
 
ISIS Tech Report: ISIS-00-xx                            Page 1 of 1 

____________________________________________ 

 
Institute 

 for  
Software-Integrated Systems 

 

 
Technical Report 

 
____________________________________________ 

 
 

 
 

TR #:   ISIS-2000-06 
 
Title:   Hardware/Software Runtime Environment for 

Dynamically Reconfigurable Systems 
 
Authors:  Jason Scott, Sandeep Neema, Ted Bapty, 

 
 
 



 
ISIS Tech Report: ISIS-00-xx                            Page 2 of 2 

 
Abstract 

 
Dynamically reconfigurable architecture computational devices offer a promise of high 
speed, low cost, and small form-factor by (1) optimizing the architecture for the 
application, (2) adapting to changing requirements by reallocating hardware, and  (3) 
using low-cost commodity components.  These benefits, however, can be lost if the cost 
of implementing an efficient system is too high, and the ability to migrate to new 
technology is unsupported. 
 
A set of design and implementation tools, including a run-time architecture is required to 
meet these goals.  The design tools must support  high-level specification and synthesis 
of reconfigurable systems.  The run-time environment must serve as a target 
 

KEYWORDS 

Reconfigurable Computing, FPGA, HW/SW Co-design, HW/SW Synthesis, FPGA, 
HW/SW Co-simulation, Dynamic Reconfiguration, Design Environment, Model-
Integrated Computing. 
 
 
 
 
 
 
 
 

ACKNOWLEDGEMENTS 

This work has been supported by DARPA/ITO under project DABT63-97-C-0020 
 



 
ISIS Tech Report: ISIS-00-xx                            Page 3 of 3 

 

INTRODUCTION 

Dynamically reconfigurable architecture computational devices offer a promise of high 
speed, low cost, and small form-factor by (1) optimizing the architecture for the 
application, (2) adapting to changing requirements by reallocating hardware, and  (3) 
using low-cost commodity components.  These benefits, however, can be lost if the cost 
of implementing an efficient system is too high, and the ability to migrate to new 
technology is unsupported. 
 
A set of design and implementation tools, including a run-time architecture is required to 
meet these goals.  The design tools must support  high-level specification and synthesis 
of reconfigurable systems.  The run-time environment must serve as a target for these 
synthesis tools, enabling execution of the system across a mix of hardware and software 
(processor) devices.  Dynamic architecture reconfiguration must be supported at all levels 
in the design of the runtime architecture. 
 
This runtime environment and the  high-level design environment are being developed as 
part of the DARPA Adaptive Computing Systems Program. The overall architecture of 
the design tools is described in the technical report ISIS-99-001. That document describes 
the model-integrated approach to be used in the development of reconfigurable systems. 
The approach described there divides these issues into several categories: (1) 
Representation and Capture of design information in terms of Models; (2) Analysis of the 
models for design/requirements/resource trade-off studies; (3) Synthesis of architectures 
and executable systems directly from the models; and (4) Runtime support environments 
to support efficient execution of the synthesized reconfigurable systems.    
 
The Model-Integrated Computing (MIC) approach has been successfully applied to a 
diverse set of applications ([4][5][6][7][8][9]). The general MIC approach involves 
creating a development environment that is customized for a specific application domain.  
The resultant development environment is a multiple-aspect graphical editor that directly 
supports the engineering concepts required in the development process.  Where several 
engineering disciplines are involved in system development (e.g. Software, Hardware, 
DSP algorithms, Systems Requirement Specification, etc.), the multiple-aspect nature of 
the approach allows different aspects to be customized for individual disciplines. The 
graphical editor allows construction of system Models, which capture the specifications 
and components required along with their relationships.  The Models form a database of 
design information that can then be used in system analysis, trade-off studies, and 
performance estimation/simulation.  These same Models are used to synthesize the 
executing systems.  The synthesis process assumes a runtime environment that hides the 
low-level hardware/software details from the synthesis process.. 
 
This paper describes the details and design decisions in building the reconfigurable run-



 
ISIS Tech Report: ISIS-00-xx                            Page 4 of 4 

time environment.  We will describe the design motivation and goals, target architectures, 
and  implementation strategies. 
 

DESIGN FACTORS AND GOALS 

The runtime environment for a Model-Integrated Computing design environment 
involves a careful analysis of the needs of the design engineers, the methods and 
components used in the designs, and the target systems. This section will describe the 
concepts developed in the creation of the Adaptive Computing Systems MIC runtime 
environment. 
 
