
On the Scalability of Routing Integrated Time
Synchronization
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Abstract. Reactive time synchronization is becoming increasingly pop-
ular in the realm of wireless sensor networks. Unlike proactive protocols,
traditionally implemented as a standalone middleware service that pro-
vides a virtual global time to the application layer, reactive techniques
establish a common reference time base post facto, i.e. after an event of
interest has occurred. In this paper, we present the formal error analy-
sis of a representative reactive technique, the Routing Integrated Time
Synchronization protocol (RITS). We show that in the general case, the
presence of clock skews cause RITS to scale poorly with the size of the
network. Then we identify a special class of sensor network applications
that are resilient to this scalability limit. For applications outside this
class, we propose an in-network skew compensation strategy that makes
RITS scale well with both network size and node density. We provide
experimental results using a 45-node network of Berkeley MICA2 motes.

1 Introduction

In a large class of sensor network (sensornet) applications, such as environmental
monitoring [1], [2], target tracking [3], or countersniper systems [4], [5], sensor
nodes are deployed in the environment to detect certain physical phenomena,
or events. Typically, the sensed data is tagged with the location of the sensor
node and the time of event detection. The location and time of event allow the
sensornet to combine data from multiple sensors into high level information,
that is, to perform data fusion, independently from the time when the data is
received at a data fusion node. However, the data fusion can be only achieved if
the time tags of events have a common time base across multiple sensors, or in
other words, the sensors are time-synchronized.

The most common way to achieve time synchronization (timesync) is to use
one of the many proactive timesync protocols [6], [7]. The term proactive is used
because these protocols establish a virtual global time base in advance, namely,



before the sensornet application starts registering events from the environment.
Commonly, proactive protocols use periodic message broadcasting to compensate
for different sources of error (e.g. clock drifts, clock frequency noise, and clock
glitches). The need for periodic message exchange, however, conflicts with the
power constraints and lifetime requirements of sensornet applications.

The observation that the global virtual time of an event is not used at the
node registering the event, but only at the data fusion node, together with the
fact that proactive protocols suffer from severe messaging overhead, lead to the
development of power-aware reactive timesync protocols [8], [7], [9]. The general
idea of reactive approaches is not to synchronize the local clocks, but instead to
timestamp the events using unsynchronized local clocks. Synchronization takes
place after the event had been detected; henceforth, this approach is often called
post-facto synchronization.

We concentrate on the analysis of the Routing Integrated Time Synchro-
nization protocol (RITS) [8] that integrates post-facto timesync into a routing
service. RITS, as well as reactive techniques in general, is superior to many proac-
tive timesync protocols with respect to communication overhead. However, by
decreasing the number of synchronization messages, we trade precision for power
saving. While with a proactive protocol a node can frequently update its knowl-
edge of the virtual global time, RITS is limited to using routing messages for
synchronization.

In this paper, we show that the timesync error of RITS can significantly grow
in the presence of clock skews and communication delays in message routing. We
provide a formal analysis to explain the effects of error in such cases. The analysis
of the components of RITS error shows that RITS is well-suited, without any
enhancements, for applications where the sensor fusion algorithm works on time
difference of arrival (TDOA) of events that are collocated in space and time. For
the general case, we propose an in-network skew compensation strategy that can
be adopted to improve the timesync error of RITS in particular, and reactive
timesync protocols in general.

Based on the observation that information on clock skews of neighboring
nodes is implicitly present in the timestamped messages they exchange, nodes
can maintain a neighbor table storing skew information without any communi-
cation overhead. RITS converts the event timestamps from the local time of the
sender node to the local time of the receiver node as the message is being passed
from hop to hop along the routing path. We propose that the conversion of the
timestamp includes compensation for the clock skew between the sender and the
receiver at every hop.

It is imperative that sensornet applications be scalable not only with network
size, but also with node density. In a dense network, however, it is not possible
to store skew information for all neighbors. Our skew compensation approach
addresses this requirement with a space efficient skew table maintenance strategy
that operates with predefined table size. We store skew information only for a
small selected subset of the neighbors. Unknown skews are estimated based on
the locally available skew information.



Our experimental results, acquired from a 10-hop network of 45 MICA2 motes
with artificially introduced routing delays, show that employing skew compen-
sation reduces the timesync error of RITS from 29µs to 5.3µs on average.

