHAPTER V 

 

ARCHITECTURE 

 

Proposed Architecture 

The control architecture shown in Figure 10 describes the proposed hierarchical fault-

tolerant control architecture.  

 

Fault and State
Detector

Supervisory
Controller

Configuration
Manager

Plant
x

Xe, D, Uf

u∈Ul

Ul

T, Ω, t

low-level control

 

Figure 10. Architecture 

 

The plant is modeled as a piecewise-affine system as defined in Definition 2.5 with 

continuous states X ⊆ Rn, a finite set of discrete states Q, and inputs U ⊆ Rm operating in 
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a hybrid state space Q × X. An additive state disturbance is assumed, taking values in a 

polyhedral region D ⊆ Rn. Actuator faults are manifested as limitations which constrain 

the input values to a reduced input set Uf ∈ U.  

The fault and state detector identifies the plant state as a set Xe ⊆ X which 

determines the possible values of the state vector x(t). The state detection is based on 

partitioning the state space and generating an event when partitions are crossed, in a 

similar fashion to what was described in the previous chapter. The fault and state detector 

also determines the disturbance set D and the fault-induced input constraints Uf.. The sets 

Xe, D, Uf are assumed to be available correct conservative approximations, which are 

continually updated at each time step. All the sets are assumed to be convex polyhedra. 

The system is designed with respect to a global control objective as defined in 

Definition 3.1 (Global Control Objective).  Based on the global control objective, the 

supervisory controller determines a control objective as in Definition 3.2 (Control 

Objective) for the low level control and the configuration manager. 

The supervisory controller specifies a set of alternate control objectives. The set 

of control objectives can be passed on to the lower levels as a prioritized list. If the 

objectives are not prioritized an arbitrary prioritization will be imposed in order to choose 

one control objective. The problem of achieving one of the control objectives is broken 

down into two sub-problems. 

Problem 5.1 (Reconfiguration).  Given system (1), a set of control objectives 

O, a state and fault detection Xe, D, Uf, and a set of possible input constraints, 

Ū ⊆ 2U determine  input constraints Ul ∈ Ū and a control objective (T, Ω, t) ∈ 
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O, such that system (1) with constraints u ∈ Ul and disturbance set D can be 

driven to target set T, within k time steps, with 1 ≤ k ≤ t while staying in Ω for 

the first k-1 time steps and that u ∈ Ul ⇒ u ∈Uf. 

Problem 5.2 (Low-Level Control).  Determine inputs u(t) ∈ Ul needed to 

reach T within k time steps, with 1 ≤ k ≤ t while staying in Ω for the first k-1 

time steps. 

The low-level control problem is solved continuously by the low-level control module. 

When a control objective is achieved, the supervisory controller sets a new set of control 

objectives. Reconfiguration occurs when either of the following happens: 

• The set of control objectives specified by the supervisory controller is changed, 

and no longer includes the current objective. 

• The fault-induced input constraints become more restrictive and violate the 

current configuration. (i.e. Ul ⊈ Uf.) 

• The disturbance set becomes larger and violates the current configuration. 

When reconfiguration occurs, the configuration selects one of the control objectives from 

the set specified by the supervisory controller, and selects input constraints u ∈ Ul for 

reconfiguration. 

 

Motivating Example 

To understand better what is proposed for  hierarchical control architecture it is useful to 

compare it to the state of the art. Rather than presenting the latest mathematical advances 
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in hybrid systems control, this section will present a real-life system in development. The 

system is a simplified model of an aircraft fuel system.  

The aircraft fuel system consists of six of interconnected tanks of fuel shown in  

Figure 11 
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Figure 11. Simplified Aircraft Fuel System 

 

The six tanks are in order: the left and right feed tanks which directly feed the engines, 

the left and right wing tanks located at the wings, and the left and right fuselage tanks 

located at the central body of the aircraft. The state of the system is given by a vector x(t) 

= [x1(t), x2(t), x3(t), x4(t), x5(t), x6(t)]T which is interpreted as the amount of fuel in each of 

the six tanks. The inputs, u(t), to the control system are commands to valves and pumps, 

which control the flow between the interconnected tanks. The discrete state of the system 

q(t) is mainly a function of the positions of the valves. The fuel consumption is modeled 

as a disturbance d(t) which acts additively on the state x(t). Clearly, this system falls 
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nicely into the model (1) if the evolution of x(t) in each discrete state can be modeled as 

discrete-time affine function. The model will not be detailed here, but it can be readily 

obtained from data or from a hybrid model.    

Ample fuel supply to the engines is provided by keeping the feed tanks almost full 

at all times. Center of gravity is maintained by following the global control objective 

defined as follows: 

Definition 1 (Fuel System Global Control Objective).  The state of the fuel 

tank system x will start at x0 ∈ A1, as defined in Table 1.  When the state leaves 

A1 it will enter A2, and so forth until it reaches [0, 0, 0, 0, 0, 0]T ∈ A6 . 

Obviously, the state of zero total fuel should never be reached, but this is not a fuel-

system control issue, but a mission planning issue. The regions Ak are given in Table 1. 

The control system operates pumps and valves (not shown in Figure 11) to move 

fuel from more remote fuel transfer tanks to engine feed tanks. The primary objective is 

to keep the engine feed tanks near full at all times, such that if failure occurs upstream, as 

much fuel as possible is available directly to the engines. The secondary objective is to 

transfer fuel in a sequence which results in proper aircraft center of gravity. 

The design of  the control system for controlling the pumps which transfer fuel 

from the transfer tanks is based on decision logic which implements the transfer sequence 

of Table 1. For example, when the system is in regions A3, A4 and A5 fuel is pumped from 

the wing tanks according to the logic in Figure 12. 
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Table 1. Fuel Quantity (lb.) for each tank in the simplified Aircraft Fuel System, the 
configurations are symmetric. 
 

 Total Left/ Right 

Feed 

Left/Right 

Wing 

Left / Right 

Fuselage 

Region Min. Max. Min. Max. Min. Max. Min. Max. 

A1 11200 12000 1500 1500 1600 2000 2500 2500

A2 11000 11200 1500 1500 1600 1600 2400 2500

A3 7800 11000 1500 1500 800 1600 1600 2400

A4 4600 7800 1500 1500 0 800 800 1600

A5 3000 4600 1500 1500 0 0 0 800

A6 0 3000 0 1500 0 0 0 0

 

 

 

Figure 12 Example Decision Logic for Fuel System Control 

 

The feed tanks must provide uninterrupted fuel supply to the engines at all times 

to prevent engine failures. The left and right feed tanks, provide fuel to the left and right 

engines, respectively. The tanks are interconnected to provide redundancy in case of 
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failures. Fuel flows from the feed tanks to the engine, and can be boosted by a boost press 

system on each feed tank. The feed line between the feed tanks and the engines also has 

an interconnect to provide redundancy in case of a boost press failure. 
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Figure 13. Architecture of the Aircraft Fuel Control System 

 

 

Conceptually, the architecture for the control system is shown in Figure 13. The 

architecture shown in Figure 13 is essentially a switching control architecture similar to 

that of Figure 6. In this system the decision logic located at the “supervisory controller” 

of Figure 13 determines one of several control laws depending on the fault conditions and 

the region in the state space. This addresses the supervision problem (determining the set-
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points for each tank), the control problem (finding a control law that achieves the set-

point), and the reconfiguration problem (finding the set of actuators – pumps and valves) 

at the same level. All three are solved by the supervisory controller which, by applying a 

pre-designed decision logic, determines one of a limited set of control laws to use. The 

choice of actuators is predetermined for each control law.  

The implementation that relies entirely on predetermined logic decisions has the 

advantages of being relatively straightforward to verify. However, the number of fault 

scenarios for which such a system can be made tolerant is limited. Complications arise 

especially when multiple faults occur. For example, the feed line interconnect is opened 

in case of a boost system failure so that fuel can flow from both feed tanks to both 

engines, thus providing redundancy. But a fall in feed tank pressure resulting from a leak 

can also trigger the same response, thus causing even more fuel to be lost through the 

leak.  