To clarify matters, we start with what the environment is not intended to do: 
1. It is not intended to be an end-user programmable environment.  The runtime is 

intended to serve as a target for the synthesis tools.  In this capacity, it is not 
necessary to incorporate the high-level functions that one could find in a standard 
real-time operating system such as VxWorks.  Instead, it should be RISC-like in 
nature, since synthesis tools rarely use high-level functions. 

2. It is not intended to be a write-once, run-everywhere system.  Performance 
 
The Adaptive Computing Systems (ACS) runtime environment has the following design 
drivers: 
1. Hardware & Software: Target applications will be composed of functions that 

execute on conventional programmable processors (DSP’s, RISC, CISC) and 
functions that are directly implemented in hardware.  These devices can be FPGA-
based, where the logic is reconfigurable at runtime or directly implemented in 
silicon (Hard cores/ASIC’s). 

2. Flexible Topology: The connection topology must be flexible to match application 
data flow patterns.  Pipelineing and parallelization can be used in different 
configurations at different times within an application’s lifetime. 

3. Dynamic Reconfiguration:  The topology and the functions of the computational 
elements must be able to be changed at specified times within the application 
lifetime.  The extent of the reconfiguration is defined by the capabilities of the 
hardware and the requirements of the application. 

4. Performance:  The runtime environment must impose a very small overhead 
performance penalty. 

5. Real-Time:Timing behavior must be guaranteed. 
6. Data-Flow Based: The primary target applications are embedded signal 

processing systems.  This paradigm supports these very well, but is non-intuitive 
for control-based applications. 

7. Portable: The tools must support technology migration. The target architectures 
must be able to track technology, as DSP’s evolve and FPGA’s get bigger.  This 
does not mean that the same binary applications will directly port, however the 
design tools must be able to synthesize a compatible application on new hardware. 



 
ISIS Tech Report: ISIS-00-xx                            Page 5 of 5 

Sig1

Sig2

Preproc

Preproc

XCorr

FFT

IFFT

BPF

Disp

FFT

IFFT

BPF

A/D FPGA

MEM

DSP

DSP

RISC

Algorithm

Target Platform

 
This figure represents the types of computations that execute on the target architectures.  
Algorithms are specified as a data flow diagram.  These algorithms are mapped to 
heterogeneous architectures, containing a mix of implementation technologies that is 
optimized to the algorithm and its performance requirements. 

RUNTIME ENVIRONMENT SEMANTICS 

The semantics of the execution environment implement a large-grain-dataflow 
architecture:  
1. The Worker Function captures the tasks that are performed by the system.   
2. Communication nodes capture the transfer of data between workers.   
Computations can be described as a bipartite graph, where workers connect to Comm 
nodes, and Comm nodes connect to workers.  At this level, there are no implied 
semantics of the workers.  The execution properties of workers (Data tokens 
produced/consumed per execution, timing of execution, etc) are maintained at a higher 
level.  The semantics of the Comm units are asynchronous queues. 
When the generic large-grain dataflow graphs are implemented, they must be mapped 
down to a physical implementation.  The implementation takes the form of either 
software or hardware.  Software workers execute on a DSP or CPU, which we term 
Processes.  Hardware workers are either implemented in reconfigurable hardware 
(FPGA’s), ASIC implementations, or combinations of both.  Processes and Processors 
are logically equivalent, representing functions on data.  Processes/Processors are 



 
ISIS Tech Report: ISIS-00-xx                            Page 6 of 6 

connected via logical Comm that must buffer, communicate, and match data formats.  In 
software implementations, the Comm object is implemented by the OS/Kernel as a 
Stream, a software queue in memory.  In hardware, the Comm object is implemented 
with registers and/or FIFO, or simply wires (Figure RE7). 
 

Common Execution Semantics

SW Process StreamStream HW Process FIFO

Worker
function

Comm

Software Hardware
FIFO

Comm

Asynchronous
Communication
Buffer

Queue in
kernel

Hardware
FIFO

Virtual Hardware KernelKernel

Memory
Manager Scheduler Comm

Library Schedule & Comm Mapping FPGA Config RAM

Hardware Device Drivers

 

Figure RE7: Runtime Execution Environment: Common Execution Semantics 
 
The execution environment spans software and reconfigurable hardware.  The software 
environment consists of a simple, portable real-time kernel with a run-time-configurable 
process schedules, communication schedule, and memory management [14].  
Communications interfaces are supported within the kernel, making cross-processor 
connections invisible.  Memory management is integrated with the scheduler and 
communication subsystems, enabling (but not solving) the problems associated with 
dynamic reconfiguration.  The kernel allows dynamic editing of the process table, and of 
the communications maps.  The proper sequencing of these operations, including task 
execution phases, is necessary for the avoidance of reconfiguration problems.  The 
current approach supports the “Reboot” approach directly, and will support the more 
advanced reconfiguration approaches with cooperation of the application tasks. 

