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Fine-grained geographic localization of nodes is essential for an extensive range of distributed sensor 
applications. To compute geographic coordinates, localization algorithms commonly use pair-wise distance 
estimates between nodes. In this technical report we present a noise tolerant acoustic ranging mechanism 
for wireless sensors that employs digital signal processing techniques on standard MICA hardware. We 
describe how noise canceling, digital filtering and peak detection can be applied to meet the severe resource 
constraints of the platform, yet yielding average range estimation errors below 10cm independently from 
the actual node-to-node distances. 
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1 Introduction 
Wireless sensor networks consisting of small, low-power nodes equipped with different sensors and 
actuators have been gaining attention among researchers in the past few years. The fields of their 
possible applications range from military surveillance to precision agriculture. It is not uncommon that 
tolerance to severe environmental conditions, such as significant background noise or extreme 
temperatures, is a requirement. The inconvenience or infeasibility of human interaction in these 
scenarios raises a need for ad-hoc deployment and unattended operation.  
As geographic location of nodes is required by a number of sensor applications and middleware 
services, such as positioning systems, collaborative sensing and signaling applications, and location-
aware routing services, it is imperative that the sensor network be able to conduct self-localization. 
Wireless sensor networks are intrinsically different from traditional distributed systems due to the strict 
resource constraints on the sensor nodes. Resources are primarily constrained by energy consumption, 
hardware size and cost. System lifetime should be in the order of weeks or months, requiring low-power 
hardware as well as power-aware software solutions. The cumulative hardware cost of the system needs 
to stay low, even though the number of nodes employed in a particular real-world application can be 
large. Furthermore, application-specific hardware tends to be expensive due to the relatively high costs 
of design and manufacturing necessitating the usage of COTS hardware in large-scale sensor networks. 
Localization in sensor networks is most commonly accomplished using range estimations between 
sensor nodes.1 An extensive amount of research has been done into various ranging techniques in the 
past few years. If high accuracy was not considered the primary design criterion, received RF signal 
strength information (RSSI) and RF proximity based methods provide sufficient results [1] [2] [3]. The 
most effective techniques, which yield results sufficient enough to carry out fine-grained localization, 
however, are based on time of flight (TOF) measurements of signals. 
Purely RF time of flight based techniques, such as GPS, have limited applicability in sensor networks, 
since they demand high precision measurements and synchronization. Acoustic signals have many 
                                                 
1 Research has been done to investigating range-free localization approaches as well. See [17] for details. 



advantages over RF based approaches. Since the sound propagates much slower in air than RF signals, 
TOF can be precisely estimated from the time difference of arrival (TDOA) of simultaneously emitted 
acoustic and radio signals. As opposed to RF based TOF measurement techniques, clocks on the nodes 
need not be explicitly synchronized, post-facto synchronization [4] suffices. Ultrasonic ranging 
techniques, such as described in [5] and [6] can attain higher precision than the ones using audible 
sound, however, they provide shorter effective range and require more expensive hardware. 
The ranging mechanism presented in this paper uses acoustics and leverages the advantages described 
above. Unlike other implementations on the same hardware, which make use of the analog tone detector 
on the MICA sensor board, in our approach we sample the acoustic signals then digitally process it to 
estimate the time of flight. Processing includes reduction of Gaussian noise using multiple sampling, 
digital filtering, and detecting the offset of maximum energy in the resulting signal. Though this 
implementation is significantly more expensive than the ones using the tone detector with regards to 
memory requirements and computational costs, it is much less sensitive to background noise and has a 
longer effective range. 
Though acoustic ranging augmented with digital signal processing has already been the subject of 
research within the scope of sensor networks, existing implementations target more heavyweight 
hardware (i.e. sensor nodes with PC-class capabilities). Our prototype is unique in a way that it targets 
severely resource constrained devices, equipped with 4 to 8 MHz microcontrollers and 4 kb RAM.  
After specifying the hardware requirements of the application in section 2, section 3 introduces our 
acoustic ranging approach. We present the digital signal processing techniques suitable for severely 
constrained hardware to carry out amplification and filtering, and explain how range estimates are 
computed from the recorded samples. Temperature dependence issues and calibration is discussed in 
section 4. Section 5 evaluates our experimental results; and Section 6 discusses the issues and limitations 
of our approach. Finally, we give a brief comparison between our approach and two existing acoustic 
ranging implementations in section 7. 