Accounting for multiple-fault scenarios is an inherent difficulty in the design of 

fault-tolerant systems. In some cases, such as the flight 171 example cited in the 

introduction, the system does in fact posses robustness attributes that can enable it to 

overcome a multiple-fault event, but the in the design of the fault-tolerant control system 

this robustness is not exploited because it is not exposed. This is one of the issues that can 

be addressed by the methods developed in this research. 

The next section presents a different system from the same domain of flow-

control.  
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Benchmark Problem 

The three-tank system shown in Figure 1 was developed as a benchmark problem for the 

European Control of Complex Systems (COSY) project [28]. Several research papers 

have been written, which consider control reconfiguration in the event of faults as applied 

to this benchmark example [11][31][35][36]. To the best of this author’s knowledge the 

only work in the COSY project which considers hierarchical control of this benchmark 

problem is [33], which is summarized in [28]. The hierarchical reconfiguration method 

presented in [33], in contrast to the method presented here, is validated only by trial and-

error. The non-hierarchical methods suffer from the problems mentioned earlier, namely 

poor tradeoff of the quality of control.  

In the three-tank system the objective is to regulate the level of fluid in tank 3. 

The nonlinear continuous-time hybrid model is detailed in [43]. An approximation of this 

hybrid system as a mixed-logical dynamic system is given in [39]. Without going into all 

the details, the features of the system are these: the system is characterized by discrete 

modes of operation resulting from the levels of the fluid in each tank (above or below the 

upper pipe in each tank,  23 = 8 possibilities), the relative fluid level between each two 

neighboring tanks (two pairs of tanks: :in each, the right can be fuller than the left or vice 

versa: 22 = 4 possibilities) and  the position of each valve (four valves, each with an open 

and closed position: 24 = 16), in all there are 193 distinct continuous behaviors (of the 

512 discrete modes, most are redundant).  The flow Q of fluid out of a tank through an 

open valve is determined by Toricelli’s law: 

hgSaQ z ⋅⋅⋅⋅= 2       (51) 
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where az is a flow correction term, S the cross-section of the valve, g the gravity constant 

and h is the level of water in the tank. In case both tanks have fluid above the level of the 

valve, the flow is directed from the fuller tank to the emptier one and h is the level 

difference between the tanks, i.e.. h=|hi-hj|. The piecewise affine model is generated by 

enumerating all the discrete modes which are linked to the values of the state variables 

(fluid levels) and inputs (valve control commands), and by linearizing and discretizing 

the nonlinear continuous behavior of the flow. 

Control of the three-rank system is as follows.  In the nominal case, Tank 1 serves 

as a buffer tank, and tank 3 is regulated by controlling the flow between tanks 1 and 3 

using valve V1. One of the possible faults in the system is a leak in Tank 1. The scenario 

for control and reconfiguration of this system is shown in Figure 15. The control 

objectives (Ω, T, t) and input constraints Ul  for this scenario are shown in Table 2. 

The results in Figure 3 and Figure 4 were obtained using the model in [43]. The 

low-level control was implemented using PI controllers on the pumps, hysteresis switches 

on the valves, and additional simple switching elements. The scenario is comprised of 

four phases: 

I. The system starts with all tanks empty. Tank 1 and tank 3 are filled to their 

nominal levels. 

II. The system is regulated at the nominal levels around h1=0.5, h2=0, h3=0.1. 

III. Following the detection of a leak in tank 1, the supervisory controller sets the 

control objective to filling tank 2, while regulating tank 3 and emptying tank 

1. 
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IV. The system is regulated around the set-point h1=0, h2=0.5, h3=0.1, which 

mirrors the regulation of phase II 

For the valves, a value of 1 is interpreted as the valve open, and a value of 0 as 

closed. Note that V23 is never opened in the configurations detailed in Table 1. This 

means that the configurations are tolerant to faults which cause V23 to be permanently 

closed. Note also that only two actuators are used in each phase. 

In phase III shown in Table 2, the supervisory controller specifies a control 

objective of reaching the neighborhood of h3=0.1, h2=0.5, and for phase 4, regulation 

around that point. Three alternate points specified in order of descending priority are 

• h3=0.1, h2=0.3, 

• h3=0.1, h2=0.2, 

• h3=0.0, h2=0.0. 

The last option is a shutdown, a safe state, which covers the case where no other 

objective is achievable. Consider two cases where reconfiguration is necessary:  

1. Valve V2 is faulty. The configuration shown in Table 1, phase 4, is no longer 

valid as it requires V2  to be manipulable. The configuration manager selects a 

configuration which uses V23 instead of V2 to achieve the set-point of h3=0.1, 

h2=0.3 

2. From time t=380 sec onwards valve V23 is permanently open. The configuration 

shown in Table 1, phase 4, is no longer valid as it requires V23 to be permanently 

closed. In this case the same target set can be achieved, with different input 

constraints. Figure 4 shows this scenario. The system can still be controlled using 
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pump Q2 alone. The difference is that when using Q2 alone, the disturbance that 

can be tolerated is smaller. 

 

 

Figure 14. Alternative ending to the leak scenario 

 

Summary 

This Chapter presented the proposed architecture for fault-tolerant control of piecewise-

affine systems with additive state disturbance.  

The functional elements of the architecture  were named as: the supervisory 

controller, the fault and state detector, the configuration manager (which performs 

reconfiguration), the low-level control and the plant. 

The motivation for the architecture and justification for considering the global 

control objective was given by a real-life example of an aircraft fuel system and a 

benchmark academic example of a three-tank system. 
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Figure 15. Reconfiguration scenario for leak in tank 1 



 

64 

 

Table 2. Control Objectives and Configurations. For each phase the target set T must be 
achieved within t=200 time steps  

 

 Ω T Ul 

1 {h1, h2, h3 | 

 0 ≤ h1 ≤ 0.6,  

 0 ≤ h2 ≤ 0, 

 0 ≤ h3 ≤ 0.11} 

{h1, h2, h3 |  

0.45 ≤ h1 ≤ 

0.55, 0 ≤ h2 ≤ 0,

0.09 ≤ h3 ≤ 

0.11} 

{ V13, V1, V2, V23, Q1, Q2 |  

0 ≤ V13 ≤ 1,  

0 ≤ V1 ≤ 1, 

Q1 = 10-4,  

V23= V2=Q2=0} 

2 {h1, h2, h3 |  

0.45 ≤ h1 ≤ 0.55, 

0 ≤ h2 ≤ 0, 

0.09 ≤ h3 ≤ 

0.11} 

{h1, h2, h3 |  

0.45 ≤ h1 ≤ 

0.55, 

0 ≤ h2 ≤ 0, 

0.0905 ≤ h3 ≤ 

0.105} 

{ V13, V1, V2, V23, Q1, Q2 |  

0 ≤ V1 ≤ 1,  

0 ≤ Q1 ≤ 10-4,  

V13= V23= V2=Q2=0} 

3 {h1, h2, h3 | 

 0 ≤ h1 ≤ 0.55,  

 0 ≤ h2 ≤ 0.6, 

 0.09 ≤ h3 ≤ 

0.11} 

{h1, h2, h3 |  

0 ≤ h1 ≤ 0.2, 

0.4 ≤ h2 ≤ 0.6,  

0.09 ≤ h3 ≤ 

0.11} 

{ V13, V1, V2, V23, Q1, Q2 |  

0 ≤ V1 ≤ 1,  

0 ≤ Q1 ≤ 10-4,  

V13= V23= V2=Q2=0} 

4 {h1, h2, h3 |  

0 ≤ h1 ≤ 0.2, 

0.4 ≤ h2 ≤ 0.6  

0.09 ≤ h3 ≤ 

0.11} 

{h1, h2, h3 |  

0 ≤ h1 ≤ 0, 

0.45 ≤ h2 ≤ 

0.55, 0.09 ≤ h3 

≤ 0.11 } 

{ V13, V1, V2, V23, Q1, Q2 |  

0 ≤ V2 ≤ 1,  

0 ≤ Q2 ≤ 10-4,  

V1= V13= V23=Q1=0} 
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CHAPTER VII 

 

RECONFIGURATION 

 

A fault-tolerant control architecture includes redundant actuators, which are placed in 

order to provide the necessary control functionality in the event of faults. In the 

hierarchical control architecture, the complexity for low-level control is reduced by 

limiting three factors: 

• The prediction horizon 

• The number of manipulable input variables 

• The number of discrete states 

The prediction horizon needed for feed-forward control is limited by (i) the fact 

that low-level control is aimed at a control objective of reaching a target set in a limited 

time, and prediction is not needed beyond that time, and (ii) the fact that reaching a target 

set is a relatively simple objective, which can often be translated to an objective of 

shortening the distance to the target set, thereby using an even smaller prediction horizon. 

