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Abstract 

 
Field Programmable Gate-Arrays (FPGA) containing one or more embedded processor cores within the 

FPGA fabric (both hard & soft processor cores) are quickly becoming a mainstream architecture for high-

performance signal processing.  Design tools for these new architectures from FPGA vendors have steadily 

matured to provide a viable, if laborious, solution for designers.  These tools merge software compilers, 

hardware compilers, and basic IP to support a manual SOC design process.  Given the complexity of 

potential target systems, there is a need to design at a higher level.   

 

The current FPGA-plus-embedded processor core combination provides great opportunity for high-

performance systems.  The strengths of both the FPGA fabric to implement highly optimized hardware 

processing functions and a processor core to provide overall control and flexible processing tasks not suited 

for hardware implementation.  In designing these systems, it is critical that bottlenecks in the control flow 

do not impact the time-critical data flow of the application.   

 

This paper describes the ongoing work in developing a high-level co-design design environment for the 

latest FPGA SOC architectures. 

 

Introduction 
 

Field Programmable Gate-Array (FPGA) architectures that support embedded processor 

cores within the FPGA fabric are becoming a mainstream architecture for configurable-

logic, high-performance signal processing systems.  Design tools for FPGA + FPGA-

embedded processor architectures have improved over the past few years to make this 

architecture a more attractive option for embedded systems engineers.  These design tools 

include software compilers, FPGA place & route tools, simulation tools, debug facilities, 

and other miscellaneous tools needed to support the design and implementation process 

for a full system-on-a-chip (SOC) solution.  These tools, however, are simply a merging 

of standard hardware and software development tools.  With growing size and 

complexity of potential system designs available to today’s large-transistor count 

hardware platforms, there is a need to design at a higher level of abstraction.  Presented in 

this paper is a high-level co-design environment for seamless integration of hardware & 

software components, named Adaptive Computing Systems Model-Integrated Design 

Environment (ACS-MIDE).  

 

The ACS-MIDE co-design environment uses a Model-Integrated approach to managing 

the complexity inherent in designing resource-constrained, high performance embedded 

systems.  The Model-Integrated Computing (MIC) approach uses a multi-aspect 

modeling paradigm to capture the information necessary to synthesize a system[1][2][3].  

This includes computation algorithms, requirements, and available (hardware) resources.  
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These design aspects are defined in a graphical language customized for the domain of 

embedded computing systems. 

 

The ACS-MIDE co-design tool provides an environment where the algorithm 

specification is separate from the implementation target hardware platform specification, 

allowing portability across platforms.  The hardware platform specification is an 

annotated block diagram of the physical processing elements of the system and their 

interconnections.  The algorithm specification is data flow diagrams annotated with 

execution specifications, or constraints, such as end-to-end latency.  The combination of 

data flow and constraints fully specifies the behavior of the target system.   

 

Algorithmic elements (blocks) of this dataflow model can be implemented as software 

components or hardware components.  Similarly, processing components can often be 

implemented various ways for a single implementation target, with various time/space 

tradeoffs.  Given a set of alternatives, the tradeoffs are between the algorithm and system 

constraints (which we term a Design Space).  The co-design tool supports modeling these 

alternate implementations so that all tradeoffs can be evaluated simultaneously. 

 

Once a design configuration is identified, the tool synthesizes the configurable hardware 

designs (top-level VHDL), real-time processing schedules for processors, interface code, 

and other configuration files.  These are compiled with an dataflow kernel and support 

libraries to produce a full deployable design (FPGA configuration files and software 

executable code).  The underlying mechanisms used to implement the design are critical 

in developing an efficient system.  An efficient, small footprint kernel supports dataflow 

execution.  Efficient, hardware supported, interfaces support low overhead, high 

bandwidth communication between hardware and software processing components.   

