VANDERBILT UNIVERSITY

e
/7 v/

Z—— ——
7 7 Z 7
=———
——————
————
Z 7“— =
I/I I’ 5, I’

INSTITUTE FOR SOFTWARE
INTEGRATED SYSTEMS

Institute for Software Integrated Systems
Vanderbilt University
Nashville, Tennessee, 37203

RFDMon: A Real-Time and Fault-Tolerant Distributed System

Monitoring Approach
Rajat Mehrotra Abhishek Dubey
Electrical and Computer Engineering Institute for Software Integrated Systems

Mississippi State University, Mississippi State, MS ~ Vanderbilt University, Nashville, TN

Jim Kwalkowski, Marc Paterno, Amitoj Singh, Randolph Herber
Fermi National Laboratory, Batavia, IL

Sherif Abdelwahed
Electrical and Computer Engineering
Mississippi State University, Mississippi State, MS

TECHNICAL REPORT
ISIS-11-107
October, 2011

Abstract

In this paper, a systematic distributed event based (DEB) system monitoring approach “RFDMon” is presented
for measuring system variables (CPU utilization, memory utilization, disk utilization, network utilization), system
health (temperature and voltage of Motherboard and CPU) application performance variables (application response
time, queue size, throughput), and scientific application data structures (e.g. PBS information, MPI variables) ac-
curately with minimum latency at a specified rate and with minimal resource utilization. Additionally, “RFDMon”
is fault tolerant (for fault in sensor framework), self-configuring (can start and stop monitoring the nodes, con-
figure monitors for threshold values/changes for publishing the measurements), self-aware (aware of execution of
framework on multiple nodes through HEARTBEAT), extensive (monitors multiple parameters through periodic
and aperiodic sensors), resource constrained (resources can be limited for monitors), and scalable for adding extra
monitors on the fly. Because this framework is built on Object Management Group (http://www.omg.org/) Data
Distribution Services (DDS) implementations, it can be used for deploying in systems with heterogeneous nodes.
Additionally, it provides a functionality to limit the maximum cap on resources consumed by monitoring processes
such that it does not affect the availability of resources for the applications.

RFDMon: A Real-Time and Fault-Tolerant Distributed System
Monitoring Approach

December 6, 2011

Abstract

In this paper, a systematic distributed event based (DEB)
system monitoring approach “RFDMon” is presented
for measuring system variables (CPU utilization, mem-
ory utilization, disk utilization, network utilization, etc.),
system health (temperature and voltage of Motherboard
and CPU) application performance variables (application
response time, queue size, throughput), and scientific
application data structures (e.g. PBS information, MPI
variables) accurately with minimum latency at a speci-
fied rate and with minimal resource utilization. Addition-
ally, “RFDMon” is fault tolerant (for fault in monitoring
framework), self-configuring (can start and stop moni-
toring the nodes and configure monitors for threshold
values/changes for publishing the measurements), self-
aware (aware of execution of the framework on multi-
ple nodes through HEARTBEAT message exchange), ex-
tensive (monitors multiple parameters through periodic
and aperiodic sensors), resource constrainable (compu-
tational resources can be limited for monitors), and ex-
pandable for adding extra monitors on the fly. Because
this framework is built on Object Management Group
(http://www.omg.org/) Data Distribution Services (DDS)
implementations, it can be used for deploying in systems
with heterogeneous nodes. Additionally, it provides a
functionality to limit the maximum cap on resources con-
sumed by monitoring processes such that it does not af-
fect the availability of resources for the applications.

1 Introduction

Currently distributed systems are used in executing sci-
entific applications, enterprise domains for hosting e-
commerce applications, wireless networks, and storage
solutions. Furthermore, distributed computing systems
are an essential part of mission critical infrastructure of
flight control system, health care infrastructure, and in-
dustrial control system. A typical distributed infrastruc-

ture contains multiple autonomous computing nodes that
are deployed over a network and connected through a dis-
tributed middle-ware layer to exchange the information
and control commands [1]. This distributed middleware
spans across multiple machines and provides same inter-
face to all the applications executing on multiple com-
puting nodes. The primary benefit of executing an ap-
plication over a distributed infrastructure is that differ-
ent instances of the application (or different applications)
can communicate with each other over the network effi-
ciently while keeping the details of underlying hardware
and operating system hidden from the application be-
haviour code. Also, interaction in distributed infrastruc-
ture is consistent irrespective of location and time. Dis-
tributed infrastructure is easy to expand, enables resource
sharing among computing nodes, and provides flexibility
of running redundant nodes to improve the availability of
infrastructure.

Using distributed infrastructure creates added respon-
sibility of consistency, synchronization, and security over
multiple nodes. Furthermore, in enterprise domain (or
cloud services), there is a tremendous pressure to achieve
the system QoS objectives in all possible scenarios of
system operation. To this end, an aggregate picture of
the distributed infrastructure should always be available
to analyze and to provide feedback for computing con-
trol commands if needed. The desired aggregate pic-
ture can be achieved through an infrastructure monitor-
ing technique that is extensive enough to accommodate
system parameters (CPU utilization, memory utiliza-
tion, disk utilization, network utilization, etc.), applica-
tion performance parameters (response time, queue size,
and throughput), and scientific application data structures
(e.g. Portable Batch System (PBS) information, Mes-
sage Passing Interface (MPI) variables). Additionally,
this monitoring technique should also be customizable to
tune for various type of applications and their wide range
of parameters. Effective management of distributed sys-
tems require an effective monitoring technique, which

can work in a distributed manner similar to the under-
lying system, and reports each event to the system ad-
ministrator with maximum accuracy and minimum la-
tency. Furthermore, the monitoring technique should not
be a burden to the performance of the computing system
and should not affect the execution of the applications of
the computing system. Also, the monitoring technique
should be able to identify the fault in itself to isolate the
faulty component and correct it immediately for effective
monitoring of the computing system. Distributed event
based systems (DEBS) are recommended for monitor-
ing and management of distributed computing systems
for faults and system health notifications through sys-
tem alarms. Moreover, the DEBS based monitoring is
able to provide the notion of system health in terms of
fault/status signals, which will help to take the appropri-
ate control actions to maintain the system in safe bound-
ary of operation.

Contribution: In this paper, an event based dis-
tributed monitoring approach “RFDMon” is presented
that utilizes the concepts of distributed data services
(DDS) for an effective exchange of monitoring measure-
ments among the computing nodes. This monitoring
framework is built upon the ACM: ARINC-653 Com-
ponent Framework [2] and an open source DDS imple-
mentation, Open splice [3]. The primary principles in
design of the proposed approach are static memory al-
location for determinism, spatial and temporal isolation
between monitoring framework and real application of
different criticality, specification, and adherence to real
time properties such as periodicity and deadlines in mon-
itoring framework, and providing well-defined composi-
tional semantics.

“RFDMon” is fault tolerant (for fault in sensor frame-
work), self-configuring (can start and stop monitoring the
nodes, configure monitors for threshold values/changes
for publishing the measurements), self-aware (aware of
execution of the framework on multiple nodes through
HEARTBEAT messages exchange), extensive (monitors
multiple parameters through periodic and aperiodic sen-
sors), resource constrained (resources can be limited for
monitors), expandable for adding extra monitors on the
fly, and can be applied on heterogeneous infrastructure.
“RFDMon” has been developed on the existing OMG
CCM standard because it is one of the widely used com-
ponent model and software developers are already famil-
iar with it.

“RFDMon” is divided in two parts: 1. A distributed
sensor framework to monitor the various system, appli-
cation, and performance parameter of computing sys-

tem that reports all the measurements in a centralized
database over http interface. 2. A Ruby on Rails [4]
based web service that shows the current state of the in-
frastructure by providing an interface to read the database
and display the content of database in a graphical window
on the web browser.

Outline:

This paper is organized as follows. Preliminary con-
cepts of the proposed approach are presented in section 2
and issues in monitoring of distributed systems is high-
lighted in section 3. Related distributed monitoring prod-
ucts are described in section 4, while detailed description
of the proposed approach “RFDMon” is given in sec-
tion 5. Details of each sensor is presented in section 6
while a set of experiments are described in section 7. Ap-
plication of the proposed approach is mentioned in sec-
tion 9 and major benefits of the approach is highlighted
in section 8. Future direction of the work is discussed in
section 10 and conclusions are presented in section 11.

2 Preliminaries

The proposed monitoring approach “RFDMon” consists
of two major modules: Distributed Sensors Frame-
work and Infrastructure Monitoring Database. Dis-
tributed Sensors Framework utilizes Data distribution
services (DDS) middleware standard for communication
among nodes of distributed infrastructure. Specifically, it
uses the Opensplice Community Edition [3]. It executes
DDS sensor framework on top of ARINC Component
Framework [5]. Infrastructure Monitoring Database
uses Ruby on Rails [4] to implement the web service that
can be used to update the database with monitoring data,
and display the data on administrator web browser. In
this section, the primary concepts of publish-subscribe
mechanism, OpenSplice DDS, ARINC-653, and Ruby
on Rails are presented, which will be helpful in under-
standing the proposed monitoring framework.