The number of manipulated variables is limited, as will be detailed in this chapter 

by imposing constraints on the input variables. By staying within a limited state-set as 

required by Definition 3.2 (Control Objective) while the inputs also remain in a limited 

set, the state and input vector [x(t) u(t)]T is limited to a region, thus simplifying the PWA 

model of the system by removing many of the discrete states from consideration. The 

simplified model reduces the complexity of the control problem 

The purpose of imposing constraints on the inputs is to reduce the number of 

manipulatable input variables for the low-level control. If the low-level control is 
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implemented by model-predictive control (MPC) – which is possible for piecewise-affine 

systems – the manipulable input variables are decision variables for the MPC 

optimization problem and reducing their number reduces the computational complexity 

[6]. Clearly, the reconfiguration task is required to have less computational cost than 

what is saved by not allowing all input variables to be manipulable by the low-level 

control. For this reason, the approach taken here is to perform the reachability 

calculations required for reconfiguration at design-time. 

The computational complexity of model-predictive control is taken as a case-in-

point because model-predictive control is a method for synthesizing the control law 

online which utilizes all the design space available. In MPC, at each time step a mixed-

integer quadratic program with mixed-integer linear constraints is solved.  

Definition 7.1 (MIQP) a Mixed-Integer Quadratic Program is an optimization 

program of the following from: 

{ } dc n
d

n
c

d

c

TT

xRx
x
x

x

dCxts
xbQxx

1,0,

0.
min

∈∈







=

≤+
+

   (52) 

 

In the worst case, the time-complexity depends exponentially on the number of 

integer variables and the number of variables involved depends linearly on the prediction 

horizon [10].  

The discrete modes of the hybrid system are defined as polyhedral regions in the 

state and input space. Each polyhedral region in n dimensions is defined by a finite 
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number of facets which are polyhedra in n-1 dimensions (e.g. n+1 facets for a n-simplex, 

2n facets for a n-hypercube).  The number of integer variables (including auxiliary 

variables) is related to the number of facets of each polyhedra. Therefore it is assumed 

that the number of  integer variables in the optimization problem depends linearly on the 

number of manipulated variables.  

Besides reducing the number of manipulated inputs, another potentially 

significant reduction in complexity is gained by the fact that the control problem is 

defined only in a limited region Ω of the state space, where only a subset of the discrete 

modes of the hybrid system are active and therefore the control problem is further 

simplified. Typically, in a practical application, the system states that the supervisory 

controller prescribes follow the behavioral modes of the system and thus the reduction in 

complexity is significant indeed. For example, in the three-tank system the three state 

variables define eight regions (above or below upper connecting pipe for each tank). But 

for the scenario depicted in Figure 15 four of the eight modes are never active, since 

under no circumstances is the level in Tank 2 above h2=0.3. Moreover, in all but one of 

the reconfiguration phases, only two modes are active. And even this phase can be split 

into two supervisory control modes if needed. 

Based on the above discussion it is conjectured that the complexity of low-level 

control is exponential in the prediction horizon, the number of inputs and the number of 

states.   

Conjecture 7.1. The complexity of low level control is O(2K+M+N) where N is 

the prediction and control horizon, M and K are the number of input and state 

variables, respectively, that appear in the inequalities defining the boundaries 
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of the polyhedral regions χq in the system that appear as variables in (4) with 

constraints x ∈ Ω and u ∈ Ul. 

The significance of this assertion is that by reducing each one these parameters  

the complexity of low-level control is reduced.  

Reduction in the prediction horizon is made possible by the presence of a 

supervisory controller. By assigning the supervisory controller all control tasks that 

require significant prediction, the low-level control need only concern itself with 

minimizing the distance to a set-point defined by the supervisory controller within a short 

prediction horizon. By Theorem 4.2 (Feasibility of Model Predictive Control) the 

prediction horizon in the MPC optimization problem to guarantee optimization needs to 

be set to the number of time steps in which the target set is required to be reached. 

The configuration manager’s task is to select input constraints which will 

guarantee reachability from the current state x(t) to a target state set T ⊆ X in t time steps 

without leaving Ω ⊆ X for the first t-1 time-steps. In this paper this process is called 

reconfiguration. The reconfiguration problem was formally defined in Problem 5.1 

(Reconfiguration). It is proposed to perform the necessary reachability calculations at 

design time and store the results of these calculations in a reconfiguration database. A 

necessary condition for reachability is that a sequence of input vectors which satisfies the 

input constraints and the control objective exist.  

The reconfiguration problem can be solved by calculating reachability in the 

presence of disturbance. For a discrete-time system, reachability in a finite number of 

steps can be computed, based on reachability in single steps. 
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Recall Definition 4.6 (One-Step Set) and Definition 4.7 (Robust One-Step Set). 

For a PWA with inputs u(t) ⊆ Ul the One-Step set is given by  

Q(Ω) = { x ∈ X |  ∃u∈Ul ∃q∈Q : (x, u) ∈ χq, Aq x+ Bqu + fq ) ∈ Ω }. (53)

And the robust one-step set is given by  

Q̃(Ω) = { x ∈ X |  ∃u∈U ∃q∈Q : (x, u) ∈ χq, ∀ d∈D  (Aq x+ Bqu + fq + d) ∈ Ω }. (54) 

For systems with additive state disturbance the robust one-step set can be calculated as a 

one-step set to a target set, eroded by the disturbance set as follows. 

Definition 7.3 (Pontryagin Difference). Given the sets Ω ⊆ Rn and Θ ⊆ Rn  

the Pontryagin difference between Ω and Θ is defined as  

{ }.,|~ Θ∈∀Ω∈+∈=ΘΩ θθωω R  (55)

Proposition 7.1 [23] For a PWA system with additive state disturbance  

Q̃(Ω)=Q(Ω~D), if Ω~D≠∅      (56) 

Proof. It follows immediately from the definitions that 

 Q(Ω~D) = { x ∈ X |  ∃u∈Ul ∃q∈Q : (x, u) ∈ χq, (Aq x+ Bqu + fq ) ∈ Ω~D}. (57)

Which is equal to 

{ x ∈ X |  ∃u∈Ul ∃q∈Q : (x, u) ∈ χq,  (Aq x+ Bqu + fq )  + d ∈ Ω, ∀ d∈D} 

 = Q̃(Ω).. 

(58)

 

The following propositions regarding robust controllable sets for systems with 

additive disturbance will be instrumental in calculating the sets needed for 

reconfiguration. 
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Proposition 7.2  For a system with additive state disturbance, if Ω is given by 

the union  

U
i

iΩ=Ω  (59)

then  

( )U
i

i DD ~~ Ω⊇Ω  (60)

Proposition 7.3. For a system with additive state disturbance, if Ω is given by 

the union (60) then 

( ) ( )U
i

iQQ Ω⊇Ω ~~  (61)

Proof.  

( ) ( ) ( ) ( )UUU
i

i
i

i
i

i QDQDDQ Ω=Ω=Ω⊇Ω=Ω ~~)~Q()~Q(~  (62)

Definition 7.4 (Robust Controllable [i,j]-step Set). For the system (1), with 

inputs u(t) ∈ Ul and disturbances d(t) ∈ D, the robust controllable [i,j]-step set  

( )TK j
i ,~ Ω is the largest set of states in Ω for which an integer i ≤ k ≤ j exists for 

which there exists an admissible control input which will drive the system to T 

in exactly k steps, while keeping the evolution of the state inside Ω for the first 

k-1 steps, for any time-varying disturbance d(t) ∈ D, i.e. 
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Proposition 7.4. 