We organize the paper as follows: Section 2 provides a detailed description
of the leading reactive timesync protocols found in the literature. We formally
analyze the timesync errors of RITS and discuss the implications on the general
applicability of RITS in Section 4. To support sensornet applications in the
general case, Section 5 presents an in-network skew compensation technique
that improves the scalability of RITS with network size, communication delays,
and node density. Finally, we offer our conclusions in Section 6.

2 Reactive Time Synchronization Protocols

Traditional proactive timesync protocols require the clocks of sensor nodes to
be synchronized before an event happens. Because the clock rates of the nodes
drift and vary in random and unpredictable ways, depending on the required
timesync accuracy of sensornet applications, a non-trivial amount of system re-
sources needs to be spent to keep the clock rate information accurate and actual.
Post-facto (or reactive) timesync protocols propose to start the synchronization
process after the event is detected to avoid performing timesync when it is not
needed. This way nodes can be kept in a low-power sleep mode, conserving
energy during periods of inactivity.

Post-facto synchronization was first suggested in [10] and later extended
in [11]. The authors propose two forms of post-facto synchronization: single-
pulse synchronization which requires advance calibration to be accurate, but
reconstructs the global timescale quickly, and post-facto synchronization with
RBS which takes longer to converge but does not require any a priori knowl-
edge. The approach described in [9] transforms timestamps exchanged between
nodes to the local time of the receiver, rather than adjusting the clocks to the
global time base. The low message overhead of this method renders the protocol
suitable for sensornets. Finally, the approach advocated in [8] claims to provide
accurate and instantaneous timesync using no extra radio messages and requir-
ing no a priori information. We delve into the details of these synchronization
schemes in the remainder of this section.

Single-Pulse Synchronization. Single-pulse synchronization [11] requires
a third party node, a beacon, to broadcast a synchronization pulse right after
an event of interest was detected in the network. Nodes that receive the pulse
use it as an instantaneous time reference and normalize their timestamps of the
event detection to the synchronization pulse. This scheme works well for short
distances (i.e. within the broadcast range of a single node) provided the stimulus
timestamps are recorded close in time to the synchronization pulse. The three
main error sources of this scheme were characterized as the receiver clock skew,
variable delays in receivers, and propagation delay of the synchronization pulse.
The clock skew error is the most significant source of error, therefore single-pulse



scheme works the best, if a priori calibration of clock frequencies is performed
and clock skew estimates are used to correct the stimulus timestamps.

Post-facto Synchronization with Reference Broadcast. The second
scheme proposed in [7] resolves the drawbacks of single-pulse synchronization
scheme: it achieves timesync over large distances, and synchronizes nodes that
have no mutually shared information. After a stimulus event is detected in the
network, an algorithm estimating the clock skews between the nodes is exe-
cuted and the resulting clock skew estimates are used to correct the stimulus
event timestamps in the past. This scheme resolves the problems of the single-
pulse, but also brings in some disadvantages: the RBS estimator needs multiple
synchronization pulses to obtain clock skew estimates, so the timesync is not
achieved instantaneously. If a long time passes between the stimulus event and
skew estimator conversion, the clock skew estimates may significantly differ from
the clock skews at the event detection introducing additional errors.

Time Synchronization with Timestamp Conversion. This protocol [9]
proposes not to synchronize the local clocks of the devices, but instead to gener-
ate timestamps using unsynchronized local clocks. When the locally generated
timestamps are passed from a node to node in the network, they are converted
to the local time of the receiving device. Due to the limited precision of the
timestamp conversion used, the algorithm uses time intervals as a lower and
upper bound for the exact value. Comparison of timestamps relies on a spe-
cial interval arithmetic, hence there are cases when the temporal ordering of
timestamps cannot be determined. One distinctive feature of this approach is
that the timestamp transformation has the following correctness property: the
partial ordering of event timestamps in the local time of a give node reported by
the algorithm is a subset of the total ordering of the times of the event in real
time. This approach explicitly targets communication of timestamps over long
distances, making it particularly suitable for multi-hop ad hoc networks.