2.1 Publish-Subscribe Mechanism

Publish-Subscribe is a typical communication model for
distributed infrastructure that hosts distributed applica-
tions. Various nodes can communicate with each other
by sending (publishing) data and receiving (subscribing)
data anonymously through the communication channel
as specified in the infrastructure. A publisher or sub-
scriber need only the name and definition of the data in
order to communicate. Publishers do not need any infor-
mation about the location or identity of the subscribers,

Partition

[l
A
Q

Topics
P,Q,R
A,B,C
XY, Z

Subscriber

Figure 1: Publish Subscribe Architecture

and vice versa. Publishers are responsible for collecting
the data from the application, formatting it as per the data
definition, and sending it out of the node to all registered
subscribers over the publish-subscribe domain. Simi-
larly, subscribers are responsible for receiving the data
from the the publish-subscribe domain, format it as per
the data definition, and presenting the formatted data to
the intended applications (see Figure 1). All communi-
cation is performed through DDS domain. A domain can
have multiple partitions. Each partition can contain mul-
tiple topics. Topics are published and subscribed across
the partitions. Partitioning is used to group similar type
of topics together. It also provides flexibility to applica-
tion for receiving data from a set of data sources [6]. Pub-
lish subscribe mechanism overcomes the typical short
comings of client-server model, where client and servers
are coupled together for exchange of messages. In case
of client-server model, a client should have information
regarding the location of the server for exchange of mes-
sages. However, in case of publish-subscribe mecha-
nism, clients should know only about the type of data
and its definition.

2.2 Open Splice DDS

OpenSplice DDS [3] is an open source community edi-
tion version of the Data Distribution Service (DDS)
specification defined by Object Management Group
(http://www.omg.org/). These specifications are primar-
ily used for communication needs of distributed Real
Time Systems. Distributed applications use DDS as an
interface for “Data-Centric Publish-Subscribe” (DCPS)
communication mechanism (see Figure 2). “Data-
Centric” communication provides flexibility to specify
QoS parameters for the data depending upon the type,
availability, and criticality of the data. These QoS pa-

Distributed Application

Data Centric
Publish-Subscribe Interface |

Topic Based
Anonymous
Communication J

QoS
| Configuration

Auto Discovery
Network Architecture

DDS Infrastructure

Transport Layer (UDP /IP)

Figure 2: Data Distribution Services (DDS) Architecture

rameters include rate of publication, rate of subscription,
data validity period, etc. DCPS provides flexibility to the
developers for defining the different QoS requirements
for the data to take control of each message, and they
can concentrate only on the handling of data instead of
on the transfer of data. Publisher and subscribers use
DDS framework to send and receive the data respectively.
DDS can be combined with any communication interface
for communication among distributed nodes of applica-
tion. DDS framework handles all of the communications
among publishers and subscribers as per the QoS specifi-
cations. In DDS framework, each message is associated
with a special data type called topic. A subscriber regis-
ters to one or more topics of its interest. DDS guarantees
that the subscriber will receive messages only from the
topics that it subscribed to. In DDS, a host is allowed to
act as a publisher for some topics and simultaneously act
as subscriber for others (see Figure 3).

Benefits of DDS

The primary benefit of using DDS framework for our
proposed monitoring framework “RFDMon” is that
DDS is based upon publish-subscribe mechanism that
decouples the sender and receiver of the data. There is
no single point of bottleneck or of failure in communi-
cation. Additionally, DDS communication mechanism is
highly scalable for number of nodes and supports auto-
discovery of the nodes. DDS ensures data delivery with
minimum overhead and efficient bandwidth utilization.

| Topic 1 I
B

Local|Node1 Local|Node2 Local[Node 3
Domain
Participant
Dat:
Re:daer Data Data Data Data
Reader Writer Reader Writer
Subscriber [Subscriber][Publisher] [Subscriber][Publisher]
x

> A 4

A

DDS Data Domain

Figure 3: Data Distribution Services (DDS) Entities

Partition 2 Partition 3

I:{ Processes |

| Apex Kernel | |

7
1

Partition 1

=

Processes

A Processes |

.

Apex Module
~_Apex Module

Apex Kernel |_"|4 7

<5
[Processor "
4

.

\
, Inter Module ,
7’ - -
L Communication)
Intra Partition Communication Inter Partition Communication
(Blackboards, Semaphore, Buffers) (Queuing Ports and Sampling Ports)

Figure 4: ARINC-653 Architecture.

2.3 ARINC-653

ARINC-653 software specification has been utilized in
safety-critical real time operating systems (RTOS) that
are used in avionics systems and recommended for space
missions. ARINC-653 specifications presents standard
Application Executive (APEX) kernel and its associated
services to ensure spatial and temporal separation among
various applications and monitoring components in inte-
grated modular avionics. ARINC-653 systems (see Fig-
ure 4) group multiple processes into spatially and tem-
porally separated partitions. Multiple (or one) partitions
are grouped to form a module (i.e. a processor), while
one or more modules form a system. These partitions are
allocated predetermined chunk of memory.

Spatial partitioning [7] ensures exclusive use of a
memory region by an ARINC partition. It guarantees that
a faulty process in a partition cannot corrupt or destroy
the data structures of other processes that are executing in
other partitions. This space partitioning is useful to sepa-
rate the low-criticality vehicle management components
from safety-critical flight control components in avion-
ics systems [2]. Memory management hardware ensures

memory protection by allowing a process to access only
part of the memory that belongs to the partition, which
hosts the same process.

Temporal partitioning [7] in Arinc-653 systems is en-
sured by a fixed periodic schedule to use the process-
ing resources by different partitions. This fixed periodic
schedule is generated or supplied to RTOS in advance
for sharing of resources among the partitions (see Fig-
ure 5). This deterministic scheduling scheme ensures
that each partition gains access to the computational re-
sources within its execution interval as per the scheduling
scheme. Additionally, it guarantees that the partition’s
execution will be interrupted once partition’s execution
interval will be finished, the partition will be placed into
a dormant state, and next partition as per the schedul-
ing scheme will be allowed to access the computing re-
sources. In this procedure, all shared hardware resources
are managed by the partitioning OS to guarantee that the
resources are freed as soon as the time slice for the parti-
tion expires.

Arinc-653 architecture ensures fault-containment
through functional separation among applications and
monitoring components. In this architecture, partitions
and their process can only be created during system
initialization. Dynamic creation of the processes is not
supported while system is executing. Additionally, users
can configure real time properties (priority, periodicity,
duration, soft/hard deadline, etc.) of the processes and
partitions during their creation. These partitions and
process are scheduled and strictly monitored for possible
deadline violations. Processes of same partition share
data and communicate using intra-partition services.
Intra partition communication is performed using buffers
to provide a message passing queue and blackboards to
read, write, and clear single data storage. Two different
partitions communicate using inter-partition services
that uses ports and channels for sampling and queueing
of messages. Synchronization of processes related to
same partition is performed through semaphores and
events [7].

2.4 ARINC-653 Emulation Library

ARINC-653 Emulation Library [2] (available for down-
load from https://wiki.isis.vanderbilt.
edu/mbshm/index.php/Main_Page) provides a
LINUX based implementation of ARINC-653 interface
specifications for intra-partition process communication
that includes Blackboards and Buffers. Buffers provide a
queue for passing messages and Blackboards enable pro-

https://wiki.isis.vanderbilt.edu/mbshm/index.php/Main_Page
https://wiki.isis.vanderbilt.edu/mbshm/index.php/Main_Page

CPU = 1 // CPU Affinity needs to be set for multi-core machines
HYPERPERIOD =4 //Units : seconds

PARTITION_NAME = PART1

PARTITION_NAME = PART2

PART1_EXECUTABLE = ./part1

PART2_EXECUTABLE = ./part2

PART1_SCHEDULE = 0,2 //Units : seconds (offset, duration)
PART2_SCHEDULE = 2,2 //Units : seconds (offset, duration)

00:00 00:00:02 00:00:04 00:00:06 00:00:08

Start Part1 Stop Part1 Stop Part2 Stop Part1 Stop Part2
Start Part 2 StartPart1 Start Part 2 Start Part1
Part1 Part2 Part1 Part2

< HYPERPERIOD=4 seconds ><HYPERPERIOD= 4 seconds>

Figure 5: Specification of Partition Scheduling in ACM
Framework.

cesses to read, write, and clear single message. Intra-
partition process synchronization is supported through
Semaphores and Events. This library also provides pro-
cess and time management services as described in the
ARINC-653 specification.