( ) .),(~(~,~ j
i

1
1 Ω∩ )Ω=Ω+

+ TKQTK j
i  (64)

Proof.  

Ω∩Ω⊆Ω∩Ω=Ω=Ω
≤≤+≤≤+

+
+ )),(~(~)),(~(~),(~),(~

11

1
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k
k

j
i UU (65)

So that  

Ω∩ )Ω⊆)Ω+
+ ),(~(~,(~ j

i
1j
1i TKQTK  (66)

If  

Ω∩ )Ω∈ ),(~(~ j
i TKQx  (67)

then it is in Ω and can be driven to )Ω TK ,(j
i in one step and subsequently to T in 

k steps with i ≤ k ≤ j. Therefore  

)Ω∈⇒Ω∩ )Ω∈ +
+ TKxTKQx ,(~),(~(~ 1j

1i
j

i  (68)

and 

Ω∩ )Ω⊇)Ω+
+ ),(~(~,(~ j

i
1j
1i TKQTK � (69)

Theorem 7.1. The robust controllable [i,j]-step set can be computed by the 

following recursive formula:  

( )





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<)Ω∪Ω∩ )Ω
=<Ω∩ )Ω
==

=)Ω
jiTKTKQ
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1-j
i

1-j
1-j

j
i  (70)

Proof. For i=j, the algorithm and proof is shown in [9, section 2.6].  For i <  j, 

by definition  
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),(),(,( 1
1j

i TKTKTK j
i

j
i Ω∪Ω=)Ω +

− . 

From  Proposition 7.4, 

( ) .),((~, 1-j
i1 Ω∩ )Ω=Ω+ TKQTK j

i  

therefore  

.),((~),(,( 1-j
i

1j
i Ω∩ )Ω∪Ω=)Ω − TKQTKTK j

i � 

 

Affine Constrained Systems 

Algorithms and theoretical results developed for constrained linear systems often assume 

the origin is in the interior of the admissible set of states and/or inputs [24][4][42] . For 

this reason it is useful first to clarify the relation between such systems and constrained 

affine system with admissible state and input sets which do not necessarily include the 

origin.  

A constrained affine system is given by  

qtQx

ptPu

ftButAxtx

≤

≤

++=+

)(

)(

)()()1(

 (71)

 

It is desired to form an equivalent LTI system  

qtxQ

ptuP

tuBtxAtx

≤

≤

+=+

)(

)(

)()()1(

 (72)

Where the origin is an interior point of the set of admissible states 
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0>q . (73)

First, an interior point ϕ is found for the polyhedron Qx(t) ≤ q. This can be done by 

standard linear programming methods. For the simple case where none of the inequalities  

are forced to be tight, the interior point can be found as the point x at which  max e, s.t. Q 

x + e ≤ q is attained. 

The coordinates of the state space are translated by ϕ,  

ϕ+= )()( txtx  (74)

After transformation the system becomes 

( )
ϕϕ

ϕϕϕ

++−+=

=+++−=++=+

fAtButxA
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)()(

)()()1()1(
 

(75)

By augmenting vector u with n inputs fixed at a constant value of ϕϕ Afu −+=′ , an 

LTI system is obtained  
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with constraints 
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Robust Controllable Sets for PWA systems 

Recall from Proposition 7.3 that for a system with additive state disturbance the robust 

one-step set Q̃(Ω) is equal to the nominal one-step set Q(Ω~D). This implies that in order 

to compute the [i,j]-robust controllable set by the formula presented in Theorem 7.1 it is 
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sufficient to develop procedures to compute the Pontryagin difference Ω~D, the nominal 

one-step set Q(Ω~D), the intersection Q(Ω~D) ∩ Ω, and the set union 

),(~),(~
1

1 TKTK j
i

j
i Ω∪Ω +

− . The first three issues are addressed in [23]. In computing the 

set union, the problem which arises is that the union of two convex sets is not necessarily 

convex, or even connected. This is true also for the computation of Q̃(Ω) for a PWA 

system, since it consists of a union of all discrete modes q ∈Q of the system. If the robust 

controllable set of a polyhedral region T is to be computed exactly this would necessitate 

enumeration or introduction of discrete variables to encode the set. The complexity of 

such a computation of ),(~ TK j
i Ω  is exponential in the number of steps j.  However, for 

practical purposes, the exact computation of ),(~ TK j
i Ω is not necessary. An inner 

approximation ),(ˆ TK j
i Ω , such that ),(~),(ˆ TKTK j

i
j

i Ω⊆Ω is sufficient.  If an inner 

approximation that is convex can be found wherever a union of polyhedra is calculated, it 

can be used to reduce the computational complexity of the off-line computations which 

generate the reconfiguration database. In any case,  such an approximation is needed for 

the final iteration of Theorem 7.1 which produces the set which appears in the database. 

A method for convexity recognition of a union of polyhedra was shown in [44]. This 

approach can be extended for approximating a union of polyhedra as a convex 

polyhedron.  

 

Reconfiguration and Fault-Tolerance 

Reconfiguration provides fault tolerance by choosing input constraints, which are 

compatible with fault conditions. For example, if valve V1 in the three-tank system is 
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fixed in position V1=0, then any configuration constraint which is satisfied by V1=0 is 

compatible with this fault. 

This method of representing configurations requires some enumeration, although the 

enumeration is only of configurations – not faults. This is still more efficient than 

approaches that require enumeration of faults, since the fault space is typically much 

larger than the configuration space.  

Assume all configurations u ∈ Ul are given by rectangular constraints 

maxmin uuu ≤≤  (78)

Or in standard form 
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−  (79)

Likewise, the configurations encoding the fault conditions v ∈ Uf are given by 

[ ]

maxmin

min

max

vv
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
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


−  (80)

This is a reasonable limitation, because the objective of configuration selection is to 

minimize the number of manipulated variables, given by the number of inputs for which 

0minmax >− ii uu . The dimension of the polyhedron of admissible values of u is all that 

matters, not its shape. It is also assumed, with out loss of generality, that  

[ ]1,0, maxmin ∈uu  (81)

[ ]1,0, maxmin ∈vv  (82)

Constraints (78), (81) on umin, umax define an actuator that can be either fixed at  
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u=umin=umax=0 (83)

fixed at  

u=umin=umax=1 (84)

or manipulated in the range  

0 ≤ umin≤ u≤umax≤1 (85)

This representation is very useful since the constraints  (78), (81)  can be taken into 

account implicitly, and the database need only include extra constraints for each 

manipulated actuator  

 

1minmax ≥− ii uu  (86)

A simple constraint such as  nuu
k

i
ii ≥∑ −

=1
minmax  can be used to represent the case where n 

out of k available actuators can be used to achieve the control objective.  

 

Proposition 7.5. For the sets  

Ul = {u |  maxmin uuu ≤≤  } (87)

and  

Uf = {v |  maxmin vvv ≤≤  } (88)
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The Reconfiguration Database 

The reconfiguration database consists of six-tuples (X̃̃, D̃, Ũ, T̃,Ω ̃, t̃) for which it has been 

determined that X̃̃ is a robust controllable [1,t]-step set K1
t(Ω ̃,T̃) for the system with 

disturbance D̃ and input constraints Ũ. At runtime, the configuration manager’s task is to 

find a six-tuple from the database, for which Xe ⊆ X̃̃, D ⊆ D̃, Ũ ⊆ Uf, T̃ ⊆ T, t ≤ t̃, Ω ̃ ⊆ 

Ω, based on Xe, D, Uf  supplied by the fault and state detector and Ω, T, t supplied by the 

supervisory controller. The sets are all assumed to be convex polyhedral sets, so the 

computation of the set inclusions amount to the solution of linear programs. In general 

the robust controllable set for a piecewise affine system is not convex; however it is 

sufficient for the purpose of reconfiguration to use an inner approximation of the robust 

controllable set, which is convex, for the value of X̃ in the database.  