3 The Routing Integrated Time Synchronization Protocol

RITS [8] is a reactive timesync protocol, which can be used to obtain times of
event detections at multiple observers in the local time of the sink node(s). We
provide a more detailed description of the protocol later when formally analyze
the timesync errors it introduces.

From the application’s point of view, RITS is an extension of the routing ser-
vice with a well-defined interface. The interface defines commands to send and
timestamp a data packet, a callback function to signal the reception of a packet,
and a command to query the timestamp of a received packet. On detecting an
event, the application on the sensor node generates a data packet containing the
event information, and timestamps it with the value of the local time of detec-
tion. It forwards the packet with the timestamp to the routing service, which
delivers it to the sink. RITS places no assumptions on the network topology
or routing algorithm beyond those that are required by the application. Rather
than performing explicit timesync after the event of interest is detected, RITS



performs inter-node time translation along the routing path from an observer
node to the sink: as the data packet travels from node to node in the network,
RITS converts the corresponding timestamp from the local time of the sender
to that of the recipient. When the packet arrives at the sink, the routing service
signals an event to the application layer that a packet has been received. The
application can then query the routing layer for the timestamp of the received
packet, which is returned in the local time of the sink.

The prototype implementation of RITS builds on the Directed Flood Routing
Framework (DFRF) [12]. DFRF is a generic routing framework that supports
rapid prototyping and implementation of large class of application specific rout-
ing protocols that are based on directed flooding. Integrating reactive timesync
with the routing service has several benefits over a standalone timesync service:

– Coupling of event data and event timestamps. There is a tight logi-
cal coupling between event information and the corresponding timestamps.
RITS retains this coupling: in a data packet, event data and timestamps are
physically collocated. RITS thus implements implicit timesync, that is, the
flow of time information is embedded in the flow of data. There are no pure
timesync messages, hence RITS has virtually no communication overhead.

– Network-transparent event timestamps. As data packets propagate in
the network, RITS converts the corresponding time stamp hop by hop to
the local time of the recipient node. As a result, all data packets received
by a given node contain event timestamps in the recipient node’s local time,
independently from where in the network the events originated.

– Packet aggregation. Packet aggregation helps decrease the number of mes-
sage transmissions. In fact, not only does the number of radio messages
decrease, but also the overall payload size. This is because in an aggre-
gated radio message, n data packets (containing event information and event
timestamp) share only one transmit timestamp.

– Packet filtering. Through packet filtering support, it is possible to discard
outdated messages at intermediate nodes enroute to the destination, thus
decreasing the message load.

– Orthogonality to the routing policy. DFRF allows for the customization
of routing behavior via routing policies. RITS is orthogonal to the policies,
that is, the same time conversion is used with different routing behaviors.

4 Analysis of the Error of RITS

The RITS protocol claims to achieve highly accurate instantaneous post-facto
timesync without using extra radio messages [8]. RITS provides these properties
only for a relatively small subset of sensornet applications, for which a particular
set of assumptions is fulfilled. We formally express the error of RITS and derive
the set of properties that RITS requires from sensornet applications.

As noted in both [11] and [8], reactive protocols are susceptible to multiple
sources of error. The two most egregious ones are the error caused by different



clock rates of the nodes on the routing path, and the error in timestamping the
radio message arrival.

We use the following notation: we have a set of N nodes that can be receivers
ri and/or senders si, i ∈ {1, . . . , N}. Each node has its own local clock that
measures the local time ti. We denote a fictious universal time with u. The
offset of the local time from the universal time can change over time because the
clock rate of a node can differ from the rate of universal time, we express the
relation of the local and universal time as

ti = αiu + βi. (1)

The clock skews αi are assumed to be constant in the time interval a packet
spends at node i. This assumption is justifiable for a reasonably fast routing
service, nevertheless the crystal clock rates, though slowly, do change in the
real hardware. Furthermore, we assume that the clock skews αi are independent
random variables from a symmetric distribution with mean one (that is, the
universal time rate). We impose no assumptions on the initial clock offsets βi.

We express the synchronization mechanism of RITS as follows: receiver rk

synchronizes with the sender sj by receiving a synchronization message mi. We
denote the sender timestamp of message transmission by ys

ij and the receiver
timestamp of message arrival by yr

ik. Both ys
ij and yr

ik are known to the receiver.
If es

ij and er
ik are timestamping errors of sender and receiver, respectively, and

ui is the universal time when the message was transmitted, then

ys
ij = αjui + βj + es

ij (2)
yr

ik = αkui + βk + er
ik. (3)

Similarly, if the i-th node records the local time of an event E, we denote this
timestamp as yEi.