ARINC-653 Emulation Library is also responsible for
providing temporal partitioning among partitions, which
are implemented as Linux Processes. Each partition in-
side a module is configured with an associated period that
identifies the rate of execution. The partition properties
also include the time duration of execution. The module
manager is configured with a fixed cyclic schedule with
pre-determined hyperperiod (see Figure 5).

In order to provide periodic time slices for all parti-
tions, the time of the CPU allocated to a module is di-
vided into periodically repeating time slices called hy-
perperiods. The hyperperiod value is calculated as the
least common multiple of the periods of all partition in
the module. In other words, every partition executes one
or more times within a hyperperiod. The temporal inter-
val associated with a hyperperiod is also known as the
major frame. This major frame is then subdivided into
several smaller time windows called minor frames. Each
minor frame belongs exclusively to one of the partitions.
The length of the minor frame is the same as the dura-
tion of the partition running in that frame. Note that the
module manager allows execution of one and only one
partition inside a given minor frame.

The module configuration specifies the hyperperiod
value, the partition names, the partition executables, and
their scheduling windows, which is specified with the
offset from the start of the hyperperiod and duration.

Request from Client
Browser

-

Routing

Router finds the Controller 1

\ 4

Controller

5 Client
N

View

Controller Interacts with 2
Model

Controller Invokes View

o |~ W N

View renders the browser

screen with Results
%

<
Model

oramar] =

Figure 6: Rails and Model View Controller (MVC) Ar-
chitecture Interaction

The module manager is responsible for checking that the
schedule is valid before the system can be initialized i.e.
all scheduling windows within a hyperperiod can be exe-
cuted without overlap.

2.5 Ruby on Rails

Rails [4] is a web application development framework
that uses Ruby programming language [8]. Rails uses
Model View Controller (MVC) architecture for applica-
tion development. MVC divides the responsibility of
managing the web application development in three com-
ponents:1.Model: It contains the data definition and ma-
nipulation rules for the data. Model maintains the state of
the application by storing data in the database. 2.Views:
View contains the presentation rules for the data and han-
dles visualization requests made by the application as per
the data present in model. View never handles the data
but interacts with users for various ways of inputting the
data. 3.Controller: Controller contains rules for pro-
cessing the user input, testing, updating, and maintaining
the data. A user can change the data by using controller
while views will update the visualization of the data to
reflect the changes. Figure 6 presents the sequence of
events while accessing a rails application over web in-
terface. In a rails application, incoming client request is
first sent to a router that finds the location of the appli-
cation and parses the request to find the corresponding
controller (method inside the controller) that will handle
the incoming request. The method inside the controller
can look into the data of request, can interact with the
model if needed, can invoke other methods as per the na-
ture of the request. Finally, the method sends information
to the view that renders the browser of the client with the
result.

In the proposed monitoring framework “RFDMon”, a

web service is developed to display the monitoring data
collected from the distributed infrastructure. These mon-
itoring data includes the information related to clusters,
nodes in a cluster, node states, measurements from vari-
ous sensors on each node, MPI and PBS related data for
scientific applications, web application performance, and
process accounting. Schema information of the database
is shown in figure 7.

3 Issues in Distributed System Moni-
toring

An efficient and accurate monitoring technique is the
most basic requirement for tracking the behaviour of a
computing system to achieve the pre-specified QoS ob-
jectives. This efficient and accurate monitoring should
be performed in an on-line manner where an extensive
list of parameters are monitored and measurements are
utilized by on-line control methods to tune the system
configuration which in turn keeps the system within de-
sired QoS objectives [9]. When a monitoring technique
is applied to a distributed infrastructure, it requires syn-
chronization among the nodes, high scalability, and mea-
surement correlation across the multiple nodes to under-
stand the current behavior of distributed system accu-
rately and within the time constraints. However, a typical
distributed monitoring technique suffers from synchro-
nization issues among the nodes, communication delay,
large amount of measurements, non deterministic nature
of events, asynchronous nature of measurements, and
limited network bandwidth [10]. Additionally, this moni-
toring technique suffers from high resource consumption
by monitoring units and multiple source and destination
for measurements. Another set of issues related to dis-
tributed monitoring include the understanding of the ob-
servations that are not directly related with the behavior
of the system and measurements that need particular or-
der in reporting [11]. Due to all of these issues, it is ex-
tremely difficult to create a consistent global view of the
infrastructure.

Furthermore, it is expected that the monitoring tech-
nique will not introduce any fault, instability, and ille-
gal behavior in the system under observation due to its
implementation and will not interfere with the applica-
tions executing in the system. For this reason “RFDMon”
is designed in such a manner that it can self-configure
(START, STOP, and POLL) monitoring sensors in case
of faulty (or seems to be faulty) measurements and self-
aware about execution of the framework over multiple

nodes through HEARTBEAT sensors. In future, “RFD-
Mon” can be combined easily with a fault diagnosis mod-
ule due to its standard interfaces. In next section, a few
of the latest approaches of distributed system monitor-
ing (enterprise and open source) are presented with their
primary features and limitations.

4 Related Work

Various distributed monitoring systems are developed by
industry and research groups in past many years. Gan-
glia [12], Nagios [13], Zenoss [14], Nimsoft [15], Zab-
bix [16], and openNMS [17] are a few of them which
are the most popular enteprise products developed for an
efficient and effective monitoring of the distributed sys-
tems. Description of a few of these products is given in
following paragraphs.

According to [12], Ganglia is a distributed monitoring
product for distributed computing systems, which is eas-
ily scalable with the size of the cluster or the grid. Gan-
glia is developed upon the concept of hierarchical fed-
eration of clusters. In this architecture, multiple nodes
are grouped as a cluster which is attached to a mod-
ule, and then multiple clusters are again grouped under
a monitoring module. Ganglia utilizes a multi-cast based
listen/announce protocol for communication among the
various nodes and monitoring modules. It uses heartbeat
message (over multi-cast addresses) within the hierarchy
to maintain the existence (Membership) of lower level
modules by the higher level. Various nodes and applica-
tions multi-cast their monitored resources or metrics to
all of the other nodes. In this way, each node has an ap-
proximate picture of the complete cluster at all instances
of time. Aggregation of the lower level modules is done
through polling of the child nodes in the tree. Approxi-
mate picture of the lover level is transferred to the higher
level in the form of monitoring data through TCP con-
nections. There are two demons that function to imple-
ment Ganglia monitoring system. The Ganglia monitor-
ing daemon (“gmond”) runs on each node in the clus-
ter to report the readings from the cluster and respond to
the requests sent from ganglia client. The Ganglia Meta
Daemon (“‘gmetad”) executes at one level higher than
the local nodes which aggregates the state of the cluster.
Finally, multiple gmetad cooperates to create the aggre-
gate picture of federation of clusters. The primary advan-
tage of utilizing the Ganglia monitoring system is auto-
discovery of the added nodes, each node contains the ag-
gregate picture of the cluster, utilizes design principles,
easily portable, and easily manageable.

Nodes

Clusters <
e ™ B « job_attempt
ob_attempts lid |
name FK1 |Cluster_id] i valid_job_states
T name N PK |id PK |id B
A A A N
FK1 |job_id name
attempt code
_ - job 7'y
valid_signals SEnsors monitored_processes jobs account
PK |id PK |id PK |id PK |id pcettype
hame FK1 |node_id pid j:ob_manager < vmem
. category program job_number mem
device_type FK1 |node_id user < cputime
device_instance 'y group_name walltime
FK1 |cluster_id queue
T A4 A
completed_processes
PK |id sensor_measurements mpi_processes mpi_jobs > job_logs
PK |d PK |id " PK [id
FK1 |node_id b PK |id
command FK1 |sensor_id rank i FK2 |job_id
re —PIFK2 de_id —
re measured_at ppid :o et FK1 |valid_job_state_id
H procs -
started_at value pid oes log_fime
ended_at uid mpi_jobid =
— FK1 |job_attempt_id A
aver_mem status
FK2 |valid_signal_id FK1 |mpi_job_id
A - - job_nodes
valid_mpi_process_states e, GlEETE PK |id
valid_node_states | | valid_transitions process_measurements - PK |id
! LS PK |id . .
PK |id PK |id PK |id i . FK1]ob_log_ld
name FK1 |job_log_id FK2 |node_id
name name FK1 |monitored_process_id 7y hame count
d at value
A A ed_al
cpu_frac
ram_frac
vsize
rss
node_states mpi_process_states job_attempts_nodes job_states
PK_|d PK |id PK |id PK |id
K2 node__|.d : FK1 |valid_mpi_process_state_id FK1 |job_attempt_id FK2 |job_attempt_id
transition_time FK2 |mpi_process_id FK2 [node_id FK1 |valid_job_state_id
FK1 |valid_node_state_id entered at sec - " _Jd - _
FK3 |valid_transition_id =S entered_a
. — - entered_at_usec
is_leader ==

Figure 7: Schema of Monitoring Database (PK = Primary Key , FK = Foreign key).