By removing all reconfiguration options which do not satisfy the necessary 

conditions for reachability, the search space for the low-level control is reduced, while 

ensuring the existence of appropriate control inputs to satisfy a control objective. The 

problem of designing the low-level control to select the optimal control inputs is beyond 

the scope of this paper. One possibility is to apply model-predictive control for which 

necessary and sufficient conditions for robust feasibility are known [24]. 

The reconfiguration database lists six-tuples (X ̃, D̃, Ũ, T̃,Ω ̃, t ̃) for possible 

combinations of state and fault identification and control objectives given by the state and 

fault detector and the supervisory controller, respectively. The task of partitioning the 

state and input sets to determine these sets is the subject of the next section. 
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Summary 

In this chapter it was shown how the introduction of a reconfiguration layer 

between the supervisory controller and the low-level control of a PWA system can reduce 

complexity of low level control by limiting the prediction horizon, number of inputs and 

number of discrete states that need to be considered by the low-level control in each 

supervisory control mode. 

The theory of invariant sets was shown to provide the tools for determining the 

initial set from which a specified set can be reached within a specified time for all 

allowable disturbances. The robust controllable sets can be computed recursively from 

the robust one-step sets using Theorem 7.1. Robust one-step sets can be computed using 

already existing tools for LTI systems [23]. Using the transformations introduced in this 

chapter these calculations can be applied to each mode of a piecewise-affine system. 

Appendix B includes an example of calculating a robust controllable set using 

Theorem 7.1, for phase III of the three-tank reconfiguration process shown in Figure 15.  
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CHAPTER VII 

 

SUPERVISORY CONTROL 

 

The supervisory control of a hybrid system can be approached as a discrete-event control 

problem, by abstracting the plant into a discrete event system preserving all properties of 

interest. In hierarchical control, this is done by forming a partition of the state space, for 

which it can be guaranteed that the system can be forced to reach a desired region by 

choosing appropriate controls. In this section the subject of partitioning the continuous 

state space will be considered. The property of interest is maintaining the control 

system’s ability to satisfy the control objectives, which in this case are formulated as 

reachability specifications. 

For the notations and definitions of mathematical terms used in this chapter see 

Appendix A. 

 

Bisimulation 

One method for generating discrete abstractions of a hybrid system is 

bisimulation. A bisimulation is a reachability preserving quotient system in the sense that 

checking a property on the quotient system is equivalent to checking the property on the 

original system  [34].  If an equivalence relation ~ is a bisimulation, then given two 

systems P and Q each with an initial and final set, the states in the initial sets of each 

system are mutually equivalent, the states in the final set of each system are mutually 

equivalent, and if a state p ∈ P and a state q ∈ Q are equivalent, and p has a next state, 
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then q has a next state which is equivalent to the next state of p. (See Appendix A for 

formal definitions). 

Bisimulation is a strong property as it provides:  

1. Equivalence of states for all the state space of the equivalent systems 

2. Preservation of the one-step predecessor (successor) operator.  

The first requirement is strong because it means that the abstraction applies to the 

entire state space, including regions that are not meant to be reachable. The second 

requirement is strong because it applies by induction to all time and it also means that 

equivalent trajectories have the same number of time steps. 

 

Quasideterminism 

Another method for generating such discrete abstractions is Quasideterminism 

[7]. In contrast to bisimulation, Quasideterminism requires equivalence only to the degree 

that set membership of a state in equivalence classes of a primary partition be preserved. 

If the primary partition is given by an equivalence relation Eπ and the predecessor 

operator defines an equivalence relation Epred  then the final partition is the meet of Eπ and 

and  Epred,  Eπf  = Eπ • Epred [7]. 

Quasideterminism is a weaker property than bisimulation, but still a stronger 

property than what is needed with respect to Definition 3.1 (Global Control Objective). 

Several observations can be made: 

• Quasideterminism with respect to a primary partition defined by 

Definition 3.1 (Global Control Objective) may be hard to achieve because 

safety cannot be guaranteed for some of the state space in these regions. 
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However, it may be achievable for a region ψ ⊆ X with ψ ∩ Bad = ∅,  

when ψ / Eπ  are taken as the regions of the primary partition rather than X 

/ Eπ. If it can be guaranteed that the system starting in A0 (from Definition 

3.1 (Global Control Objective)) will never leave ψ then it will also not 

reach Bad. 

• Quasideterminism refers to reachability in one step, whereas Definition 

3.1 (Global Control Objective) refers to reachability within a time window 

of between one and time(k,l) time steps.  

• Quasideterminism enables open-loop control of the system without 

knowledge of its exact state. In contrast, assuming an architecture like the 

one shown in Figure 10, the state detector can determine to which region 

of the final partition the system was driven.  

 

State Space Partition 

Given these observations, this chapter seeks to characterize the state-space partition with 

respect to Definition 3.1 (Global Control Objective).  

 First note that all the regions Ak are assumed to be disjoint sets. If this is a 

problem, it can sometime be helpful to use the fact that the following definition of a is 

equivalent to Definition 3.1 (Global Control Objective).. 

 

Definition 8.1 (Equivalent Global Control Objective) Given a set Bad ⊆ X 

and a finite collection of sets Ak ⊆ X , k ∈ K, that includes an initial set A0 ⊆ X, 

with Ak ∩ Bad = ∅, a set valued map next: K→2K and a function time time: 
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K×K→ Z+  the global control objective is that for the system with initial 

conditions x ∈ A0  the continuous state will remain in any set Ak and 

subsequently cross into set Ak’  after t time steps for some k’∈ next(k) for which 

t ≤ time(k,k’), while remaining in Ak ∪ Ak’ for t-1 time steps.  

x(t0) ∈ Ak  ⇒ ∃k’∈ next(k):  ∃t ≤ time(k,k’)  : 

x(t0+t) ∈ Ak’   ∧ ∀0 ≤ t’< t,  x(t0+t’) ∈ Ak∪ Ak’ 
(90)

Proposition 8.1 Definition 8.1 and Definition 3.1 (Global Control Objective) 

are equivalent.  

Proof.  

(Definition 3.1 ⇒ Definition 8.1) follows from  

x(t0+t’) ∈ Ak ⇒ x(t0+t’) ∈ Ak∪ Ak ’ (91)

 (Definition 3.1 ⇐ Definition 8.1) Let t ≤ time(k,k’), x(t0+t) ∈ Ak’.  If t=1, then 

for  t’=0,, x(t0+t’) ∈ Ak.  If t>1, x(t0+t’) ∈ Ak∪Ak’ and x(t0+t’) ∉ Ak, then x(t0+t’) 

∈Ak’. In particular for t’=1, t’ ≤ time(k,k’), x(t0+t’) ∈Ak’ and +x(t0+t’’), ∀0 ≤ t’’< 

t’ € 

Example 8.1. The global control objective based on Definition 8.1 is to bring 

the state of the three tank system from Ainit={h1, h2, h3 | 0 ≤ h1 ≤ 0.6,  0 ≤ h2 ≤ 0, 

0 ≤ h3 ≤ 0.11} to A1={h1, h2, h3 | 0.45 ≤ h1 ≤ 0.55, 0 ≤ h2 ≤ 0, 0.09 ≤ h3 ≤ 0.11} 

within 200 time steps while remaining in Ainit = Ainit ∪ A1 for the first 199 time 

steps and subsequently to regulate it in A1. Since A1 ⊆ Ainit, by replacing Ainit 
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with A0 = Ainit - A1 the objective can be restated as staying in A0 and then 

crossing into A1. 

Assumption 8.1. The sets Ak are disjoint.  

Definition 8.2. (Primary Partition) Given a global control objective, defining 

a collection of sets Ak ⊆ X , k ∈ K, the partition of U
Ni

kAA
...0=

=  into sets 

forming the collection {Ak}is called the primary partition.  

As with bisimulation [34] and quasi-determinism [7], the required partition is 

generated by l ∈ next(k) a process of partition refinement resulting in a final partition. 

The primary partition π, forms an equivalence relation Eπ. The set of all the partitions of 

the state space X with polyhedral equivalence classes is characterized as a lattice, and 

partition refinement is defined with respect to the partial order of the lattice [7].  