According to [6] it is assumed that both er
ik, and es

ij are independent identi-
cally distributed random variables with zero mean. Since low-power transceivers
have limited communication range, we can further assume that the propagation
delay between the sender and receiver is negligible, therefore the universal time
of sending and receiving message mi are the same (i.e. ui).

If the receiver (rk) wishes to transform a time of stimulus event E from the
sender’s (sj) timeline to its own timeline, provided a radio message mi has been
sent, the receiver performs the following calculation:

yEk = yEj + yr
ik − ys

ij . (4)

It is important to note that the timestamp conversion of RITS does not consider
the clock skews. Henceforth, we expect that skew related errors will accumulate.

4.1 Error Along a Routing Path

Now let us apply the transformation iteratively as a message is being passed
along routing path to get the following general result. Timestamps converted to



the local times of the second, the third node and the n-th node (yr
01 = yE1) are:

yE2 = yE1 + yr
12 − ys

11

yE3 = yr
23 − (ys

22 − yr
12)− (ys

11 − yE1)

yEn = yE(n−1) + yr
(n−1)n − ys

(n−1)(n−1) = yr
(n−1)n −

n−1∑
i=1

(ys
ii − yr

(i−1)i).

We denote the timestamping error introduced by the i-th node with ei and
define it as e1 = es

11 and ei = es
ii − er

(i−1)i for i > 1 and use ei along with
Equations 2 and 3 to further rewrite yEn:

yEn = yr
(n−1)n −

n−1∑
i=1

αi(ui − ui−1)−
n−1∑
i=1

ei.

Furthermore, for the sake of simplicity, let us assume that for all i, ui − ui−1 is
constant, that is, the message spends equal amount of time at each node along
the routing path. Let us denote this constant with τ . This way we can separate
the first summation into skew-independent and skew-dependent components:

yEn = yr
(n−1)n − τ(n− 1)− τ

n−1∑
i=1

(αi − 1)−
n−1∑
i=1

ei, (5)

where the first term is the time when the message arrives at the last node,
the second term is the age of the packet, the third and fourth terms are errors
introduced by the clock skews and the message timestamping, respectively.

4.2 RITS and TDOA Measurements

In an important class of monitoring applications, sensor fusion works with time
differences of arrival (TDOA) of events. Let us assume that the event E was
detected at time uE by two nodes r1 and r′1, and the two time tags arrived to
the data fusion node along two different paths P and P ′, such that P = r1, . . . , rn

and P ′ = r′1, . . . , r
′
m. We further know that the final node of both P and P ′ is the

same (the data fusion node), so αn = α′
m = αdf . Without loss of generality we

can assume that n < m. Consequently, we express the error that RITS introduces
to the TDOA data when routing the timestamps to the data fusion node:

y′Em − yEn = τ
n−1∑
i=1

(αi − α′
i) + τ

m−1∑
i=n

(αdf − α′
i) +

n−1∑
i=1

ei −
m−1∑
i=1

e′i. (6)

Due to the assumptions on the distribution of the skews and the message time-
stamping errors, the expected values of the first, third and fourth terms are
zero. Interestingly, the expected value of the second term is τ(m − n − 1)αdf .
This means that the clock skew of the data fusion node introduces an error



proportional to the clock skew of the data fusion node and the difference of
delivery times of the messages.

The variance of the two skew related terms sum up to τ [(n−1)+(m−1)]V (α),
meaning that the variance is proportional to the time the messages spend at a
given hop and to the sum of the lengths of the paths. The message timestamping
related error has a variance of [(n − 1) + (m − 1)]V (ei), which grows with the
sum of the path lengths.