SOFTWARE IMPLEMENTATION 

The microkernel has been developed to require a minimal memory footprint, with 
minimal overhead. Simplicity in development, porting, and debugging have been 
principal factors in its design.  To maintain this simplicity, we have chosen to implement 
a non-preemptive scheduler.  All multitasking is cooperative, with the exception of 
communications functions.  Communications are DMA and interrupt driven, to maintain 



 
ISIS Tech Report: ISIS-00-xx                            Page 7 of 7 

maximal overlapping of communications and computation. 
 
 
The kernel  is responsible for three main functions: 
1. Scheduling of computations. 
2. Communications within processors and between processors. 
3. Memory management. 

 
The tight integration of these functions is vital to performance.  One major factor in 
performance is communications and memory management.  Communication of a buffer 
must not mandate a buffer copy.  The kernel has been designed to obviate this need. 
 
These three functions of the kernel will be discussed in the following sections. 

Scheduling 

The kernel itself imposes no scheduling policy.  A scheduling module is added to 
perform these functions.  In theory, any non-preemptive scheduling algorithm can be 
added.  In our applications, we have used a simple round-robin policy.   
 
A Data-flow execution semantics is enforced in cooperation with the processes.  Under 
the simplified round-robin scheduler, each task is given a chance to execute at its 
specified order in the list.  The process decides that based upon its triggering rules and 
the configuration of data on its inputs.  Therefore, tasks must obey their own data-flow 
semantics. 
 
The primary object within the scheduler is the Process.  The process structure is shown 
below. 
 

typedef struct _process_struct 
{ 

  long status; 
  PROCESS_FUNCP funcp;      /* function pointer */ 
  long num_inputs;                /* inputs */ 
  long *inputs;                      /* list of input streams */ 
  long num_outputs;              /* outputs */ 
  long *outputs;                    /* list of output streams */ 
  long local_mem;                 /* holds pointer to local memory */ 

} PROCESS; 

 
The system controller can install and remove tasks using kernel system-call functions: 
1. enqueue_process(int process_id) : add a process to the schedule queue 
2. dequeue_process(int process_id) : remove a process from the schedule queue 



 
ISIS Tech Report: ISIS-00-xx                            Page 8 of 8 

3. schedule() : execute the current process script step to the next process in the schedule 
queue 

 
 
 

Processes are called by the kernel with a pointer to their context and a scheduling 
command.  The context pointer (long *local) can be used to store a pointer to a context 
block that is allocated by the process.  The command (long cmd) is used to send a 
reconfiguration message to the process, informing it to compute a safe state prior to being 
suspended, moved, or deleted.  An example of a process is shown below. 

 
void adder(long *local, long cmd) 
{ 

float *sig1, *sig2; 
if(  (sig1 = (float*)get_input_buffer(0))  &&  
     (sig2 = (float*)get_input_buffer(1))  )    { 

if(output_slot_available(0))   { 
dequeue(0); 
dequeue(1); 
add(sig1, sig2); 
enqueue(0,sig1); 
return_buffer(sig2); 

} 
} 

} 
 

Communication Structure 

Communications 
 

Memory Management 

 



 
ISIS Tech Report: ISIS-00-xx                            Page 9 of 9 

P

Output
ports

Input
ports

Stream

P

Header

Body

Message

void adder(long *local, long cmd)
{

float *sig1, *sig2;
if(  (sig1 = (float*)get_input_buffer(0))&&
     (sig2 = (float*)get_input_buffer(1)))    {

if(output_slot_available(0)){
dequeue(0);
dequeue(1);
add(sig1, sig2);
enqueue(0,sig1);
retrn_buffer(sig2);

}
}

}

Script

Process

P

P

Dest
Stream

Channel
Channel

RecvXmitQ

XmitQRecv

Src
Stream

 
 
 



 
ISIS Tech Report: ISIS-00-xx                            Page 10 of 10 

 
 