A plug-in based distributed monitoring approach “Na-
gios” is described in [13]. “Nagios” is developed based
upon agent/server architecture, where agents can report
the abnormal events from the computing nodes to the
server node (administrators) through email, SMS, or in-
stant messages. Current monitoring information and log
history can be accessed by the administrator through a
web interface. ‘“Nagios” monitoring system consists of
following three primary modules - Scheduler: This is
the administrator component of the “Nagios” that checks
the plug-ins and take corrective actions if needed. Plug-
in: These small modules are placed on the computing
node, configured to monitor a resource, and then send the
reading to the “Nagios” server module over SNMP inter-
face. GUI: This is a web based interface that presents the
situation of distributed monitoring system through vari-
ous colourful buttons, sounds, and graphs. The events
reported from the plug-in will be displayed on the GUI
as per the critically level.

Zenoss [14] is a model-based monitoring solution

for distributed infrastructure that has comprehensive and
flexible approach of monitoring as per the requirement of
enterprise. It is an agentless monitoring approach where
the central monitoring server gathers data from each node
over SNMP interface through ssh commands. In Zenoss,
the computing nodes can be discovered automatically,
and can be specified with their type (Xen, VMWare) for
customized monitoring interface. Monitoring capability
of Zenoss can be extended by adding small monitoring
plug-ins (zenpack) to the central server. For similar type
of devices, it uses similar monitoring scheme that gives
ease in configuration to the end user. Additionally, clas-
sification of the devices applies monitoring behaviours
(monitoring templates) to ensure appropriate and com-
plete monitoring, alerting and reporting using defined
performance templates, thresholds, and event rules. Fur-
thermore, it provides an extremely rich GUI interface for
monitoring the servers placed in different geographical
locations for a detailed geographical view of the infras-
tructure.

Nimsoft Monitoring Solution [15](NMS) offers a
light-weight, reliable, and extensive distributed monitor-
ing technique that allows organizations to monitor their
physical servers, applications, databases, public or pri-
vate clouds, and networking services. NMS uses a mes-
sage BUS for exchange of messages among the applica-
tions. Applications residing in the entire infrastructure
publish the data over the message BUS and subscriber
applications of those messages will automatically receive
the data. These applications (or components) are con-
figured with the help of a software component (called
HUB) and are attached to message BUS. Monitoring ac-
tion is performed by small probes and the measurements
are published to the message BUS by robots. Robots are
software components that are deployed over each man-
aged device. NMS also provides an Alarm Server for
alarm monitoring and a rich GUI portal to visualize the
comprehensive view of the system.

These distributed monitoring approaches are signif-
icantly scalable in number of nodes, responsive to
changes at the computational nodes, and comprehensive
in number of parameters. However, these approaches
do not support capping of the resource consumed by the
monitoring framework, fault containment in monitoring
unit, and expandability of the monitoring approach for
new parameters in the already executing framework. In
addition to this, these monitoring approaches are stand-
alone and are not easily extendible to associate with other
modules that can perform fault diagnosis for the infras-
tructure at different granularity (application level, system
level, and monitoring level). Furthermore, these moni-
toring approaches works in a server/client or host/agent
manner (except NMS) that requires direct coupling of
two entities, where one entity has to be aware about the
location and identity of other entity.

Timing jitter is one of the major difficulties for ac-
curate monitoring of a computing system for periodic
tasks when the computing system is too busy in run-
ning other applications instead of the monitoring sensors.
[18] presents a feedback based approach for compensat-
ing timing jitter without any change in operating system
kernel. This approach has low overhead with platform
independent nature and maintains total bounded jitter for
the running scheduler or monitor. Our current work uses
this approach to reduce the distributed jitter of sensors
across all machines.

The primary goal of this paper is to present an event
based distributed monitoring framework “RFDMon”” for
distributed systems that utilizes the data distribution ser-
vice (DDS) methodology to report the events or monitor-

ing measurements. In “RFDMon”, all monitoring sen-
sors execute on the ARINC-653 Emulator [2]. This en-
ables the monitoring agents to be organized into one or
more partitions and each partition has a period and dura-
tion. These attributes govern the periodicity with which
the partition is given access to the CPU. The processes
executing under each partition can be configured for real-
time properties (priority, periodicity, duration, soft/hard
deadline, etc.). The details of the approach are described
in later sections of the paper.

5 Architecture of the framework

As described in previous sections, the proposed monitor-
ing framework is based upon data centric publish sub-
scribe communication mechanism. Modules (or pro-
cesses) in the framework are separated from each other
through concept of spatial and temporal locality as de-
scribed in section 2.3. The proposed framework has
following key concepts and components to perform the
monitoring.

5.1 Sensors

Sensors are the primary component of the framework.
These are lightweight processes that monitor a device on
the computing nodes and read it periodically or aperi-
odically to get the measurements. These sensors pub-
lish the measurements under a topic (described in next
subsection) to DDS domain. There are various types of
sensors in the framework: System Resource Utilization
Monitoring Sensors, Hardware Health Monitoring Sen-
sors, Scientific Application Health Monitoring Sensors,
and Web Application performance Monitoring Sensors.
Details regarding individual sensors are provided in sec-
tion 6.

5.2 Topics

Topics are the primary unit of information exchange in
DDS domain. Details about the type of topic (structure
definition) and key values (keylist) to identify the differ-
ent instances of the topic are described in interface def-
inition language (idl) file. Keys can represent arbitrary
number of fields in topic. There are various topics in
the framework related to monitoring information, node
heartbeat, control commands for sensors, node state in-
formation, and MPI process state information.

1. MONITORING_INFO System resource and
hardware health monitoring sensors publish mea-

10

€ » | Region Regional -
NN > Leader Global Membership
~—— (Node A) Manager

1 A

Monitoring Databade

Regional Domain
Global Data Space

Local Manager :
Deployed as
ARINC-653 Partition

Local
Manager

Local
Manager

Sensor : [Sensors] Sensors] Sensors] Sensors]
Deployed as
ARINC-653 Process Other Other Other Other
Applications Applications Applications Applications
Node A Node B Node C Node D

Figure 8: Architecture of Sensor Framework

surements under monitoring info topic. This topic
contains Node Name, Sensor Name, Sequence Id,
and Measurements information in the message.

2. HEARTBEAT : Heartbeat Sensor uses this topic to
publish its heartbeat in the DDS domain to notify
the framework that it is alive. This topic contains
Node name and Sequence ID fields in the messages.
All nodes which are listening to HEARTBEAT topic
can keep track of existence of other nodes in the
DDS domain through this topic.

NODE_HEALTH_INFO : When leader node (de-
fined in Section 5.6) detects change in state
(UP, DOWN, FRAMEWORK_DOWN of any
node through change in heartbeat, it publishes
NODE_HEALTH_INFO topic to notify all of the
other nodes regarding change in status of the node.
This topic contains node name, severity level, node
state, and transition type in the message.

4. LOCAL_COMMAND : This topic is used by the
leader to send the control commands to other local
nodes for start, stop, or poll the monitoring sensors

6.

for measurements. It contains node name, sensor
name, command, and sequence id in the messages.

. GLOBAL_MEMBERSHIP_INFO : This topic
is used for communication between local nodes
and global membership manager for selection
of leader and for providing information related
to existence of the leader. This topic contains
sender node name, target node name, mes-
sage type (GET_LEADER, LEADER_ACK,
LEADER_EXISTS, LEADER_DEAD), region
name, and leader node name fields in the message.

PROCESS_ACCOUNTING_INFO : Process ac-
counting sensor reads records from the process ac-
counting system and publishes the records under
this topic name. This topic contains node name,
sensor name, and process accounting record in the
message.

. MPI_PROCESS_INFO : This topic is used to
publish the execution state (STARTED, ENDED,
KILLED) and MPI/PBS information variables of
MPI processes running on the computing node.

These MPI or PBS variable contains the process Ids,
number of processes, and other environment vari-
ables. Messages of this topic contain node name,
sensor name, and MPI process record fields.

8. WEB_APPLICATION_INFO : This topic is used
to publish the performance measurements of a web
application executing over the computing node.
This performance measurement is a generic data
structure that contains information logged from the
web service related to average response time, heap
memory usage, number of JAVA threads, and pend-
ing requests inside the system.