 

In the past, we have used the ACS-MIDE tool for development of systems platforms 

based primarily on discrete DSP and FPGA devices.  We have recently extended the 

ACS-MIDE toolset to support FPGAs with integrated processors as an implementation 

target.  With the FPGA-embedded processor, communication between FPGA-

implemented hardware components and software tasks executing on the embedded 

processor takes place via a microprocessor bus.  The Xilinx Virtex-II Pro FPGA, for 

example, has tool and IP support for IBM’s CoreConnect bus architecture.  The 

CoreConnect bus architecture is well suited for efficient data transfer between on-chip 

hardware components and software tasks.  We use the CoreConnect bus architecture to 

implement an efficient interface between software tasks executing on the embedded 

processor and hardware tasks executing within the FPGA fabric.  This paper describes 

our initial prototype tool supporting FPGA/FPGA-embedded processor(s) SOC 

architectures. 

 

Design Representation 

 

The ACS-MIDE co-design tool uses a model-integrated approach, where the algorithm 

description (model) is decoupled from the hardware resource description (model).  In this 
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section, we describe the modeling environment. The section is divided into the following 

major categories: Algorithm Models, Resource Models, and Constraint Specification. 

 

Algorithm Model 

The algorithm model aspect describes the processing algorithm structure.  Algorithms are 

specified in a data-flow, block diagram (a specification very familiar to DSP engineers).  

To manage system complexity, hierarchy is used to structure algorithm definition.  This 

logical composition of systems using component subsystems has proven effective design 

structuring for very large, complex systems. The algorithm is modeled as a dataflow 

structure with the following classes of objects: compounds, primitives, and alternatives.  

A primitive is a basic element representing the lowest level of processing. A primitive 

maps directly to a processing task that will be implemented as either a hardware function 

or a software function.  Primitive objects are annotated with attributes. These attributes 

capture measured performance, resource (memory, FPGA logic elements) requirements, 

and other user-defined properties. 

 

A compound is an aggregation object that may contain primitives, other compounds, 

and/or alternatives. These components are connected within the compound to define the 

information dataflow.  Compounds provide the hierarchy in the structural description that 

is necessary for managing the complexity of large designs. 

 

A design alternative object allows the specification of multiple design alternatives for a 

given task.  These design alternatives can be either compounds or primitives, allowing 

hierarchies of design alternatives.  With alternatives, the algorithm models can describe a 

huge number of potential design implementations.  The set of potential designs is termed 

a “Design Space”.  Modeling a design space yields greater opportunity for design 

optimization and portability across changing requirements and hardware platforms.   

 

In signal processing, tasks can often be accomplished in multiple ways (e.g. in the spatial 

or the spectral domain).  Both approaches can achieve the same basic results but with 

vastly different algorithm designs. Other algorithm characteristics can vary as well, such 

as latency and/or accuracy.  In the spatial domain a filtering function can be achieved by 

performing a standard mathematical convolution.  In the frequency domain, the function 

uses the FFT, followed by a multiplication with the spectral representation of the filter, 

followed by an inverse FFT (see Figure 1).  The spectral method is more efficient as the 

filter order increases, resulting in a faster, smaller system.  On the other hand, since the 

FFT is a block-based computation, the latency is at least a block-length.   
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Figure 1: Algorithm Alternative – Specifies Design Flexibility 

 

Each of these alternative methods has different performance attributes and different 

hardware requirements.  The selection of the best alternative depends not only on the 

hardware that is available, but also on whether the hardware is to be time-shared, and 

what hardware has been allocated to support the processing algorithms that are required 

for operations in different modes.    

 

For the high-level designer, algorithm alternatives allow a virtual separation of algorithm 

from implementation.  Typical algorithm design requires the engineer/physicist to 

consider the hardware details of the underlying architecture to achieve an efficient 

implementation. The ultimate effect is that the resulting algorithm reflects the hardware 

structure.  This practice leads to highly non-portable, technology-specific designs.  

System upgrades to use more current technology require a bottom-to-top redesign.  

Algorithm alternatives promise to separate the algorithm from the architecture, to 

postpone the implementation decisions to a much later step in the design process. This 

approach should greatly simplify technology migration efforts. The selection of the 

desired implementation technology is determined in the synthesis process, driven by 

power consumption, throughput, latency, specific part availability, and other architectural 

interactions. 

 

Resource Model 

The resource model aspect defines the target hardware platform.  The target hardware 

platform is modeled in terms of hardware processing components and the connections 

among them.  The hardware processing components may be of type: processor elements 

(such as DSPs or general-purpose RISC/CISC processors), programmable logic 

components (such as FPGAs), or dedicated hardware ASIC components for fixed 

functions (such as FFT computation).  Data Sources and Data Sinks capture the specifics 

of hardware I/O.  The resource model defines processing elements of the systems and the 

physical interconnection between these components.  The connections capture the “as-

built” topology of the physical implementation. 