HostDSP

FPGAA/D

Sig1

Sig2

Preproc

Preproc

XCorr

FFT

IFFT

BPF

Disp

FFT

IFFT

BPF

C4x DSP FPGA Memory
C4x Comm Port FPGA-Mem

I/O Ifc

FPGA-FPGA

PC FPGA

FPGA-IO

C4x Comm
Port C4x Comm Port

 



 
ISIS Tech Report: ISIS-00-xx                            Page 11 of 11 

 

 

Preproc

Preproc

XCorr

FFT

IFFT

BPF

FFT

IFFT

BPF

M
ux

Protocol
D

river

D
em

ux

Protocol
D

river

Physical
Channel

FPGA DSP

 

C4x DSP FPGA

Physical Channel

Pr
ot

oc
ol

D
ri

ve
r

D
e/

M
ul

tip
le

xo
r

S i/f

S i/f

S i/f

S i/f

P

P

P

P H
W

 C
om

m
E

ngine

Send 
queue

R
ecv 

queue

 SW
 D

M
A

D
river

P

P

P

P



 
ISIS Tech Report: ISIS-00-xx                            Page 12 of 12 

Hardware Process Flow
Control

P1 P2

Data

Data Available
Ack

N-bits

P1 P2

Serial Data

Strobe
Ready

Serial data transfer

Parallel data transfer

 
 
 
 
 
 
 
The hardware execution environment supports the same operational semantics.  The 
implementation, however, is much different.  The Virtual Hardware Kernel exists as a 
concept used in the system synthesis.  The MIC Generator synthesizes a set of VHDL 
structural codes, one for each configurable device multiplied by the number of 
operational modes.  Processors are directly synthesized using predefined components.  
Communications elements are selected from a library of interface types, based on the 
requirements of the workers on either end, the required performance, and the available 
resources.  The communication infrastructure works in cooperation with the software 
communications, performing the signal buffering, and the necessary off-chip interfaces 
and data converters. The interface components are drawn from a library of modules.  The 
modules implement a limited set of standardized communications protocols to transfer 
data between modules, and present data in the format required by the destination 
processor.  As the system is used for more applications, the set of interface types will 
grow in capability. 
 
Inherent in these interface components must be the capability to reconfigure.  This 
involves strict synchronization mechanisms, methods for saving and restoring states, and 
facilities to allow function and structure modification.  Global system synchronization is 



 
ISIS Tech Report: ISIS-00-xx                            Page 13 of 13 

greatly aided by having a common system clock, and facilities for very low-latency 
signaling within the system.  Our current concepts for reconfiguration require a single 
interrupt signal to be present at each component participating in a reconfiguration. 
 
In addition, the runtime environment must be designed with an interface suitable for 
synthesis from a MIC-Generator approach.  The properties of the runtime environment 
must be tuned to simplify the generator. This demands a simple, uniform interface with a 
well-defined, consistent set of semantics that apply throughout the system. 

Reconfiguration Manager 
 

Host

DSP1

DSP2 DSP3 DSP4

Manager

Manager

Manager Manager Manager

Configuration script

Create_process….
Create_stream
Connect_input
Connect_output
Activate_process

Configuration script

Create_process….
Create_stream
Connect_input
Connect_output
Activate_process

 
The reconfigurable hardware interfaces, and the flexible microkernel provide the 
facilities to implement system reconfiguration, however the problem of control and 
synchronization is critical.  A global view of the system is necessary.  Reconfiguration 
cannot be performed by the kernel alone.   
 
This synchronization and control of a system during reconfiguration is the responsibility 
of the Configuration Manager.  The CM contains tables capturing the behavioral state 
machine defined by the designers Behavioral Models.  Tied to these state-based 
descriptions is the information necessary to configure the hardware and software 
components of the system. 
 
Given this information, the Configuration Manager serves as a system observer.  The CM 



 
ISIS Tech Report: ISIS-00-xx                            Page 14 of 14 

monitors relevant signals, as defined in the transitions leading out of the current state.  
When the logical conditions for a state transition are satisfied, the Configuration Manager 
begins the structural transition process. 
 
The first stage of the reconfiguration involves bring the system into a known, safe state.  
All communication interfaces must terminate.  Since many of the data ports are bi-
directional, the bus token must be returned to the ‘safe’ state.  Computations must be 
completed and transitioned into the ‘safe’ state.  The safe state may involve using local 
algorithms to perform the basic required functions to keep the system stable. 
 