5.3 Topic Managers

Topic Managers are classes that create subscriber or pub-
lisher for a pre defined topic. These publishers publish
the data received from various sensors under the topic
name. Subscribers receive data from the DDS domain
under the topic name and deliver to underlying applica-
tion for further processing.

5.4 Region

The proposed monitoring framework functions by orga-
nizing the nodes in to regions (or clusters). Nodes can
be homogeneous or heterogeneous. Nodes are combined
only logically. These nodes can be located in a single
server rack or on single physical machine (in case of
virtualization). However, physical closeness is recom-
mended to combine the nodes in a single region to min-
imize the unnecessary communication overhead in the
network.

5.5 Local Manager

Local manager is a module that is executed as an agent
on each computing node of the monitoring framework.
The primary responsibility of the Local Manager is to set
up sensor framework on the node and publish the mea-
surements in DDS domain.

5.6 Leader of the Region

Among multiple Local Manager nodes that belongs to
same region, there is a Local Manager node which is se-
lected for updating the centralized monitoring database
for sensor measurements from each Local Manager.
Leader of the region will also be responsible for up-
dating the changes in state (UP, DOWN, FRAME-
WORK_DOWN) of various Local Manager nodes. Once

a leader of the region dies, a new leader will be selected
for the region. Selection of the leader is done by Global
Membership Manager module as described in next sub-
section.

5.7 Global Membership Manager

Global Membership Manager module is responsible to
maintain the membership of each node for a particu-
lar region. This module is also responsible for selec-
tion of a leader for that region among all of the lo-
cal nodes. Once a local node comes alive, it first con-
tacts the global membership manager with node’s re-
gion name. Local Manager contacts to Global mem-
bership manager for getting the information regard-
ing leader of its region, global membership man-
ager replies with the name of leader for that region
(if leader exists already) or assign the new node as
leader. Global membership manager will communicate
the same local node as leader to other local nodes in
future and update the leader information in file (“RE-
GIONAL_LEADER _MAP:txt”) on disk in semicolon
separated format (RegionName:LeaderName). When a
local node sends message to global membership manager
that its leader is dead, global membership manager se-
lects a new leader for that region and replies to the local
node with leader name. It enables the fault tolerant na-
ture in the framework with respect to regional leader that
ensures periodic update of the infrastructure monitoring
database with measurements.

Leader election is a very common problem in dis-
tributed computing system infrastructure where a sin-
gle node is chosen from a group of competing nodes
to perform a centralized task. This problem is often
termed as “Leader Election Problem”. Therefore, a
leader election algorithm is always required which can
guarantee that there will be only one unique designated
leader of the group and all other nodes will know if it
is a leader or not [19]. Various leader election algo-
rithms for distributed system infrastructure are presented
in [19, 20, 21, 22, 23]. Currently, “RFDMon” selects the
leader of the region based on the default choice available
to the Global Membership Manager. This default choice
can be the first node registering for a region or the first
node notifying the global membership manager about ter-
mination of the leader of the region. However, other more
sophisticated algorithms can be easily plugged into the
framework by modifying the global membership man-
ager module for leader election.

Global membership Manager is executed through a

12

. DDS MANAGER 1 1 LOCAL MANAGER REGIONAL LEADER
+Topic Manager : Listof TOPIC MANAGER -DDS MANAGER : DDS MANAGER e Ends
»g;’riﬁggmam End2 -End1 ['SENSORS : List Of SENSOR
-Region «©L
+CREATE_PUBLISHERS() : void 1 -End1
+CREATE_SUBSCRIBERS() : void
+SEND_MEASUREMENTS() : void
+UPLOAD_MEASUREMENT_TO_DATABASE() : void GLOBAL MEMBERSHIP MANAGER
-DDS MANAGER : DDS MANAGER
1 | -End1 -SENSORS : SENSOR
* 1 | -End1
-End2
TOPIC MANAGER
-TOPIC_TYPE_NAME : char TOPIC SUBSCRIBER
“TOPIC_NAME : char Endl End2 NE ohar *
[DDSDataWriter 1 1 |TOPIC_LISTENER_HANDLE : TOPIC_LISTENER “End2
-DDSDataReader
-SUBSCRIBER : TOPIC SUBSCRIBER SENSOR
-PUBLISHER : TOPIC_PUBLISHER 1 -End1 #sequence_number : unsigned long = 0
+CREATE_INSTANCE() - void -READINGS
+GET_INSTANCE() -End2 | [RAW_INFORMATION
+WAIT_ON_DATA() : void g-SENSOR_PROCESS_NAME : char
+CREATE_PUBLISHER() : void % [SENSOR_PERIOD : long
+CREATE_SUBSCRIBER() : void -SENSOR_DEADBAND : double
+SEND() : void -SENSOR_THRESHOLD : double
’ -DEVICE_IDENTIFIERS : char
1 | +Ends -SENSOR_NAME : char
1| -End2 -SENSOR_SOURCE_DEVICE
-SENSOR_PROCESS_ID : unsigned long
TOPIC_LISTENER -DEVICE_IDENTIER_TOKENS
-NAME : char +SENSOR() : void
+on_data_available() : void +CREATE_SENSOR() : void
+on_liveliness_changed() : void +START_SENSOR() : void
1 +End6 +on_requested_deadline_missed() : void +STOP_SENSOR() : void
+on_requested_incompatible_qos() : void +POLL() : void
TOPIC_PUBLISHER +on_sample_rejected() : void +CONFIGURE_DEADBAND() : void
_NAME : char +on_sample_lost() : void +CONFIGURE_THRESHOLD() : void
+on_subscription_matched() : char +LOG() : void

Figure 9: Class Diagram of the Sensor Framework

wrapper executable “GlobalMembershipManagerAPP”
as a child process. “GlobalMembershipManager-
APP” keeps track of execution state of the Global
membership manager and starts a fresh instance of
Global membership manager if the previous instance
terminates due to some error. New instance of
Global membership manager receives data from “RE-
GIONAL_LEADER_MAP.txt” file. It enables the fault
tolerant nature in the framework with respect to global
membership manager.

UML class diagram to show the relation among above
modules is shown in Figure 9. Next section will describe
the details regarding each sensor that is executing at each
local node.

6 Sensor Implementation

The proposed monitoring framework implements various
software sensors to monitor system resources, network
resources, node states, MPI and PBS related informa-
tion, and performance data of application in execution on
the node. These sensors can be periodic or aperiodic de-
pending upon the implementation and type of resource.

Periodic sensors are implemented for system resources
and performance data while aperiodic sensors are used
for MPI process state and other system events that gets
triggered only on availability of the data.

These sensors are executed as a ARINC-653 process
on top of the ARINC-653 emulator developed at Vander-
bilt [2]. All sensors on a node are deployed in a single
ARINC-653 partition on top of the ARINC-653 emula-
tor. As discussed in the section 2.4, the emulator mon-
itors the deadline and schedules the sensors such that
their periodicity is maintained. Furthermore, the emula-
tor performs static cyclic scheduling of the ARINC-653
partition of the Local Manager. The schedule is specified
in terms of a hyperperiod, the phase and the duration of
execution in that hyperperiod. Effectively, it limits the
maximum CPU utilization of the Local Managers.

Sensors are constructed primarily with following
properties:

e Sensor Name : Name of the sensor (e.g. Utiliza-
tionAggregatecpuScalar).

e Sensor Source Device: Name of the device to mon-

13

Sensor Name Period Description
CPU Utilization 30 seconds Aggregate utilization of all CPU cores on the machines.
Swap Utilization 30 seconds Swap space usage on the machines.
Ram Utilization 30 seconds Memory usage on the machines.
Hard Disk Utilization 30 seconds Disk usage on the machine.
CPU Fan Speed 30 seconds Speed of CPU fan that helps keep the processor cool.
Motherboard Fan Speed | 10 seconds Speed of motherboard fan that helps keep the motherboard cool.
CPU Temperature 10 seconds Temperature of the processor on the machines.
Motherboard Temperature | 10 seconds Temperature of the motherboard on the machines.
CPU Voltage 10 seconds Voltage of the processor on the machines.
Motherboard Voltage 10 seconds Voltage of the motherboard on the machines.
Network Utilization 10 seconds Bandwidth utilization of each network card.
Network Connection 30 seconds Number of TCP connections on the machines.
Heartbeat 30 seconds Periodic liveness messages.
Process Accounting 30 seconds | Periodic sensor that publishes the commands executed on the system.
MPI Process Info -1 Aperiodic sensor that reports the change in state of the MPI Processes.
Web Application Info -1 Aperiodic sensor that reports the performance data of Web Application.

Table 1: List of Monitoring Sensors

itor for the measurements (e.g. “/proc/stat”).

Sensor Period : Periodicity of the sensor (e.g. 10
seconds for periodic sensors and —1 for aperiodic
Sensors).