 

Constraint Specification 

System constraint specifications have four categories of design constraints: (a) 

composability constraints, (b) resource constraints, and (c) performance constraints to 

establishing linkages between properties in different modeling categories.  Composability 

constraints are logic expressions that restrict the composition of alternative processing 



Scott 5 F180/MAPLD 2004 

blocks (e.g. FFT-HW can be used with IFFT-HW).  Resource constraints are logic 

expressions describing the selection of processing blocks based on resource limitations.  

Performance constraints are integer constraint expressions limiting the end-to-end 

latency, power and space.  These constraints allow the designer to control the potential 

design space for the analysis/synthesis process. 

 

 

 
 

Figure 2: Algorithm Dataflow Model (GME Screenshot) 

 

Design Space Exploration 

The end product of the design modeling process described above is a design space 

consisting of requirements, potential implementations, and resource sets.  The task of the 

designer is to select the appropriate implementation and resource assignments for the 

design. For example, an FPGA implementation of an FIR filter can be created as a set of 

multipliers operating in a parallel-pipelined fashion for maximum throughput (with 

maximum resource usage).  An alternate implementation, minimizing resource usage, can 

be implemented with a signal multiplier that is time-multiplexed to produce its output.  

The best implementation depends on system constraints: real-time processing constraints 

and hardware platform constraints such as size, weight, power constraints.   

 Given the flexibility in defining design alternatives, this space can be extremely large 

(moderately sized design examples have defined a space of 1024
th

).  It is unreasonable to 

assume that a designer can handle such a large design space without sufficient tools.  The 

set of design solutions must be evaluated to a design (or configuration) that best satisfies 

a number of design criteria.  There are inherently a large number of conflicting design 

criteria in highly-constrained embedded systems.  The analysis tools must allow efficient 

exploration, navigation, and pruning of this space to select feasible hardware/software 

architectures for user-definable cost functions such as weight, power, algorithmic 
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accuracy and flexibility.  Given the size of the design space, and the complexity of the 

analysis, a powerful analytical method is required.  The tool finds the set of viable 

designs (not necessarily optimal, rather a set that satisfies constraints).  Typical design 

spaces range from 1000’s to 10
20

 design options.  The co-design tool permits 

simultaneous evaluation of all options. 

 

The approach we have taken is to use symbolic methods based on Ordered Binary 

Decision Diagrams to represent, navigate and prune the design space. In a symbolic 

representation, sets/spaces are represented as a Boolean expression over the members of 

the set. The members of the set are encoded as binary variables under a binary encoding 

scheme. The principal benefit of the approach is that it does not require enumeration of 

the set/space to perform operations. Ordered Binary Decision Diagrams [4][5] are a 

canonical representation of logic functions, representing Boolean functions as directed 

acyclic graph in a memory-efficient format. The operations over the Boolean functions 

are implemented as graph algorithms rendering “manipulation” of the space fast and 

efficiently. 

 

With this symbolic formalism, the application of logical constraints is relatively 

straightforward.  The user-defined logical constraints can be represented as a Boolean 

expression over the components of the design space.  Constraint application is then just 

conjunction of the constraint Boolean expression with the Boolean expression that 

represents the design space.  The resultant Boolean expression represents the 

“constrained” design space. Application of the integer arithmetic constraints such as 

timing and power constraints is not so straightforward (see [6] for details).  However the 

basic approach remains the same. 

 

The constraints “prune” the design space due to the requirements specified in the 

constraint.  These constraints can be iteratively applied to the design space, with the goal 

of reducing the “1024
th

” to a more manageable set containing 10’s to 100’s of design 

alternatives.  We have implemented the approach described above in a design space 

management tool that allows solving these constraints in an iterative manner.  The design 

engineers can apply the constraints and visualize the sensitivity of the design space to the 

constraint.  If the constraint is extremely tight it can be released and other constraints can 

be applied instead.  Finally when the design engineer is satisfied with the remaining 

design choices after constraining the design space he can move to the next step of design 

synthesis/simulation. 