2 Hardware 
Our acoustic ranging application targets the MICA/MICA2 motes developed at UC Berkeley as a 
research platform for low-power wireless sensor networks [7]. 
The MICA mote is equipped with a 4 MHz RISC microcontroller, 4 kb RAM and a 916 MHz wireless 
transceiver capable of data transfer at 19.2 kbps with the radio range of 200 feet, and is powered by two 
AA batteries. The microcontroller has no support for floating point arithmetic or integer multiplications. 
The MICA2 mote has a more advanced microcontroller running at 7.3 MHz and its transceiver supports 
transfer rates up to 38.4 kbps with an increased radio range of 500 feet. 
The basic sensor boards, compatible with both MICA and MICA2 motes, are equipped with a number of 
sensors and actuators. Among them, the microphone and the fixed-frequency sounder are utilized by the 
application introduced in this paper. The maximum attainable sampling rate is around 18 kHz; the 
nominal frequency of the sounder is 4.4 kHz. 

3 Approach 
The concept of acoustic ranging is based on measuring the time of flight of the sound signal between the 
signal source (also referred as the acoustic actuator, or simply actuator) and the acoustic sensor. The 
range estimate can be trivially calculated from the time measurement, assuming the speed of sound is 
known and is constant. 



Employing a sophisticated synchronization mechanism is essential to accurately measure the time of 
flight. The most common approach is having the actuator notify the sensor via a radio message at the 
same time when the signal is emitted. Since the propagation speed of the radio signal is approximately 
106 times higher than the speed of sound, the difference of the arrival times of the sound and radio 
signals is a good estimate of the time of flight in question.  
However, there is a problem with the practical application of this approach, namely that it is the start of 
the signal that needs to be detected, which is cumbersome for the following reasons: 
a. Generating a sound signal with a sharp rising envelope is infeasible with the available hardware. 
b. Accurate detection of the start of a noisy signal is difficult. 
To satisfactorily address this issue our ranging solution first computes the sample-wise sum of multiple 
sampled signals. This way the Gaussian noise in the original samples will cancel out, and the summed 
signal will have a better signal-to-noise ratio. Then, we apply a digital band-pass filter, and finally we 
detect the first peek in the filtered samples that will be used to estimate the start of the original signal. 

3.1 Increasing the signal-to-noise ratio 
To adequately address the problem of locating the beginning of the chirp, first we need to increase the 
signal-to-noise ratio of the samples. 
In our approach, the acoustic signal consists of a series of chirps, all of the same length, with variable-
length intervals of silence in between. Delays between the consecutive chirps are known to the sensor. 
Since the sensor knows the emission time of the series of signals (the sensor is notified via a radio 
message as discussed before) and the exact pattern as well, it can calculate the emission time of each 
chirp. The chirps are sampled one by one, then added together and processed as a single sampled signal. 

 

 
Since disturbances such as ambient and electronic noise are of Gaussian nature, they are independent for 
each chirp, whereas the useful signal content will be identical. Adding together the series of samples 
improves the SNR by 10lg(N) dB, where N is the number of chirps used. Our prototype uses 16 
consecutive chirps in an acoustic ranging signal, thus the SNR is improved by 12 dB. 
Delays between consecutive chirps are varied to avoid a situation when multiple samples have the same 
noise pattern at the same offset, which is a common phenomenon caused by acoustic multi-path effects. 
Hence the independent nature of the disturbances is preserved. 
To keep the memory requirements at a minimum, our implementation uses an accumulator buffer for the 
sampled signals, where the additions are done on the fly. 

Figure 1. Sampling of multiple signals. The length of the 
signals (ls) and the delays between the consecutive chirps 
(d1, d2,…, dN) are known to the sensor, this way the start 
times of the sampling intervals can easily computed. 
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3.2 Filtering 
The acoustic signals are of a fixed frequency with slight variations between distinct actuator nodes, 
probably due to manufacturing differences. Lower and upper bounds for the frequencies were measured 
to be 4000 and 4500 Hz respectively; the sensors were, thus, tuned to search for the acoustic signals in 
that frequency range. 