Sensor Deadline : Deadline of the sensor measure-
ments : HARD (strict) or SOFT (relatively lenient).
A sensor has to finish its work within a specified
deadline. A HARD deadline violation is an error
that requires intervention from the underlying mid-
dleware. A SOFT deadline violation results in a
warning.

Sensor Priority : Sensor priority indicates the pri-
ority of scheduling the sensor over other processes
in to the system. In general, normal (base) priority
is assigned to the sensor.

Sensor Dead Band : Sensor reports the value only
if the difference between current value and previous
recorded value becomes greater than the specified
sensor dead band. This option reduces the number
of sensor measurements in the DDS domain if value
of sensor measurement is unchanged or changing
slightly.

Life cycle and function of a typical sensor (“CPU uti-
lization™) is described in figure 11. Periodic sensors pub-
lish data periodically as per the value of sensor period.
Sensors support four types of commands for publish-
ing the data : START, STOP, and POLL. START com-

mand starts the already initialized sensor to start publish-
ing the sensor measurements. STOP command stops the
sensor thread to stop publishing the measurement data.
POLL command tries to get the latest measurement from
the sensor. These sensors publish the data as per the
predefined topic to the DDS domain (e.g. MONITOR-
ING_INFO or HEARTBEAT). The proposed monitoring
approach is equipped with various sensors that are listed
in table 1. These sensors are categorized in following
subsections based upon their type and functionality.

System Resource Utilization Monitoring Sensors

A numbers of sensors are developed to monitor the uti-
lization of system resources. These sensors are periodic
(30 seconds) in nature, follow SOFT deadlines, contains
normal priority, and read system devices (e.g. /proc/state,
/proc/meminfo etc) to collect the measurements. These
sensors publish the measurement data under MONITOR-
ING_INFO topic.

1. CPU Utilization : CPU utilization sensor monitors
“Iproc/stat” file on linux file system to collect the
measurements for CPU utilization of the system.

. RAM Utilization : RAM utilization sensor mon-
itors “/proc/meminfo” file on linux file system to
collect the measurements for RAM utilization of the
system.

14

mpirun —np N -machinefile worker.config SciAppManager SciAPP arg1 arg2

Master

N

ode

Scientific
Applications

7 e N KN
Slave Node Slave Node Slave Node Slave Node
(PE,) (PE;) (PE;) (PEy)
POSIX ¢
Message
Queues
MPIProcess MPIProcess MPIProcess || || MPIProcess
Sensor Sensor Sensor Sensor
_ AN B2)

| PE : Processing Element

Figure 10: Architecture of MPI Process Sensor

3. Disk Utilization : Disk utilization sensor moni-
tors executes “df -P” command over linux file sys-
tem and processes the output to collect the measure-
ments for disk utilization of the system.

SWAP Utilization : SWAP utilization sensor moni-
tors “/proc/swaps” file on linux file system to collect
the measurements for SWAP utilization of the sys-
tem.

Network Utilization : Network utilization sensor
monitors “/proc/net/dev” file on linux file system to
collect the measurements for Network utilization of
the system in bytes per second.

Hardware Health Monitoring Sensors

In proposed framework, various sensors are developed
to monitor health of hardware components in the sys-
tem. e.g. Motherboard voltage, Motherboard fan speed,
CPU fan speed etc. These sensors are periodic (10 sec-
onds) in nature, follow soft deadlines, contains normal
priority, and read the measurements over vendor supplied
Intelligent Platform Management Interface (IPMI) inter-
face [24]. These sensors publish the measurement data
under MONITORING_INFO topic.

1. CPU Fan Speed : CPU fan speed sensor executes
IPMI command “ipmitool -S SDR fanl” on linux
file system to collect the measurement of CPU fan
speed.

15

2. CPU Temperature : CPU temperature sensor ex-
ecutes “ipmitool -S SDR CPU1 Temp” command
over linux file system to collect the measurement of
CPU temperature.

Motherboard Temperature : Motherboard tem-
perature sensor executes “ipmitool -S SDR Sys
Temp” command over linux file system to collect
the measurement of Motherboard temperature.

CPU Voltage : CPU voltage sensor executes “ipmi-
tool -S SDR CPU1 Vcore” command over linux file
system to collect the measurement of CPU voltage.

Motherboard Voltage : Motherboard voltage sen-
sor executes “ipmitool -S SDR VBAT” command
over linux file system to collect the measurement of
Motherboard voltage.

Node Health Monitoring Sensors

Each Local Manager (on a node) executes a Heartbeat
sensor that periodically sends its own name to DDS do-
main under topic “HEARTBEAT” to inform other nodes
regarding its existence in the framework. Local nodes of
the region keep track of the state of other local nodes
in that region through HEARTBEAT messages which
is transmit by each local node periodically. If a local
node gets terminated, leader of the region will update the
monitoring database with node state transition values and
will notify other nodes regarding the termination of a lo-
cal node through topic “NODE_HEALTH_INFO”. If a

leader node gets terminated, other local nodes will notify
the global membership manager regarding termination
of the leader for their region through LEADER _DEAD
message under GLOBAL_MEMBERSHIP_INFO topic.
Global membership manager will elect a new leader for
the region and notify to local nodes in the region in subse-
quent messages. Thus, monitoring database will always
contain the updated data regarding the various resource
utilization and performance features of the infrastructure.

Scientific Application Health Monitoring Sensor

The primary purpose of implementing this sensor is to
monitor the state and information variables related to sci-
entific applications executing over multiple nodes and
update the same information in the centralized monitor-
ing database. This Sensor logs all the information in case
of state change (Started, Killed, Ended) of the process
related to scientific application and report the data to ad-
ministrator. In the proposed framework, a wrapper appli-
cation (SciAppManager) is developed that can execute
the real scientific application internally as a child pro-
cess. MPI run command should be issued to execute this
SciAppManager application from master nodes in the
cluster. Name of the Scientific application and other ar-
guments is passed as argument while executing SciApp-
Manager application. (e.g. mpirun -np N -machinefile
worker.config SciAppManager SciAPP argl arg2 ..
argN). SciAppManager will write the state information
of scientific application in a POSIX message queue that
exists on each node. Scientific application sensor will
be listening on that message queue and log the message
as soon as it receives. This sensor formats the data as
pre-specified DDS topic structure and publishes it to the
DDS domain under MPI_ PROCESS _INFO topic. Func-
tioning of the scientific application sensor is described in
Figure 10.

Web Application Performance Monitoring Sen-
sor

This sensor keeps track of performance behaviour of the
web application executing over the node through the web
server performance logs. A generic structure of perfor-
mance logs is defined in the sensor framework that in-
cludes average response time, heap memory usage, num-
ber of JAVA threads, and pending requests inside the web
server. In proposed framework, a web application logs its
performance data in a POSIX message queue (different
from SciAppManager) that exists on each node. Web ap-
plication performance monitoring sensor will be listening

on that message queue and log the message as soon as it
receives. This sensor formats the data as pre-specified
DDS topic structure and publishes it to the DDS domain
under WEB_APPLICATION _INFO topic.

7 Experiments

A set of experiments have been performed to exhibit the
system resource overhead, fault adaptive nature, and re-
sponsiveness towards fault in the developed monitoring
framework. During these experiments, the monitoring
framework is deployed in a Linux environment (2.6.18-
274.7.1.el5xen) that consists of five nodes (ddshostl,
ddsnodel, ddsnode2, ddsnode3, and ddsnode4). All of
these nodes execute similar version of Linux operating
systems (Centos 5.6). Ruby on rails based web service
is hosted on ddshostl node. In next subsections one of
these experiment is presented in detail.

Details of the Experiment

In this experiment, all of the nodes (ddshostl, and
ddsnodel..4) are started one by one with a random time
interval. Once all the nodes have started executing mon-
itoring framework, Local Manager on a few nodes are
killed through kill system call. Once a Local Manager
at a node is killed, Regional Leader reports change in
the node state to the centralized database as FRAME-
WORK_DOWN. When Local Manager of a Regional
Leader is killed, the monitoring framework elects its
new leader for that region. During this experiment, the
CPU and RAM consumption by Local Manager at each
node is monitored through “TOP” system command and
various node state transitions are reported to centralized
database.

Observations of the Experiment

Results from the experiment are plotted as time series
and presented in Figures 12, 13, 14, 15, and 16.

Observations from the Figure 12 and 13

Figure 12 and 13 describes the CPU and RAM utilization
by monitoring framework (Local Manager) at each node
during the experiment. It is clear from the Figure 12 that
CPU utilization is mostly in the range of 0 to 1 percent
with occasional spikes in the utilization. Additionally,
even in case of spikes, utilization is under ten percent.
Similarly, according to Figure 13, RAM utilization by
the monitoring framework is less than even two percent

16

L L L — T L p— T T
Sensor CPU Utilization Plots
ddsnode1

N

v« ——ddsnode2

ddsnade3
- i i T

ddsnhode4
L — .