 

 

Execution Environment 

 

The execution environment must support implementation platforms with the following 

attributes: 

•  Heterogeneity: Optimizing the architecture for performance, size, and power requires 

that the most appropriate implementation techniques be used. Implementations may 

require software (implemented on RISC, microcontroller, and DSP processors), 

configurable hardware in FPGA fabric, and/or a mix of ASIC components. 
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•  Low Overhead/High Performance: the execution environment must minimize 

overhead, since overhead results in extra hardware requirements. 

•  Hard Real-Time: The target systems have significant real-time constraints. 

 

This list points out some of the design complexities.  Working alone, the execution 

environment cannot solve these problems. The overall system design approach must span 

from the top-level algorithm system requirement & resource specifications down to the 

hardware/software implementations.  The Execution Environment forms the 

infrastructure onto which these designs are projected.  The Execution Environment must 

be designed with an interface suitable for synthesis from a MIC-Generator approach. The 

concepts, properties and interfaces of the execution environment must be compatible with 

the design representation and synthesis approach.  Capabilities and interfaces should be 

tuned to simplify the generator. This requirement demands a simple, uniform interface 

with a well-defined, consistent set of semantics that apply throughout the system. Since 

the system includes software, hardware, and interactions between parallel modules, a 

common structure must map to a wide range of components. 

 

The semantics of the execution environment implements a large-grain dataflow 

architecture.  At this level, there is no implied implementation of the dataflow tasks.  A 

dataflow task executes when his specified input data is available and, upon completion of 

execution, produces output data.  The execution semantics of the dataflow tasks are 

maintained at a higher level. The semantics of the communication links between the 

dataflow tasks are asynchronous queues.  When the generic large-grain dataflow graphs 

are implemented, they must be mapped down to a physical implementation. The 

implementation takes the form of either software or hardware. Software tasks execute on 

a DSP or general-purpose processor.  Hardware tasks are implemented in configurable 

hardware (FPGAs), ASIC implementations, or combinations of both.  Both task 

implementations logically equivalent, representing processing functions on data.   

 

The Execution Environment spans software and hardware. The software environment 

consists of a simple, portable real-time kernel with a run-time configurable process 

schedules, communication schedule, and memory management [7].  Communications 

interfaces are supported within the kernel, making cross-processor connections invisible. 

Memory management is integrated with the communication subsystem, providing low-

overhead messaging between processing tasks. 

 

The hardware Execution Environment supports the same operational semantics. The 

implementation, however, is much different. The Virtual Hardware Kernel exists as a 

concept used in the system synthesis.  The ACS-MIDE tool synthesizes a set of top-level 

VHDL descriptions for each FPGA component in the target platform.  Hardware tasks are 

specified as direct implementations from the component library.  Communications 

interfaces are selected from a library of interface types, based on the requirements of the 

tasks on either end.  The communication infrastructure works in cooperation with the 

software communications, performing the signal buffering, and the necessary off-chip 

interfaces and data converters to present data in the format required by the destination 
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processing element.  As the system is expanded to support a wider-variety of target 

hardware, the set of interface types will grow in capability. 

 

In addition, the execution environment is designed with an interface suitable for synthesis 

from a MIC-Generator approach. The properties of the execution environment are tuned 

to simplify the generator. This demands a simple, uniform interface with a well-defined, 

consistent set of semantics that apply throughout the system. 

 

 

Virtex II-Pro Extensions to Execution Environment 

 

As described above, for FPGA implementations the ACS-MIDE system generation 

automatically selects the best-fit interface component to interface FPGA processing tasks 

to the outside world (from the FPGA’s perspective).  Connections are made between 

hardware tasks, inserting proper conversion components as necessary. 

 

The latest FPGA + FPGA-embedded processor core architecture provides a unique 

platform for software to work closely (high bandwidth connection) with programmable 

hardware.  Our initial experiments for porting our design tools over to these new 

platforms have been with Xilinx’s Virtex-II Pro FPGAs.  The Virtex-II Pro platform is 

unique in that the FPGAs contain one or more (up to four) IBM PowerPC 405 “hard 

cores” embedded within the FPGA fabric.  Xilinx has an extensive toolset (Embedded 

Development Kit – EDK) for hardware/software co-development on this platform.  The 

EDK toolset can manage and synthesize a complete microprocessor/programmable 

hardware system on a FPGA. 