3.2.1 Designing the filter 
To improve the SNR further, a digital bandpass filter is employed in our acoustic ranging mechanism. 
Since the ambient noise in our test recordings was found to be colored (with amplitude decreasing by 20 
dB per decade below 2 kHz and approximately flat above) a matched bandpass filter was used. 
The design criterion was primarily to increase the signal-to-noise ratio while keeping the integer filter 
coefficients in the [-4,4] interval and the tap number small to keep hardware requirements at a minimum. 
This way, calculation of a filtered sample can be accomplished using 4 accumulator variables, without 
multiplications, that would be compiled into additions on a processor that has no support for that. 
The first accumulator variable is assigned to coefficients 1 and -1, the second to 2 and -2 and so on. In 
our prototype, for each tap, if the coefficient is positive we add the sampled value to the accumulator 
variable that corresponds to the filter coefficient. If the filter coefficient is negative, we do subtraction 
instead of addition. The total number of the above additions and subtractions is less than the tap number 
of the filter, since we do not have to do anything at the taps with 0 coefficients. Finally, we take the 
weighted sum of the accumulator variables2 and then scale the result back with a binary shift. 

3.2.2 Genetic search for the integer coefficients 
There was a lot of research done to explore the applicability of evolutionary algorithms in digital filter 
design in the late nineties. The essential idea behind these approaches was to use evolutionary 
algorithms to optimize filter coefficients [8][9][10]. Though they were predominantly addressing 
hardware design issues, as [8] and [10], their problem domain has a lot in common with digital filter 
design for resource-constrained sensor network nodes. Consequently, the integer coefficients of the 
bandpass filter employed in our acoustic sensor application were calculated by a genetic algorithm. 
In order to construct the fitness function for the genetic optimization algorithm, we recorded several 
windows containing both chirps and silence then applied the filtering to the signals in the way described 
before. The fitness function chosen was the signal-noise ratio, which can easily be estimated from the 
training signals, assuming that the positions of the chirps and the silence within the recordings are 
known. 
The output of the genetic search was a 35-tap FIR filter with integer coefficients in the [-4,4] interval, 
which has a suppression of at least 12 dB below 3800 Hz and above 4500 Hz, and has a roll-off rate of 
approximately 20 dB per decade below 3800 Hz. 
With the resulting tap number and coefficients we can calculate one filtered sample with 34 additions 
and subtractions and two shift operations. 

3.3 Range estimation 
The power of the filtered samples has a local maximum in the interval where a chirp is recorded. By 
detecting the peek of the signal power it is possible to give an estimate of the start of the signal. 
Since calculation of power requires taking the squares of the samples, which is an expensive operation 
on a platform that does not support multiplication, we approximate the local maxima of the power 
                                                 
2 This can be done by 5 additions and a binary shift: weighted_sum = (a1 + a3) + ((a2 + a3 + a4 + a4) << 1 



function as follows. First we define a moving average function over the absolute value of the samples. 
Then we find the global average of the absolute value of the amplitude, so that later it will be possible to 
differentiate between signal and silence based on whether the value of the moving average function or 
the global average is higher at the given offset. Filtering, taking the absolute value, and averaging are 
carried out in the same loop in-place to minimize time and memory requirements. 
Due to disturbances, even though the sample is filtered, it is possible that multiple local maxima of the 
moving average function are above the global average. We should, however find the local maximum 
that corresponds to the chirp, and discard all other noise patterns of significant energy that fall into the 
same frequency range. 
For this reason, we examined the moving averages of the test samples around the positions of the chirps, 
and found that the moving averages of valid chirp patterns have segments with length of 200 to 350 
samples above the average amplitude. Thus, we implemented the peek detection so that it returns the 
first local maximum that satisfies the above constraint. All other peeks are discarded. 

4 Calibration 
The distance between the actuator and the sensor is proportional to the time of flight of the acoustic 
signal. The peak detected, however, does not exactly reflect the time of flight, since it is obviously not 
the same offset that corresponds to the start of the acoustic signal, but some arbitrary one following that. 
The difference between the peak and the beginning of the signal is the result of the unknown rise time of 
the signal and the delay of the filter. 
Consequently, before scaling the offset of the peak with a suitable constant (which is the number of 
distance units the sound travels during the time represented by one sample) to yield the range estimate, 
we need to compensate for this delay of various causes by an additive constant.  
Since the latency in question is unknown, we chose to solve the problem statistically. A number of 
measurements were made with varying distances between sensor and actuator nodes then a linear 
regression was applied to the measured offsets of maximum energy and the actual distances. The 
additive and the multiplicative regression constants thus corresponded to the offset caused by the latency 
and the speed of sound respectively.  