The process of partition refinement results in the partitioning of the state space 

into regions which are subsets of the regions {Ak}. The primary partition is refined by 

applying a finite number of meet operations, resulting in a final partition. The 

requirement from the final partition is that the induced system operating in the quotient 

space X / Eπf,  can be controlled by the supervisory controller in such a way that the 

trajectory in the original system will satisfy the global control objective. The state 

identification given by the state detector, in the form of a set K ⊆ X as well as the sets Ω 

⊆ X and T ⊆ X in the control objective are regions defined in terms of the final partition. 

The partition must be such that when the supervisory controller is given a state and fault  
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identification (K, Uf, D), it can determine the a control objective (Ω,T, t), for which the 

system can be forced on a trajectory consistent with the global control objective by 

choosing appropriate controls.  

Assume a given disturbance set Dk for each region Ak. Let UL⊆ 2U be the set of 

admissible input sets. The choice of input constraints is based on two considerations: 

fault-tolerance and reducing the number of manipulated variables. A configuration Ul ∈ 

U will be tolerant to a fault if the configuration admits only input vectors which are not 

precluded by the fault. The additive state disturbance can also be used to model certain 

input faults (e.g. a leak in the tank, which is an additive state disturbance because the leak 

reduces the volume of liquid in the tank – a state variable – by a certain amount at each 

time step). 

Let Ψ be a collection of sets Ωk, k ∈K, which appear as invariant sets Ω  in the 

reconfiguration database, and let Ω0 = A0;  Ωk ⊆ Ak ∀k ∈K. It is required that at any 

trajectory starting in Ω0 can be driven to follow the global control objective. This can be 

assured if  

∀ x∈ Ωk, ∃l ∈ next(k), ∃u ∈ UL :  x ∈ K1
time(k,l) (Ωk , Ωl). (92)

Where K1
time(k,l) (Ωk , Ωl) is the [1, time(k,l)]-step robust controllable set. In the 

nominal case reconfiguration occurs when the system crosses into a target set from which 

reachability to the next target set is assured within the required time. When a fault occurs, 

the time constraint is not necessarily satisfied; however,  the condition of (92) ensures 

that the next state is reachable when reconfiguration occurs at any point along the 

trajectory. The collection Ψ can be calculated recursively by Algorithm 8.1.  
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Algorithm 8.1. (Compute Collection of Invariant Sets Ψ) 

INPUT:  

partition π defining regions Ak, k ∈ K 

input constraints UL 

disturbance set Dk for each Ak  

BEGIN  

FOR each k ∈ K  

          Ω’k = Ak.  

 REPEAT 

        FOR each k ∈ K,  

             Ωk = Ω’k 

        FOR each k ∈ K,  

             U U
Ll UU knextl

lk
lktime

k K
∈ ∈

ΩΩ=Ω
)(

),(
1 ),(' ;    

  UNTIL    Ωk = Ω’k, ∀k ∈ K     

END 

OUTPUT  

Collection Ψ = {Ωk}k ∈ K of invariant sets. 

 

The algorithm succeeds if it terminates and Ω0 = A0. If the algorithm terminates 

successfully (92) is satisfied. For practical purposes the number of iterations must be 

limited to check for successful termination. What remains is to partition the sets Ψ 

={Ωk}k∈K into regions such that from each region, it can be determined which next target 

set can be reached and by what configuration. This is performed by Algorithm 8.2. 

 

Algorithm 8.2. (Partition sets Ψ, with configurations UL). 

INPUT:  

State space X 
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Global control objective:  K, {Ak}, time, next  

input constraints UL 

disturbance set Dk for each Ak  

BEGIN  

πf := ( U
Kk

kAX
∈

\ , A0, Ω1, A1\ Ω1, Ω2, A2\ Ω2, …) 

  FOR each k ∈ K, Ul ∈ UL, l ∈ next(k),  

             compute partition:  π = (X ∩ K1
time(k,l)(Ω k , Ωl) , X \ K1

time(k,l)(Ω k , Ωl))     

           Refine: πf := πf   ⋅ π 

   END 

END  

OUTPUT:   

Refined partition πf.   

 

The final partition resulting from application of Algorithm 8.1 and Algorithm 8.2 for a 

set of configurations UL divides the state space into regions that are not necessarily 

convex, or even connected, because the robust controllable sets computed for different Ul 

∈ UL and l ∈ next(k)  can overlap. Therefore, to arrive at a collection of convex and 

compact regions, it may be necessary to further divide the regions along the hyperplanes 

that define their boundaries. Figure 16 illustrates this process. It would also be possible to 

simply partition the state space X along all the hyperplanes, which define the partition π’, 

but this would result in a larger number of regions and unnecessarily increase the size of 

the reconfiguration database. 
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Figure 16. Refining the final partition (a) into convex and compact regions (b). (c) Shows 
the partition along hyperplanes. Note that regions in (b) overlap at the boundaries.  

 

When the system is in region Ak, the supervisory controller sets the control 

objective for the configuration manager and low level control as all the 3-tuples (Ω, T, t) 

with Ω = Ωk,  T = Ωl, , l ∈ next(k), t = time(k,l). The state detector must detect partition 

crossing in the final partition so that when the system crosses into Ωl, it can be 

determined in which region of the final partition the current state is, so that 

reconfiguration can proceed. The reconfiguration database is also constructed based on 

the final partition and the possible control objectives. Throughout this section the 

disturbance set Dk was assumed to be given for each region Ak of the global control 

objective. The disturbance set provides another design parameter, which can be relaxed 

or tightened to enable the global control objective to be achieved or to increase 

robustness. 

After finding the final partition, the supervisory controller and the state detector 

can be designed to specify their outputs in terms of the refined partition. Let the final 

partition be given by π’ = {P1, P2, …, PN}. Where each Pi is a convex and compact subset 

of a region Ak of the primary partition. The supervisory controller can be designed to 

specify its outputs in terms of the final partition. If the system crosses into region Ak, at 

time tk then the set of control objectives is constructed as follows. 
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Algorithm 8.3. (Construct Control Objective Set). 

INPUT:  

Final partition π’ defining regions (P1, ….. PM),  

Global Control Objective 

Collection of regions ψ = {Ω0, ….. ΩN},  

Set valued map next: K→2K  

A function time time: K×K→ Z+, 

A region Ak in the final partition, which has been crossed into.  

BEGIN  

 S = {}; 

 FOR each l ∈ next(k),  

     FOR each Pi ⊆ Al, 

           Add a control objective (Ω, T, t) to S, with Ω = Ωk and T = Pi and t = time(k, l).    

      END 

END  

OUTPUT:   

Set of control objectives, S.   

 

The set of control objectives remains the same as long as the system remains in 

Ak. The reconfiguration manager takes note of the time tk at which the control objectives 

were given. All times in the control objective are relative to this time, so that if a different 

control objective is selected, the reconfiguration manager must take the time offset into 

account. 

 

Partition Crossing Detection 

The state detector must detect partition crossing in the primary partition for the 

supervisory controller to generate the control objectives, and in the final partition for the 
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configuration manager to select a configuration, so that when the system crosses into Al, it 

can be determined in which region Pj of the final partition the current state is. The state 

detection is performed using a threshold function.  

The n-dimensional state space X is partitioned by (n-1)-dimensional hyperplanes, 

which form the boundaries of the regions Pi. The requirement from the state detector is to 

detect when the system crosses each one of these hyperplanes.  Following [7], let hi be a 

collection { } RRhh n
iNfii →= :,...12  of real valued functions of the form ( ) i

T
ii cxgxh −=  

where gi∈Rn and ci∈R.  Let Hi be the (n-1)-dimensional hyperplanes given by 

{ }.0|)ker( =−=∈== i
T

ii
n

ii cxghRxhH  (93)

Let {ĥi } be a collection of threshold functions defined [7] as  

( )








>−+
=−
<−−

=
01
00
01

ˆ

i
T

i

i
T

i

i
T

i

i

cxgif
cxgif
cxgif

xh  (94)

The state detector is composed of two stages. The vector function λ(x) = [ĥ1(x), …, ĥl(x)]T 

is a mapping λ : Rn→{-1,0,1}l  where there is a bijection between {-1,0,1}l and the set of 

all region resulting from partitioning X along the hyperplanes which define π’ [7].  The 

next stage is mapping the elements of {-1,0,1}l  to the sets in Ψ. 