An important special case is when the two paths overlap. Without loss of gen-
erality, we assume that P ′ = r1, . . . , rj , . . . , r

′
j+1, . . . , r

′
m. Using partially over-

lapping paths, the TDOA calculated by RITS changes as follows:

y′Em − yEn = τ
n−1∑

i=j+1

(αi − α′
i) + τ

m−1∑
i=n

(αdf − α′
i) +

n−1∑
i=1

ei −
m−1∑
i=1

e′i. (7)

Since the skew related errors introduced by the nodes that are on both paths
cancel out, the variance of the skew related error decreases to τ [(n− 1) + (m−
1)− j)]V (α). That is, the variance of the skew related errors is proportional to
the time the packet spend at the nodes and to the length of the disjoint regions
of the routing paths. Another factor is that the event times need to be close
to each other. Otherwise, the clock skew of the sender node introduces a large
error. In particular, the events should be kept on a node for as short period of
time as possible.

Platform Timestamping error Clock skew error

Mica2 external crystal 30.5 µs 50ppm
(32 kHz, CC1000 radio) (= 1 clock tick) typically 30.5 µs per second

Mica2 internal oscillator 1.4 µs 50ppm
(7MHz, CC1000 radio) typically ≤ 20µs per second

Telos internal oscillator 0.125 µs 50ppm
(8MHz, CC2420 radio)

Table 1. Survey of timesync errors expected from timestamping and clock skews for
common sensornet platforms [13], [14].

4.3 Implications of Theoretical Results

We provide typical expected timestamping errors and clock skews for the most
common sensornet platforms to match the formal results of the previous section
to real world hardware in Table 1. We further concentrate on the applicability of
the RITS protocol and show an experimental test case, where the timesync error
of RITS does not scale well with the number of hops. Consequently, we provide
a set of properties that RITS requires from the sensornet applications. Finally,
we use the error analysis results and suggest two improvements of RITS.

Applicability of RITS. The design of RITS was heavily influenced by the
requirements of a specific sensornet application, acoustic event localization [4]:

– only time differences of arrivals are required to localize an acoustic event,



– fast routing to the sink is required, because the event source is mobile,
– preservation of temporal ordering of events is not a requirement, and
– detected events are close to each other in space and time.

These properties are important because they place bounds on the terms in
Formula 6 that contribute to the error of RITS. Maximum RITS error of 80µs
and the average error of 8µs were reported in [8] using Mica2 platform and 7MHz
internal clock in a 10 hop network. However, only a small class of applications
can achieve similar results, the main problem being the error introduced by
the (uncompensated) clock skews. Table 1 shows that this error can become
significant even over moderate time intervals.

sink

Fig. 1. Large scale network detects an
event, the timestamps are then routed
along a spanning tree to the sink node.
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Fig. 2. The histogram of average errors for
the experiment with simulated transmission
delays of 5 seconds at each node.

We experimentally verified the poor scalability of RITS if the routing time
to the sink node increases. We carried out an experiment similar to the one
described in [8]: we used 45 Mica2 motes arranged in a grid forming a 10-hop
network. Events that triggered nodes within a certain radius were periodically
simulated at random points in the network. Each event was simultaneously de-
tected at all triggered nodes, and the timestamps of these detections were sent
to the data fusion node (sink), as shown in Figure 1. We introduced an artificial
delay of five seconds between receiving and forwarding the message, thus inflat-
ing the time intervals it takes to route the event detection times. The maximum
and average synchronization errors are computed as the maximum and aver-
age pairwise difference of all timestamps received by the sink that correspond
to the same event detection. Compared to the non-delayed case [8], the mea-
sured maximum and average synchronization errors across 700 simulated events
grew significantly from 80µs to 265µs, and from 8µs to 29µs, respectively. The
histogram of average errors can be seen in Figure 2.

Mitigating the Error of RITS: Routing Strategies. Formula 6 shows that
if we fix a routing path P , then the variance of the term τ

∑
(αi− 1) grows with

the increased routing time to the sink. This causes a large timesync error along
the path P . The important observation is that this error is consistent, i.e. has a
relatively small variance, as it is caused by the timestamping errors alone, since
the skew related errors cancel out.



We verified this experimentally by deploying 50 Mica2 nodes logically arranged
on a line, forming a 50-hop network. The first node, the coordinator, broadcasts
a RITS packet with its current time. Other nodes retransmit the packet upon
receiving it, until the packet reaches the last node. The coordinator overhears all
retransmissions, uses RITS to convert the timestamp in the packet to its local
time and records the error of the timestamp after each hop. This allowed us to
study the error of RITS across multiple hops. Figure 3 shows the accumulated
error after each hop, averaged over multiple rounds. To make the clock skew
errors prevail over timestamping errors we introduced a delayed strategy for the
RITS packet retransmission: a node waits 5 seconds after receiving the packet
and only then retransmits it.