After all necessary components are in the safe state, the global interrupt is toggled to 
initiate the reconfiguration event.  At this point, all communications must stop for the 
short period required for reloading the FPGA’s bitfiles and the Software schedules and 
communication mappings.  Since the state of the system was in a known safe state prior 
to reconfiguration enactment, there it little overhead atop the basic information 
download.  The CM will reload the necessary FPGA’s using the standard download 
methods.  A sequence of commands is sent to each of the processors to enact the new 
processing graph and interface components. Once the new programming information is 
installed, the system interrupt signal is toggled to ensure a globally synchronized start up 
operation. 

CONCLUSIONS 

1. . 



 
ISIS Tech Report: ISIS-00-xx                            Page 15 of 15 

REFERENCES 

 
[1] Villasenor, J., Mangione—Smith, W., “Configurable Computing”, Scientific 
American, June, 1997. 
[2] Arnold, J., Buell, D.,  Davis, E., “Splash 2”, Proceedings of the 4th Annual ACM 
Symposium on Parallel Algorithms and Architectures, June 1992 
[3] David R. Martinez, “Real-time Embedded Signal Processing”, IEEE Signal 
Processing Magazine, September 1998. 
[4] Bapty, T., Ledeczi, A., Davis, J., Abbott, B., Hayes, T., Tibbals, T.: "Turbine Engine 
Diagnostics Using a Parallel Signal Processor", Joint Technology Showcase on Integrated 
Monitoring, Diagnostics, and Failure Prevention, Mobile, AL, 1996. 
[5] Karsai G., Sztipanovits J., Padalkar S., DeCaria F.: "Model-embedded On-line 
Problem Solving Environment for Chemical Engineering", Proceedings of the 
International Conference on Engineering of Complex Computer Systems, Ft. Lauderdale, 
Florida, Nov. 6-10, 1995 
[6] Long E., Misra A., Sztipanovits J.: "Saturn Site Production Flow (SSPF): 
Accomplishments and Challenges", Proceedings of the Engineering of Computer Based 
Systems, Maale Hachamisha, Israel, AL, March, 1998. 
[7] Davis, J., Scott, J., Sztipanovits, J., Karsai, G., Martinez, M.: "Integrated Analysis 
Environment for High Impact Systems," Proceedings of the Engineering of Computer 
Based Systems, Jerusalem, Israel, April, 1998. 
[8] Bapty T., Sztipanovits J.: "Model-Based Engineering of Large-Scale Real-Time 
Systems", Proceedings of the the Engineering of Computer Based Systems (ECBS) 
Conference, Montery, CA, March, 1997 
[9] Carnes J. R., Misra A.: "Model-Integrated Toolset for Fault Detection, Isolation and 
Recovery (FDIR)", Proceedings of the International Conference and Workshop on 
Engineering of Computer Based Systems, Friedrichshafen, Germany, AL, March 11-15, 
1996 
[10] Harel, D., “StateCharts: A visual Formalism for Complex Systems”, Science of 
Computer Programming 8, pp 231-278, 1987 
[11] Bryant, R.E., “Symbolic Boolean Manipulation with Ordered Binary Decision 
Diagrams”, Technical Report CMU-CS-92-160, School of Computer Science, Carnegie 
Mellon University, June 1992 
[12] Bryant, R.E., “Graph-based Algorithms for Boolean Function Manipulation”, IEEE 
Transactions on Computers, C35(8), 1986 
[13] Kumar, S., F. Rose, "Integrated Simulation of Performance Models and Behavioral 
Models," Proceedings of the Fall 1996 VIUF, pp 185-194, Durham, NC, October, 1996 
[14] Bapty T., Abbott B.: "Portable Kernel for High-Level Synthesis of Complex DSP-
Systems", Proceedings of the the International Conference on Signal Processing 
Applications and Technology, Boston, MA, May, 1995 
[15] Sandeep Neema: “Constraint based System Synthesis”, Technical Report, 
Department of Electrical and Computer Engineering, Vanderbilt University, 1999. 



 
ISIS Tech Report: ISIS-00-xx                            Page 16 of 16 

[16] Hein, C. and D. Nasoff, “VHDL-based Performance Modeling and Virtual 
Prototyping”, Proceedings of the 2nd Annual RASSP Conference, Arlington, VA, July 
1995. 
[17] James Rowson, “Hardware/Software cosimulation”, Proceedings of the 31st Design 
Automation Conference, pages 439-440, San Diego, CA, June 1994. 
[18] Russel Klein, “Miami: A Hardware-Software cosimulation Environment”, 
Proceedings of the 7th IEEE International Workshop on Rapid Systems Prototyping, June 
1996. 

 