 

 

Summary 

In this chapter it was shown how a state space partition can be generated that assures that 

the global control objective can be achieved in the nominal case and degraded 

performance in the case of a fault. 
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Bisimulation and Quasideterminism were introduced in the beginning of the 

chapter. In contrast to these approaches, the state space partition refinement method 

presented in this chapter is always a  finite process. If a partition can be found, the low-

level control can drive the system from one partition to the next within the time 

constraints specified. The collection of sets ψ includes the initial state set A0, from which 

other sets are reachable. The control system can keep the plant from leaving the sets in ψ 

and therefore the rest of the state space is not considered when partitioning the sets.  



 

91 

CHAPTER VIII 

 

CONCLUSIONS AND FUTURE WORK  

 

In this research it was shown that the theory of invariant sets can be used to 

provide robustness in control of hybrid systems in a practical setting. A hierarchical 

architecture was shown to reduce the complexity of low-level control by limiting the 

number of inputs used in each supervisory control mode, and thus simplifying the model 

of the hybrid system.  

To further develop these ideas more work will be needed to implement the 

algorithms and software for computing invariant sets for piecewise-affine systems. This 

chapter summarizes in detail the contributions and conclusions of previous chapters and 

the work that lies ahead. 

 

Contributions 

Following is a list of specific contributions presented in this thesis: 

• An architecture for reconfigurable hierarchical control Figure 10 

• The reconfiguration problem defined in the context of hierarchical control: Problem 

5.1 (Reconfiguration) 

• Relation of hierarchy to reduction of complexity for low-level control Conjecture 7.1 

• Robust reachability of PWA systems within a time window: Proposition 7.2, 

Proposition 7.3, Proposition 7.4, Definition 7.4, Theorem 7.1 

• Transformation of a constrained affine system to a constrained linear system with the 

origin in the interior of the set of admissible states: Equations (76), (77). 
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• Representation of configuration as inequality and integrality constraints on its 

bounds: Equations (78)-(89), Proposition 7.5. 

• State space partition for supervisory control for Definition 3.1 (Global Control 

Objective): Definition 8.1, Proposition 8.1, Equation (92), Algorithm 8.1, Algorithm 

8.2, Algorithm 8.3 

 

Conclusions 

One of the attributes of the proposed architecture, which makes it useful in a 

practical setting, is that from a design perspective the reconfiguration database provides a 

decoupling between the mathematical computations, which are based on a PWA model, 

with various assumptions about disturbance etc. and the reconfiguration strategies 

actually deployed. That is to say, that while this thesis provided the theoretical 

justification for a three-layer architecture which uses a “reconfiguration database” in 

practice, the entries in the reconfiguration database can be decided upon based upon 

simulation, testing or other methods, which require fewer assumptions about the system. 

For example, as a design methodology, it is suggested, that the initial values be generated 

by calculating the invariant sets based on a discrete-time PWA model with all the 

necessary assumptions; subsequently the database entries can be refined by testing them 

on more accurate non-linear simulation models and later validated experimentally on a 

real system. In contrast, many of the control and reconfiguration methods proposed by 

other researchers, though mathematically valid, are not transparent in the sense that the 

details of the reconfiguration and control strategies are hidden by the synthesis 

algorithms.  
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Minimization of the Number of Manipulable Inputs 

The method described in Chapter VII for generating the reconfiguration database, starts 

with a given set of configurations UL ⊂ 2U, each of which has a sufficiently small number 

of variables for which the values are not fixed.  

In order to find the smallest number of variables, that need to be manipulated, it 

would be desirable to solve the following optimization problem for all control objectives. 

 Problem 9.1 (Minimal Configuration). Given a piecewise-affine system 

with inputs u(t) ∈ U , a control objective (Reach T in t time steps, while 

staying in Ω for t-1 time steps), and a disturbance set D ⊂ Rn, solve  

( ) ( ){ }TKUUUdimmin t
ll ,~,: 1 Ω⊆Ω⊆  

 

Complexity of MPC for PWA systems 

A comprehensive study of complexity of model-predictive control for PWA systems in 

MLD form is not available. Currently there are a number of unknowns that may strongly 

affect the complexity. In particular it is not known exactly how the number of constraints 

and auxiliary variables in the MLD model grows with the addition of additional discrete 

modes to the PWA system. Such a study is needed to establish the scalability of the MLD 

modeling approach.   

It was conjectured in Chapter VII that the number of integer variables in the 

MIQP problem of MPC is proportional to the number of inputs and states of the PWA 

system. This is only a coarse estimate. The nature of the transformations needed to 

generate the MLD model is complicated and systems that arise in practical applications 
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may have special structures (such as self-similarity). A complexity analysis that ties the 

performance of algorithms such as [25] to attributes of the system in some canonical 

form, that can be linked to physical attributes such as the number of energy storage 

elements, number of switches etc.  

 

Approximate Calculation of Invariant Sets for Hybrid Systems 

Invariant sets for piecewise-affine systems can be calculated by the method 

outlined in [23]. For the case where there is disturbance but no control input, by the 

method of [48]. These methods calculate the invariant sets exactly. But for practical 

applications, approximations of the invariant sets are sufficient. The work of [47] on 

reachability computations, which applies to hybrid systems, might be extended to the 

calculation of invariant sets.  

Although one of the main arguments in this thesis was that design-time 

calculations can be afforded to be computationally expensive, complexity of these 

calculations is nonetheless an issue. The reachability calculations are in general 

exponential in the number of discrete modes, and thus do not scale up well. One method 

described in Appendix B is an attempt to eliminate the complexity arising from the 

discrete modes by performing a convex approximation at each iteration of the algorithm 

to compute the robust controllable set. It is not clear, though, what  conditions would 

make this method work. 
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Tools for Computational Geometry in High Dimensions 

Computational geometry has traditionally focused on two- and three-dimensional 

problems because applications were in areas such as Computer-Aided Design (CAD). 

Clearly, for control-theoretic applications higher dimensions must be considered.  

In [51] the idea of “griddy polyhedra” is presented as a means to alleviate the 

computational issues arising from the set calculations required to control theory. By the 

methods presented in [49][50] this can probably be used to calculate the robust 

controllable sets as required for the architecture presented in this thesis. 

 

Piecewise-Affine-Systems Toolbox 

Piecewise-affine systems have proven to be convenient approximations of hybrid 

systems that lend themselves to relatively simple methods of analysis, verification and 

control synthesis. It would be useful to develop a MATLAB toolbox that provides for 

defining piecewise-affine systems, analyzing them and using them as building blocks for 

composing systems.  

For piecewise-linear hybrid dynamical system a toolbox has been recently 

developed [55] that calculates backwards and forwards reachability and checks properties 

relative to a control objective. 

  

Reconfiguration for Constrained Systems with Polytopic Uncertainty 

In this thesis, the faults that were considered are those that can be modeled as 

input constraints. These are structural faults that limit the control system’s ability to 

influence the plant, typically actuator faults.  
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Faults resulting from changes in physical properties of a system, are often best 

modeled as parameter deviations. For LTI systems a bounded uncertainty in parameter 

identification can be defined as polytopic uncertainty in the system matrices (A,B). The 

system matrices are assumed to lie within a convex hull of a finite number of (A, B) 

tuples. Such uncertainty was suggested in [45] as a method for modeling a non-linear 

system. It is argued therein that analysis and design methods developed for an 

experimentally-obtained model with polytopic uncertainty can be applied to the real non-

linear system. For continuous-state systems with polytopic uncertainty, invariant sets [52] 

[23] and MPC [45][53] have been studied. 

If combined with diagnosis methods [46] the reconfiguration method presented 

here can be applied to LTI systems with polytopic parametric uncertainty. However, the 

problem of PWA systems with polytopic uncertainty appears to be much more difficult. 