Utilization in Percentage
O = NWAUOOON®O
>

12 360 400 440 4
Time in Seconds

Figure 12: CPU Ultilization by the Sensor Framework at
Each Node

N
=)

° . .
g Sensor RAM Utilization PLOTS
S 8
<
8 6
£ | dashostt ddsnode3 ddsnode4 ddsnode2 ddsnod
s
§2ff (. ! \
E P 1]
>
ﬁu 40 80 120 160 200 240 280 320 360 400 440 480 520 560 600 640 680 720 760 800

Time in Seconds

Figure 13: RAM Ultilization by the Sensor Framework at
Each Node

which is very small. These results clearly indicates that
overall resource overhead of the developed monitoring
approach “RFDMon” is extremely low.

Observations from the Figure 14 and 15

Transition of various nodes between states UP and
FRAMEWORK_DOWN is presented in Figure 14. Ac-
cording to the figure, ddshostl is started first, then fol-
lowed by ddsnodel, ddsnode2, ddsnode3, and ddsnode4.
At time sample 310 (approximately), Local Manager of
host ddshostl was killed, therefore its state has been
updated to FRAMEWORK_DOWN. Similarly, state of
ddsnode2, and ddsnode3 is also updated to FRAME-
WORK_DOWN once their Local Manager is killed on
time sample 390 and 410 respectively. Local manager at
ddshostl is again started at time sample 440, therefore its
state is updated to UP at the same time. Figure 15 repre-
sents the nodes which were Regional Leaders during the
experiment. According to the figure, initially ddshostl
was the leader of the region, while as soon as Local Man-
ager at ddshostl is killed at time sample 310 (see Fig-
ure 14), ddsnode4 is elected as the new leader of the re-
gion. Similarly, when local manager of the ddsnode4 is
killed at time sample 520 (see Figure 14), ddshostl is
again elected as the leader of the region. Finally, when
local manager at ddshost1 is again killed at time sample
660 (see Figure 14), ddsnode?2 is elected as the leader of
the region.

On combined observation of the Figure 14 and 15, it
is clearly evident that as soon as there is a fault in the

Plot for Node States

Node Down ddshost1

Framework nnwn

ddsnode1

IR S S T S SN T S SN S SN S SO SO S S S |
ddsnode2 : |

FIR S S T ST SN T BTN ST S T S SO SO SR S |

ddsnode3

Node Down

Framework Dum.

Framework Down

Node Down

Framework Down!

Node Down ddsnode4

Framework D

8
L
3
S

4IJ BO 120 160 ZUD 240 280 320 360 400 440 480 520 560 600 640 680 720 760 300
Time in seconds

Figure 14: Transition in State of Nodes

Plot for Leader Node
ddsnode4 -

£ ddsnode3-
]
ﬁ ddsnode2-

°
S ddsnode1-

BN

A N S T N S T S S N ST NN SO SO S S SR SO
0 40 80 120 160 200 240 280 320 360 400 440 480 520 560 600 640 680 720 760 800
Time in Seconds

ddshost1

Figure 15: Leaders of the Sensor Framework during the
Experiment

framework related to the regional leader, a new leader is
elected instantly without any further delay. This specific
feature of the developed monitoring framework exhibit
that the proposed approach is robust with respect to fail-
ure of the Regional Leader and it can adapt to the faults
in the framework instantly without delay.

Observations from the Figure 16

Sensor framework at ddsnodel was allowed to execute
during the complete duration of the experiment (from
sample time 80 to the end) and no fault or change was
introduced in this node. The primary purpose of exe-
cuting this node continuously was to observe the impact
of introducing faults in the framework over the moni-
toring capabilities of the framework. In the most ideal
scenario, all the monitoring data of ddsnodel should be
reported to the centralized database without any interrup-
tion even in case of faults (leader re-election and nodes
going out of the framework) in the region. Figure 16
presents the CPU utilization of ddsnodel from the cen-
tralized database during the experiment. This data re-
flects the CPU monitoring data reported by Regional
Leader collected through CPU monitoring sensor from
ddsnodel. According to the Figure 16, monitoring data
from ddsnodel was collected successfully during the en-
tire experiment. Even in the case of regional leader re-
election at time sample 310 and 520 (see Figure 15),
only one or two (max) data samples are missing from the

17

"ddsnode1 CPU Utilization |

o a2 oo
®OND>O

Utilization in percentage

oN B O

——e

i |

L 1
280 320 360 400 440 480 520 560 600 640 680 720 760 800
Time in Seconds

a4 1

120 160 200 24

Figure 16: CPU Utilization at node ddsnodel during the
Experiment

database. Henceforth, it is evident that there is a minimal
impact of faults in the framework over the monitoring
functionality of the framework.

8 Benefits of the approach

“RFDMon” is comprehensive in type of monitoring pa-
rameters. It can monitor system resources, hardware
health, computing node availability, MPI job state, and
application performance data. This framework is easily
scalable with the number of nodes because it is based
upon data centric publish-subscribe mechanism that is
extremely scalable in itself. Also, in proposed frame-
work, new sensors can be easily added to increase the
number of monitoring parameters. “RFDMon” is fault
tolerant with respect to faults in the framework itself due
to partial outage in network (if Regional Leader node
stops working). Also, this framework can self-configure
(Start, Stop, and Poll) the sensors as per the require-
ments of the system. This framework can be applied in
heterogeneous environment. The major benefit of using
this sensor framework is that the total resource consump-
tion by the sensors can be limited by applying Arinc-
653 scheduling policies as described in previous sections.
Also, due to spatial isolation features of Arinc-653 emu-
lation, monitoring framework will not corrupt the mem-
ory area or data structure of applications in execution on
the node. This monitoring framework has very low over-
head on computational resources of the system as shown
in Figure 12 and 13.

9 Application of the Framework

The initial version of the proposed approach was uti-
lized in [25] to manage scientific workflows over a dis-
tributed environment. A hierarchical work flow manage-
ment system was combined with distributed monitoring
framework to monitor the work flows for failure recov-
ery. Another direct implementation of the “RFDMon”

is presented in [9] where virtual machine monitoring
tools, and web service performance monitors are com-
bined with monitoring framework to manage the multi-
dimensional QoS data for daytrader [26] web service ex-
ecuting over IBM Websphere Application Server [27]
platform. “RFDMon” provides various key benefits that
makes it a strong candidate for combining with other au-
tonomic performance management systems. Currently,
the “RFDMon” is utilized at Fermi Lab, Batavia, IL for
monitoring of their scientific clusters.

10 Future Work

“RFDMon” can be easily utilized to monitor a distributed
system and can be easily combined with a performance
management system due to its flexible nature. New sen-
sors can be started any time during the monitoring frame-
work and new set of publisher or subscriber can join the
framework to publish a new monitoring data or analyse
the current monitoring data. It can be applied to wide va-
riety of performance monitoring and management prob-
lems. The proposed framework helps in visualizing the
various resource utilization, hardware health, and pro-
cess state on computing nodes. Therefore, an adminis-
trator can easily find the location of the fault in the sys-
tem and possible causes of the faults. To make this fault
identification and diagnosis procedure autonomic, we are
developing a fault diagnosis module that can detect or
predict the faults in the infrastructure by observing and
co-relating the various sensor measurements. In addition
to this, we are developing a self-configuring hierarchi-
cal control framework (extension of our work in [28]) to
manage multi-dimensional QoS parameters in multi-tier
web service environment. In future, we will show that the
proposed monitoring framework can be combined with
fault diagnosis and performance management modules
for fault prediction and QoS management respectively.

11 Conclusion

In this paper we have presented the detailed design of
“RFDMon” which is a real-time and fault-tolerant dis-
tributed system monitoring approach based upon data
centric publish-subscribe paradigm. We have also de-
scribed the concepts of OpenSplice DDS, Arinc-653
operating system, and ruby on rails web development
framework. We have shown that the proposed distributed
monitoring framework “RFDmon” can efficiently and ac-
curately monitor the system variables (CPU utilization,

18

memory utilization, disk utilization, network utilization),
system health (temperature and voltage of Motherboard
and CPU) application performance variables (application
response time, queue size, throughput), and scientific
application data structures (e.g. PBS information, MPI
variables) accurately with minimum latency. The added
advantages of using the proposed framework have also
been discussed in the paper.