Sending with no delay
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Fig. 3. 50 nodes arranged on a line experiment: errors of the RITS calculated time
compared to a single-node time for the no-delay and 5 seconds delay strategies are
shown. The accumulated errors are averaged over multiple runs and we plot the variance
of these errors.

The promising fact is that the variance of the accumulated error is the same
in both experiments, which means that the motes introduce significant, but
consistent error. Consequently, we specify the applications requirements and
propose improvements to the RITS protocol to make it scale for large networks:

– the original RITS protocol did not discuss the implications of using differ-
ent routing strategies. We observe the advantage of overlapping routes, and
suggest using spanning tree routing which ensures this property. In contrast,
gossip or epidemic protocols which can result in dynamic routing paths, will
not support scalability of RITS.

– the sink node introduces large error if the time between receiving two differ-
ent events is long. This error is caused by the clock skew error of the sink and
can be mitigated by synchronizing the sink with a high precision external
clock source.

With these improvements, RITS scales well with the number of hops and
communication delays, provided an application has the following properties:

– applications need to be TDOA based; we know that a routing path introduces
large error which is unknown to the sink node, therefore, relating this time
to any global time scale is not possible,



– the stimulus event detections must be located within a small neighborhood,
as shown in Figure 1, so that the significant portions of the spanning tree
paths overlap.

5 Skew Compensation

The main features of RITS were that it does not require any a priori informa-
tion, does not need to know or maintain the skews of the nodes, and uses no
additional timesync messages to achieve synchronization. The improvements to
RITS discussed in the previous paragraph did not need to sacrifice any of these
features. Supporting a general class of applications, however, drives us to drop
one of these properties. We show that it is possible to estimate the clock skews
without using additional timesync messages, provided that there exists a lower
bound on the frequency of the stimulus events in the deployment area.

5.1 RITS with Clock Skew Compensation

Compensating for the skews between the clocks of the nodes along the routing
path can significantly decrease the variance of the timesync error. Recall that
RITS converts the event timestamps from the local time of the sender node
to that of the receiver node as the message is being passed from hop to hop.
Without skew compensation, this conversion is achieved by adding the offset of
the clocks of the sender and the receiver nodes to the event timestamp in the
local time of the sender to yield the event timestamp in the local time of the
receiver.

When skew compensation is employed, the conversion is more involved. We
do not assume that a node knows its clock skew from the nominal clock rate
(referred to as the absolute skew), however, it is assumed that it knows the
skews of their neighbors relative to its local clock rate (referred to as the relative
skew). This means that there is no global clock rate to which the elapsed time
at each hop could be converted.

The absolute skew of node i is defined as its skew relative to the nominal
clock rate fnom, that is, αi = fi

fnom
. Relative skew of node i with respect to node

j is defined as αi,j = fi

fj
.

5.2 The Approach

The proposed skew compensation approach is the following. When receiving a
packet – which includes event description and event timestamp in the sender’s
local time – the receiver node calculates the age of the packet in the sender’s
time:

ages = ys
m − ys

E ,

where ys
m is the transmit timestamp of the message and ys

E is the event timestamp,
both in the sender’s local time. Because a clock skew is present, the age of the



packet needs to be converted from the sender’s clock rate to the receiver’s clock
rate, which is achieved simply by dividing it with the relative skew.

ager =
ages

αs,r

Subtracting the converted packet age from the receive timestamp of the message
yields the event timestamp in the receiver’s local time.

yr
E = yr

m − ager

Expressing the conversion in one formula gives

yr
E = yr

m − ys
m − ys

E

αs,r
.

Eventually, when the packet reaches the sink node, the event timestamp is con-
verted to the sink node’s local time. In contrast with RITS without skew com-
pensation, the conversion takes into account differences of both offsets and skews
between the sink node and nodes registering the events.

5.3 Measuring the Relative Skew

Relative skew of a neighbor w.r.t. a given node is computed as the fraction of
the number of ticks of the neighbor’s clock and the number of ticks of the local
clock during a reference time interval.