 

The Virtex-II Pro PowerPC system infrastructure is based on IBM’s CoreConnect bus 

technology [8].  The CoreConnect architecture implemented is a two-tier structure 

composed of IBM’s CoreConnect Processor Local Bus (PLB) and On-chip Peripheral 

Bus (OPB).  The PLB bus is the higher performance of the two and is directly connected 

to the PowerPC 405 core(s).  It is used for interfacing to high-performance system 

devices such as FPGA internal RAM, external SRAM, DDR SDRAM, etc.  The OPB 

bus, on the other hand, is not intended to connect directly to the processor, but rather 

function independently at a separate level of hierarchy from the PLB bus.  A bridge unit 

(PLB-to-OPB) makes the OPB bus accessible from bus master components on the PLB 

bus (typically the processor).  It is also possible for OPB bus master components to 

access components on the PLB bus via an OPB-to-PLB bridge component.  More details 

on the Xilinx/CoreConnect architecture can be found in [9]. 

 

To support this new architecture, we need to interface our ACS hardware task 

components (in the FPGA fabric) to the software task components (running on the 

PowerPC(s)) in an efficient manner.  It is important the processor (PowerPC) have fast 

(DMA/interrupt driven) access to the hardware components.  Also, it is important that the 

processor have fast, low-latency access to its various memory banks via its local PLB 

bus.  For these reasons, interfacing via the OPB bus was the logical choice for the Virtex-
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II PRO architecture.  An OPB slave peripheral was created to provide an interface 

between the OPB bus and the ACS hardware task protocol. 

 

The typical ACS-MIDE hardware task interface, for example, implements a 

unidirectional data flow via a simple, low-overhead handshaking protocol supporting a 

data path with a parameterized width.  The OPB_ACS_IO interface peripheral provides a 

link from the OPB bus to hardware task via the various hardware task interfaces 

supported by ACS-MIDE.  This architecture is shown in Figure 3.  The OPB_ACS_IO 

peripheral uses the IPIF interface layer described in [10] to provide easy access to the 

OPB bus signals.  The peripheral exposes a bus-interface where unidirectional hardware 

interface components (that meet an existing ACS-MIDE supported interface standard) 

can attach (ACS_IN, ACS_OUT as shown in the figure).  At this point, we now have 

connectivity from the OPB bus to our hardware tasks.  This includes processing tasks, 

communication tasks such as additional buffering, as well as custom I/O device support 

tasks.   
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Figure 3: OPB interface peripheral 

 

Currently under development is the inclusion of a DMA engine to handle data transfer 

to/from the OPB_ACS_IO peripheral.  The use of DMA is essential not only to the 

implementation of high-throughput communication across the hardware/software 

boundary, but low-overhead communication on the software side so as few processor 

cycles as possible are expended on communication overhead. 

 

Note that although we have not implemented a MicroBlaze design, our tool should be 

able to extend this platform with little or no changes due to the use of Xilinx’s 

implementation of the CoreConnect bus architecture. 
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Conclusions 

 

Real-time embedded system development and implementation are complex tasks.  This is 

especially true for systems constructed using the latest generation of very powerful and 

flexible FPGAs that contain embedded processor cores.  These systems are likely multi-

processor, multi-FPGA systems interacting with several input/output devices and 

executing hundreds of hardware & software tasks.  Design automation tools are necessary 

for automation of tedious and error-prone tasks such as managing the task allocation and 

communication of such a complex system.  ACS-MIDE co-design tool has been 

developed to deal with these challenges.     

 

In an ongoing work, the ACS-MIDE co-design environment has been extended to support 

the latest FPGA SOC architectures, specifically Xilinx’s Virtex-II Pro architecture.  We 

are currently in the process of improving the performance of the various interface 

components recently developed to support this architecture.  The performance of these 

interfaces is critical to achieving the difficult goal of synthesizing a system with 

performance comparable to a hand-coded design.  We are also considering support for 

preemptive kernels such as VxWorks on the embedded PowerPC core.   
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