In [56] hierarchical control of piecewise-linear hybrid dynamical systems with polytopic 

uncertainty in the matrices associated with each discrete mode is considered. However, it 

is assumed in [56] that the uncertainty is given separately for each mode, and the question 

of of relating the uncertainty in the system (e.g. uncertainty in value of each physical 

parameter) to uncertainty in each entry of the system matrices associated with each 

discrete mode is not addressed. To enable reconfiguration of PWA systems with 

parametric uncertainty this question must be addressed or a diagnosis method must be 

applied that can circumvent this problem by supplying sufficient information for 

reconfiguration without explicitly mapping parameter variations to variations in the 

matrices of each discrete mode. 
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APPENDIX A 

 

MATHEMATICAL CONCEPTS 

 

 

Definition A.6. (Partition) A partition of a set A ⊆ X is a collection of non-empty pair-

wise disjoint subsets of A whose union is A. The subsets are called blocks. 

 

Definition A.7. (Refinement) A partition π1 is said to refine another π2, denoted π1 ≤ π2 if 

every block of π1 is contained in some block of π2   

 

Definition A.8. (Meet) Given two partitions, π1 and π2, their meet π1⋅π2 is the largest 

partition which refines both π1 and π2.   

 

Definition A.9. (Join) Given two partitions, π1 and π2, their join π1+π2 is the smallest 

partition which refines both π1 and π2.   

 

The refinement relation is a partial ordering of the poset consisting of all partitions of A. 

The blocks of the meet are blocks from all nonempty intersections of a block from π1 and 

a block from π2. The blocks of the join are the smallest subsets, which are exactly the 

union of blocks from both π1 and π2. The poset Π is a lattice under the meet and join 

operations.  
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Definition A.10. (Equivalence Relation) A relation is an equivalence relation if it is 

reflexive, transitive and symmetric.   

 

Definition A.11. (Equivalence relation of a partition) Given a set A, and a partition π 

of A., the relation Eπ  is an equivalence relation defined as a Eπ  b ⇔ ∃  B ∈ π : a, b ∈ B.  

 

Definition A.12. (Equivalence Class) Given a set A, an element a ∈ A, and an 

equivalence relation E, the equivalence class  containing a is {x ∈ A | x E a}. 

 

Definition A.13. (Quotient Space)  Given an equivalence relation E, the set consisting 

of all equivalence classes of A, is called the quotient space and denoted A/E. 

 

Definition A.14. (Region)  A region is a subset P ⊆ A.  For a region P and equivalence 

class E. P/E denotes all the equivalence classes that intersect P. 

 

Definition A.15. (E-block)  Given an equivalence relation E on a set A, a set is called an  

E-block if it is a union of equivalence classes. 

 

Definition A.16. (Bisimulation)  Given a predecessor operator Pred : 2A→2A 

(interpreted as a region of predecessor states of a region in a state space, and sets Ai, Af, 

(interpreted as initial and final regions in a state space), an equivalence relation E is a 

bisimulation iff Ai, and Af are E-blocks, and the predecessor of every E-blocks is an E-

block.  
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APPENDIX B 

 

CONVEX APPROXIMATION OF THE UNION OF CONVEX POLYHEDRA 

 

In order to compute the robust controllable set using Theorem 7.1 it is necessary 

to compute the union of polyhedral sets. Since the union of polyhedral sets is not 

guaranteed to be convex, this can lead to a need to compute and represent the robust 

controllable set as a union of an exponentially large number of polyhedral sets.  

Given that only an under-approximation of the initial set is needed for backwards 

reachability, it is suggested to compute the approximation of a union of convex polyhedra 

as a convex polyhedron which is included in the union. 

This method was applied to the computation of the robust controllable set of for 

the three-tank benchmark with some success. However, it suffers from several problems 

as will be detailed later. 

 

Convexity Recognition 

Bemporad et. al. [54] describe a method for recognizing the convexity of a union 

of polyhedra. The basics of this method are as follows:  

Given two Polyhedra P = {x∈ Rd : Ax ≤ a} and Q = {x∈ Rd : Bx ≤ b} the envelope 

is defined as  

( ) { }bxBaxARxQPenv d ≤≤∈= ,:,    (95) 

where axA ≤ is obtained from Ax ≤ a   by removing all the inequalities not valid for the 

other polyhedron Q, and bxB ≤ are obtained from Bx ≤ b in a similar way with respect to 
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P. In [54] it is proven that env(P,Q) = P ∪ Q iff  P ∪ Q is convex. The algorithm for 

implementing this result is given in [54]. Figure 17 shows an example of two polyhedra 

an their envelope. 

 

 

 

Figure 17. Envelope of Two Polyhedra 

 

When P ∪ Q is not convex, it is desired to find a polyhedron   P ∩ Q ⊆ R ⊆ P ∪ 

Q, such that R is convex. The method which was implemented was is as follows: for each 

pair of intersecting hyperplanes, a cutting plane is passed through the hyperplane of 

intersection, which bisects the angle between them as shown in Figure 18. 
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α

 

Figure 18 Bisecting Cutting Plane 

 

If the angle is very obtuse (e.g. cos α > 0.99) then the two intersecting hyperplanes are 

included in the convex approximation, and the cutting plane is not. Otherwise the two 

intersecting hyperplanes are excluded from the convex approximation and the cutting 

plane is included. Also included are all the non-redundant hyperplanes in the envelope. 

The result is shown in Figure 19. Note that P ∩ Q ⊆ R ⊆ P ∪ Q. 
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Figure 19 Convex Approximation 

 

This method was implemented and used to compute the robust controllable set for 

the switchover phase, phase III, in the three-tank reconfiguration scenario of Figure 15.  

The linearized and discretized model of the system, includes two discrete modes: 

with valve V13 open (96)and closed (97) respectively. 
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with constraints 

Ω = {h | 0 ≤ h1 ≤ 0.55, 0 ≤ h2 ≤ 0.6, 0.09 ≤ h3 ≤ 0.1}   (98) 

χ1,2= {h, u | h3 ≤ h1, 0 ≤ h1 ≤ 0.6, 0 ≤ h2 ≤ 0.6, 0 ≤ h3 ≤ 0.6}  (99) 

U = {u | 0 ≤  upump ≤  0.0001}      (100) 
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T = {h |  0 ≤ h1 ≤ 0.2, 0.4 ≤ h2 ≤ 0.6, 0.09 ≤ h3 ≤ 0.11}  (101) 

The set K1,200(Ω,T ) is shown in Figure 20.  

 

 

Figure 20 K1,200(Ω,T) for the three-tank switchover 
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Active approaches to Fault-Tolerant Control seek to maintain safety and 

availability of a plant by reconfiguring its control system when a fault occurs. The 

fundamental problem in this approach is complexity: closing the diagnosis-

reconfiguration-control loop online poses a major challenge. This is particularly hard for 

hybrid Systems, which are as yet not well understood.  

In this dissertation a hierarchical approach is considered aimed at lowering the 

complexity of low-level control. The hierarchy consist of a supervisory controller that 

guides the system through a sequence of regions in the state space, and a configuration 

manager that selects the plant inputs for a low-level controller to use, and the low-level 

controller. The theory of invariant sets provides the necessary tools for the  reachability 

calculations,  which are performed at design time. Using model-predictive control as a 

case in point, it is shown that the hierarchical architecture facilitates the reduction of the 

complexity of the low-level control in three ways: reducing the number of discrete modes 

of the plant that need to be considered, reducing the prediction horizon needed for control 

and reducing the number of plant inputs manipulated by the controller. A three-tank 



 

 

system is used to illustrate the approach. The system model which is considered is a 

constrained discrete-time piecewise-affine system with additive state disturbance. 

The architecture requires enumeration of configurations but not enumeration of   

faults. A feature of the hierarchical architecture, is that controller configurations can be 

designed for each supervisory control mode separately and control laws can be designed 

separately for each configuration. The significance from a practical point of view, is that 

design of fault-accommodation logic can be simplified by adopting the hierarchical 

approach even if it is designed by conventional simulation and testing methods, rather 

than formal verification. 
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