While determining the clock offset of neighboring nodes requires only one
common reference point in time, acquiring their relative skew necessitates having
two of them. The estimation of relative skews is based on a neighbor skew table,
which contains records with the transmit and receive timestamps of the most
recent message from the neighbor, as well as the most up-to-date relative skew
to the neighbor, if known.

yr y12 

y11 

y22 

y21 

yr 

ys ys 

m1 m2 

Timeline of receiver 

Timeline of sender 

Fig. 4. Skew measurement.

Maintenance of the skew table is carried out as follows. When a message is
received, we locate the sender’s record in the skew table. The record contains
the transmit and receive timestamps of the previous message from the sender.
The difference of the actual and the previous transmit timestamps (in Figure
4 denoted by ys

21 and ys
11, respectively) gives the time elapsed between the two

messages in the sender’s clock. Similarly, the difference of the actual and the
previous receive timestamps, yr

22 − yr
12, gives the time elapsed between the two



messages in the receiver’s clock. The relative skew is the fraction of the two
differences, which is exponentially averaged with the previously calculated skew
value, and stored in the skew table.

Our approach employs an implicit skew measurement technique. All radio
messages are timestamped by the sender and the receiver, regardless of message
content. Since the relative skew information is implicitly carried in the message
timestamps, measuring the skews requires no dedicated communication. This
solution, however, has its caveat: since the clock frequencies of the devices are not
stable, relative skews become outdated if nodes communicate rarely. The problem
can be solved by periodically generating dummy messages, though RITS leaves
this to the application layer. A method to find the optimal beaconing period has
already been proposed by Ganeriwal et al. in [15] and [16].

5.4 The Challenge of Memory Constraints

Networked sensor nodes are severely constrained devices, where RAM is a pre-
cious resource. It is not unusual that the operating system, the middleware
services (multi-hop routing, timesync, etc.) and the application layer have to
share no more than 4kB of RAM. The neighbor table that augments skew mea-
surements and stores the relative skew values contains records in the following
structure.

typedef struct {

uint16_t nodeID; // ID of the neighbor

float skew; // relative skew w.r.t the neighbor

uint32_t lastTxTimeStamp; // Tx timestamp of last recvd message

uint32_t lastRxTimeStamp; // Rx timestamp of last recvd message

} neighborRec;

The size of this record is 14 bytes, which might seem negligibly small, how-
ever, sacrificing a few hundred bytes for a neighbor table of one of the many
middleware components might not always be a viable option.

We face two conflicting constraints here: small memory footprint versus scal-
ability with node density. If the size of the skew table is too small, skew compen-
sation will fail in dense networks, whereas a large neighbor table is not affordable
because of the memory constraints.

5.5 Maintaining a Bounded Skew Table

Clearly, the need for scalability with network density necessitates limiting the
size of the skew table. Furthermore, we may want to control which neighbors’
relative skews we store, and we need to decide how to compensate for the skews
of those neighbors for which no skew information is available. Our approach is
that a node stores the relative skews only for a subset of its neighbors. Using the
stored values, the node estimates its relative skew to the rest of the neighbors.

The most important property of this strategy is that the absolute skew of the
node itself does not influence which neighbors are stored in the skew table: this



decision is made purely on the observed relative skew values of the neighbors.
This way the skew compensation will work well even if the node itself has a
significant absolute skew.

5.6 Estimation of Unknown Skews

An appealing strategy is to keep the skew information of neighbors having the
worst absolute skews in the skew table, and not storing the relative skew infor-
mation of the remaining well-behaved neighbors. When a packet is received from
a bad neighbor, which would normally introduce a considerable skew related
timesync error, the stored value is used for skew compensation. This way the
worst timesync errors will be compensated for. When receiving a packet from
a good neighbor, which has only minor contribution to the timesync error, we
compensate with an estimate of the mean of the relative skews of the neighbors.

good

bad bad

1 1/� i

good

bad bad

1
� i

a.) Absolute skews

b.) Relative skews measured by node i

Absolute skew

Skew relative to
node i

Fig. 5. Distribution of absolute and relative skews measured by an arbitrary node i.
The white dot denotes node i, the grey and the black dots denote the bad and the
well-behaved neighbors, respectively.