4.1 Dependence on the speed of sound 
It is important to note here that the speed of sound in the air varies depending on the temperature, 
pressure, relative humidity as well as the CO2 concentration of the air. 
Using the formula given in [12] we can see that there is a 5% difference between the speed of sound at 
0˚ C and at 30˚ C, which when used to calculate the range estimate from the time of flight of an acoustic 
signal would cause in half a meter error at a 10 meter distance.  
The acoustic ranging component implemented does not compensate the ranging errors resulting from the 
variation of speed of sound depending on the environmental conditions. It assumes the speed of sound to 
be 340 m/s, and estimates the range accordingly. An application developer intending to use this 
component in an application could, for example, do one of the following: 
a. Compensate the ranging error based on thermometer reading by multiplying the range estimate with 
the ratio of the hard-coded reference speed of sound of 340 m/s by that computed from the measured 
temperature. 
b. Compensate the ranging error based on location constraints. Assume that a certain number of anchor 
positions (positions of actuator or sensor nodes) are known. If the acoustic ranging gives consistently 
less or greater distance estimates than the distances computable using the anchor positions, the ranging 



estimates should be correspondingly scaled so that the relative coordinate system of range estimates 
match the absolute coordinate system defined by the anchor nodes. 
c. Accept the range estimates without error compensation if the range estimation with the reference 
speed of sound is satisfactory, or there are no means of error compensation. 

5 Results 
We tested the acoustic ranging prototype with 50 MICA2 motes equipped with standard sensor boards. 
The test application consisted of the acoustic ranging component, a time slot negotiation component (to 
prevent two motes within each other’s acoustic range from chirping at the same time), and middleware 
services such as routing and remote control. The application used only 3332 bytes of RAM. The ranging 
experiment was controlled from a PC, using a Java application that recorded the incoming rage estimates 
and could optionally carry out localization using a basic linear spring model. 
 The experiment was carried out in a parking lot. The air temperature at ground level was approximately 
35˚ C with relative humidity of 60%. The motes were evenly distributed on a 15 by 30-meter area with 
no obstructions between any sensor pairs to assure direct line of sight. The actual distances were 
measured between the motes with an ultrasonic ranging device to enable the evaluation of the accuracy 
of the ranging approach. 

Acoustic Ranging Measurements vs. Actual Distances
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Histogram - Acoustic Ranging Measurement Errors
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Histogram - Acoustic Ranging Measurement Errors after Speed of 
Sound Compensation
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Figure 5. Histogram of acoustic measurement 
errors after compensating the difference between 
the calibrated and the actual speed of sound. 
Average error is -8.18 cm. 

Figure 3. Acoustic range estimates vs. the actual 
distances after removing outliers. 

Figure 2. Acoustic range estimates vs. the actual 
distances. Outliers present due to a hardware 
problem of a single node. 

Figure 4. Histogram of acoustic measurement 
errors. Due to higher air temperature than the 
reference value the nodes underestimated the 
distances by 27.68 cm. 



The acoustic ranging measurements were repeated ten times. Figure 2 shows the correspondence 
between the range estimates and the actual distances. As we can see, the relationship between them is 
approximately linear, with some random outliers. Analysis of the range estimates showed that most of 
the outliers were generated by a single, malfunctioning mote, so the corresponding measurements were 
removed not to disturb the further evaluation of the acoustic ranging and localization technique. Figure 3 
shows the range estimates vs. the actual distances without the range estimates of the mote in question. 
Note that automatic elimination of these kinds of errors would be relatively simple. 
As the histogram of the ranging errors (Figure 4) shows, the mean of the errors was around -28cm, that 
is, the motes underestimated the distances. This can be explained by the difference between the 
reference speed of sound used in the range estimator algorithm and the high actual speed of sound 
resulting from the relatively high air temperature. After adjusting the ranging estimates using the actual 
speed of sound, the average error is decreased to -8.18cm. 

6 Issues and limitations 
Fine-grained localization of low-powered, cheap nodes still eludes us after years of research in the 
domain of wireless sensor networks. There are inherent problems with acoustic ranging, such as their 
relatively limited range and the need to compensate measurement errors due to non-line-of-sight 
conditions. 

6.1 Acoustic ranging errors 
Generally, the error of acoustic distance estimation can be expressed as the sum of a Gaussian and a 
non-Gaussian component. The Gaussian component is the result of noisy measurements, the non-
Gaussian part, on the other hand, is caused by multi-path effects. 
While Gaussian measurement errors can be compensated successfully by averaging a series of consistent 
range estimates, the effects of echoes and obstructions cannot be adequately handled.  
If the line of sight between the actuator and the sensor is obstructed, the sensor will consistently report a 
longer range estimate than the actual distance. In a purely acoustic localization system, the overall error 
caused by non-line-of-sight conditions can be mitigated through various heuristics (e.g. geometric 
consistency checks as described in [13]). However, building an entirely error-tolerant purely acoustic 
solution appears to be infeasible. As a possible way to improve the reliability of the self-localization, 
[14] suggests using multiple sensor modalities. A good example of such a technique is presented in [14], 
where the acoustic ranging mechanism is augmented with infrared LEDs and cameras to detect non-line-
of-sight conditions. 

6.2 Hardware limitations 
The most serious hardware constraint of our acoustic ranging implementation is the limited availability 
of RAM. One sampled acoustic signal needs to fit into the buffer allocated for the acoustic ranging 
component. The size of the audio buffer was 1700 bytes in our application. The application consisted of 
the acoustic ranging component, the time slot negotiation algorithm and a multi-hop routing layer and 
the necessary TinyOS [15] system components. 
An increase of the available memory would certainly increase the maximum range achievable by this 
technique. Yet it would still be possible to extend the effective range with the existing hardware by 
increasing the number of chirps in the acoustic signal and starting sampling them with increasing time 
delays. This way it is possible to explore a longer range with the same amount of available memory. 
However, it would take more time and consume more power. 



Another possible approach would be to decrease the sampling rate when sampling the first series of 
chirps. The decreased sampling rate facilitates the exploration of a longer range with the same buffer 
size, obviously with decreased peek detection accuracy. In a next phase, however, another series of 
chirps could be sampled with a high sampling rate and with a suitable start delay to ensure that the 
chirps fall in the sampled time windows. 

7 Comparison with existing acoustic ranging solutions 
In the last few years there has been an abundance of publications on localization in sensor networks. 
However, they discuss mostly theoretical results; and only a fraction of them describe working 
prototypes. Below we contrast our solution with the acoustic ranging approach described in [13] and in 
[14], and the acoustic ranging mechanism underlying Calamari, the localization system presented in 
[16]. 
[13] and [14] presents an acoustic ranging system implemented on PC-class nodes equipped with a PC 
sound card. The acoustic signal emitted by the transmitter is formed by modulating a binary code using 
binary phase shift keying (BPSK) at a 12 KHz chip rate. The binary code is known to the detector, so it 
can compute the correlation between the reconstructed reference signal and the received signals at every 
possible offset to determine the position of the chirp. While this approach performs robustly, yielding 
distance estimates with sub-centimeter errors, it has a considerable computational complexity. In 
contrast, when designing our solution we were constrained by a fixed-frequency buzzer, a maximum 
sampling rate one third of that of a PC sound card and 4 kilobytes of precious RAM. The resource 
constraints forced us to apply simplified, less sophisticated signal processing mechanisms tailored to the 
given hardware; and as an agreeable tradeoff we were able to keep the average error of distance 
estimation below 10cm. 
Calamari, the localization system introduced in [16], uses acoustic TOF-based distance estimations as 
the underlying ranging mechanism. The implementation targets the MICA platform; the motes are 
equipped with the standard MICA sensor board. Unlike our solution, Calamari uses the tone detector of 
the sensor board to identify the acoustic signal. Though using the analog hardware is cheaper than 
sampling and signal processing in all regards, its effective range is under 3 meters, and the uncalibrated 
distance estimates are very poor ([16] reports an average error of 74.6%). Applying sophisticated 
calibration methods in Calamari reduces the average error to 10.1%, however, the error, due to the use 
of the tone detector, is distance dependent. Our approach, though it consumes precious RAM and has 
some computational overhead, provides more accurate results with uniform errors within the effective 
range. 

8 Conclusions 
We have presented an acoustic ranging mechanism augmented by simple digital signal processing 
techniques that targets severely resource-constrained devices. We have increased the effective range of 
the acoustic distance measurements to nine meters with the average accuracy of 8cm on the 
MICA/MICA2 motes, which is a significant improvement over a ranging solution that relies purely on 
the analog tone detector of the sensor board. Even though digital signal processing usually implies 
computationally intensive tasks, which may seem rather expensive if used in low-power, resource-
constrained sensors, our prototype implementation proved the viability of our approach. 
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