Since the absolute skews cannot be measured directly, the categorization of
good and bad neighbors has to rely on the information carried in the relative skew
measurements. The neighbor’s relative skew values, as perceived by a node, are
normally distributed with the same variance as the distribution of the absolute
skews w.r.t. the nominal skew, but the values are centered around the reciprocal
of the node’s own absolute skew, not around 1. We can observe that the relative
skews of the good neighbors fall close to the median of the measured values,
while those of the bad neighbors are far from it.

If the bounded skew table is maintained such that the categorization of good
and bad skews is based on their distance from the median of the measured skew
values, the skew table will store the left and right tails of a random sample
representing the relative skews of the neighbors (even if the clock rate of the
local node significantly differs from the nominal rate). The values that are not
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Fig. 6. The histogram of maximum errors for the experiment with a large skew table
holding the skew values of all neighbors.

Maximum Error of RITS with Skew Compensation
(with measured and estimated skews)
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Fig. 7. The histogram of maximum errors for the experiment with a limited skew table
holding the skew values of 6 neighbors.

stored must fall between the maximum skew of the left tail and the minimum
skew of the right tail; from here, we estimate the unknown skews with the average
of the two.

The corresponding table maintenance strategy is implemented as follows.
The size of the skew table, denoted by n, is set to an even number. The skew
records are sorted by the skew values. When the skew table is full, and a new
skew measurement is completed, the new value is compared with the skews of
the two records in the middle (at positions n

2 and n
2 + 1). If it is between the

two values, it is discarded. If it is below (above) the two values, the record at
position n

2 (at position n
2 + 1) is evicted, and the new measurement is inserted

in the skew table. In a steady state, the two middle values give a lower and an
upper bound on the skews of the neighbors that are not stored.

5.7 Experimental Results

We repeated the experiment described in Section 4.3 using RITS augmented
with clock skew compensation. The 45 Mica2 motes were arranged in a grid
forming a 10-hop network, using a sufficiently large neighbor table. As in the
previous experiment, we introduced an artificial routing delay of five seconds at
every hop, to allow skew related errors to manifest.



To test the performance of our skew compensation algorithm, we set the size
of the skew table large enough to hold the skew information of all neighbors. As
Figure 6 shows, employing in-network skew compensation drastically reduced the
timesync error of RITS. Compared to the previous results (see Figure 2), the
average synchronization errors decreased from 29µs to 2.8µs. Not considering
the bootup period of the skew compensation algorithm when the skew table is
not populated, the maximum error decreased from 265µs to 44µs.

In the next experiment, we limited the size of the skew table to hold only
six records. As expected, the measured timesync errors increased compared to
the fully compensated case. Although the maximum error we experienced was
258µs, which is comparable to the non-compensated case, only 1% of the errors
were above 100µs. This can be attributed to the drastically small neighbor table.
However, as Figure 7 shows, skew compensation with partial skew information
is still a significant improvement over the non-compensated case, as the average
synchronization error was only 5.3µs.

6 Conclusions and Future Work

The Routing Integrated Time Synchronization protocol was specifically designed
with a single application in mind [4]. Although it was successfully tested in a
number of medium-scale deployments, our analysis found that its scalability with
network size and communication delay limits its general applicability.

In this paper we investigated the reasons for the scalability problems and pre-
sented an error analysis of RITS. We showed that the variance in clock rates is
responsible for the largest time synchronization errors. We found that the clock
skew related errors do not manifest in a special class of sensornet applications,
where only the time difference of arrival of the registered events are of concern,
and where event detections are close to each other in space and time. We pre-
sented an in-network skew compensation technique that improves the scalability
of RITS, making it suitable for a wide range of sensornet applications.

We further plan to investigate scalability limits of RITS augmented with skew
compensation. Since the skew measurement errors and the skew estimation errors
are expected to propagate in a multiplicative fashion, the precision of the skew
measurements and a probabilistic upper bound on the estimation error have to
be controlled. This can be achieved by setting a proper lower and upper limit on
the time difference of reception of the two messages that are used to measure the
skew and by choosing the size of the neighbor table large enough, such that the
skews of the good neighbors are bounded by a relatively small interval. Finding
the proper values of these constants demands further research.
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