12 Acknowledgement

R. Mehrotra and S. Abdelwahed are supported for this
work from the Qatar Foundation grant NPRP 09-778-
2299. A. Dubey is supported in part by Fermi National
Accelerator Laboratory, operated by Fermi Research Al-
liance, LLC under contract No. DE-AC02-07CH11359
with the United States Department of Energy (DoE),
and by DoE SciDAC program under the contract No.
DOE DE-FC02-06 ER41442. We are grateful to the
help and guidance provided by T. Bapty, S. Neema, J.
Kowalkowski, J. Simone, D. Holmgren, A. Singh, N.
Seenu and R. Herber.s

References

[1] Andrew S. Tanenbaum and Maarten Van Steen.
Distributed Systems: Principles and Paradigms.
Prentice Hall, 2 edition, October 2006.

Abhishek Dubey, Gabor Karsai, and Nagabhushan
Mahadevan. A component model for hard-real time
systems: Ccm with arinc-653. Software: Practice
and Experience, (In press), 2011. accepted for pub-
lication.

Opensplice dds community edition. http:
//www.prismtech.com/opensplice/
opensplice-dds—community.

[4] Ruby on rails. http://rubyonrails.org/
[Sep2011].

[5] Arinc specification 653-2 : Avionics application
software standard interface part 1required services.
Technical report, Annapolis, MD, December 2005.

[6] Bert Farabaugh Gerardo Pardo-Castellote and
Rick Warren. An introduction to dds and
data-centric communications, 2005. http:
//www.omg.org/news/whitepapers/
Intro_To_DDS.pdf.

19

[7] A. Goldberg and G. Horvath. Software fault protec-
tion with arinc 653. In Aerospace Conference, 2007
IEEFE, pages 1 —11, march 2007.

[8] Ruby. http://www.ruby-lang.org/en/
[Sep2011].

[9] Rajat Mehrotra, Abhishek Dubey, Sherif Abdelwa-
hed, and Weston Monceaux. Large scale monitor-
ing and online analysis in a distributed virtualized
environment. Engineering of Autonomic and Au-

tonomous Systems, IEEE International Workshop
on, 0:1-9, 2011.

[10] Lorenzo Falai. Observing, Monitoring and Evalu-
ating Distributed Systems. PhD thesis, Universita

degli Studi di Firenze, December 2007.

[11] Monitoring in distributed systems.
//www.ansa.co.uk/ANSATech/94/

Primary/100801.pdf [Sep2011].

http:

[12] Ganglia monitoring system. http://ganglia.

sourceforge.net/ [Sep2011].

[13] Nagios. http://www.nagios.org/
[Sep2011].
[14] Zenoss, the cloud management company. http:

//www.zenoss.com/ [Sep2011].

[15] Nimsoft unified manager.
//www.nimsoft.com/solutions/

nimsoft-unified-manager [Nov2011].

http:

[16] Zabbix: The ultimate open source monitor-
ing solution. http://www.zabbix.com/
[Nov2011].

[17] Opennms. http://www.opennms.org/
[Sep2011].

[18] Abhishek Dubey et al. Compensating for timing jit-

ter in computing systems with general-purpose op-
erating systems. In ISROC, Tokyo, Japan, 2009.

[19] Hans Svensson and Thomas Arts. A new leader
election implementation. In Proceedings of the
2005 ACM SIGPLAN workshop on Erlang, ER-
LANG 05, pages 35-39, New York, NY, USA,

2005. ACM.

[20] G. Singh. Leader election in the presence of link
failures. Parallel and Distributed Systems, IEEE

Transactions on, 7(3):231 -236, mar 1996.

http://www.prismtech.com/opensplice/opensplice-dds-community
http://www.prismtech.com/opensplice/opensplice-dds-community
http://www.prismtech.com/opensplice/opensplice-dds-community
http://rubyonrails.org/ [Sep 2011]
http://rubyonrails.org/ [Sep 2011]
http://www.omg.org/news/whitepapers/Intro_To_DDS.pdf
http://www.omg.org/news/whitepapers/Intro_To_DDS.pdf
http://www.omg.org/news/whitepapers/Intro_To_DDS.pdf
http://www.ruby-lang.org/en/ [Sep 2011]
http://www.ruby-lang.org/en/ [Sep 2011]
http://www.ansa.co.uk/ANSATech/94/Primary/100801.pdf[Sep 2011]
http://www.ansa.co.uk/ANSATech/94/Primary/100801.pdf[Sep 2011]
http://www.ansa.co.uk/ANSATech/94/Primary/100801.pdf[Sep 2011]
http://ganglia.sourceforge.net/ [Sep 2011]
http://ganglia.sourceforge.net/ [Sep 2011]
http://www.nagios.org/ [Sep 2011]
http://www.nagios.org/ [Sep 2011]
http://www.zenoss.com/ [Sep 2011]
http://www.zenoss.com/ [Sep 2011]
http://www.nimsoft.com/solutions/nimsoft-unified-manager[Nov 2011]
http://www.nimsoft.com/solutions/nimsoft-unified-manager[Nov 2011]
http://www.nimsoft.com/solutions/nimsoft-unified-manager[Nov 2011]
http://www.zabbix.com/[Nov 2011]
http://www.zabbix.com/[Nov 2011]
http://www.opennms.org/ [Sep 2011]
http://www.opennms.org/ [Sep 2011]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

Scott Stoller Dept and Scott D. Stoller. Leader
election in distributed systems with crash failures.
Technical report, 1997.

Christof Fetzer and Flaviu Cristian. A highly avail-
able local leader election service. IEEE Transac-
tions on Software Engineering, 25:603-618, 1999.

E. Korach, S. Kutten, and S. Moran. A modu-
lar technique for the design of efficient distributed
leader finding algorithms. ACM Transactions on
Programming Languages and Systems, 12:84—101,
1990.

Intelligent platform management interface
(ipmi). http://www.intel.com/design/
servers/ipmi/ [Sep2011].

Pan Pan, Abhishek Dubey, and Luciano Piccoli.
Dynamic workflow management and monitoring
using dds. In 7th IEEE International Workshop on
Engineering of Autonomic & Autonomous Systems
(EASe), 2010. under Review.

Daytrader. http://cwiki.apache.org/
GMOxDOC20/daytrader.html [Nov2010].

Websphere application server community edition.
http://www—01.ibm.com/software/
webservers/appserv/community/
[Oct2011].

Rajat Mehrotra, Abhishek Dubey, Sherif Abdelwa-
hed, and Asser Tantawi. A Power-aware Modeling
and Autonomic Management Framework for Dis-
tributed Computing Systems. CRC Press, 2011.

20

http://www.intel.com/design/servers/ipmi/ [Sep 2011]
http://www.intel.com/design/servers/ipmi/ [Sep 2011]
http://cwiki.apache.org/GMOxDOC20/daytrader.html[Nov 2010]
http://cwiki.apache.org/GMOxDOC20/daytrader.html[Nov 2010]
http://www-01.ibm.com/software/webservers/appserv/community/ [Oct 2011]
http://www-01.ibm.com/software/webservers/appserv/community/ [Oct 2011]
http://www-01.ibm.com/software/webservers/appserv/community/ [Oct 2011]

SENSOR LIFE CYCLE (pseudo code)
Define Sensor:

CPU_UTILIZATION_SENSOR* CPU_UTILIZATION_SENSOR::INSTANCE=0;

PROCESS_NAME_TYPE CPU_UTILIZATION_SENSOR::SENSOR_PROCESS_NAME =
"CPU_UTILIZATION_SENSOR";

PROCESS_NAME_TYPE CPU_UTILIZATION_SENSOR::SENSOR_NAME =
"UtilizationAggregatecpuScalar”;

const std::string CPU_UTILIZATION_SENSOR::DEVICE_IDENTIFIERS = "cpu";

double CPU_UTILIZATION_SENSOR::SENSOR_THRESHOLD = 0;

double CPU_UTILIZATION_SENSOR::SENSOR_DEADBAND = 0.01;

SYSTEM_TIME_TYPE CPU_UTILIZATION_SENSOR::SENSOR_PERICD = 10; //SECONDS

Create Sensor:

SENSOR_PROCESS D = APEX_HELPER CREATE_PROCESS (
SENSOR PERIOD, //SYSTEM TIME_TYPE PERIOD,
SENSOR_PERIOD, //SYSTEM_TIME_TYPE TIME_CAPACITY,
(SYSTEM_ADDRESS TYPE)SENSE, /ENTRY_POINT,

0, //STACK_SIZE_TYPE STACK_SIZE,

90, //PRIORITY TYPE BASE_PRIORITY,

SOFT, //DEADLINE_TYPE DEADLINE,

SENSOR PROCESS_NAME, //std::string PROCESS_NAME,
RETURN_CODE); /RETURN_CODE_TYPE *RETURN_CODE

Start Sensor:
START_SENSOR (RETURN_CODE_TYPE* RETURN_CODE)

{
START(SENSOR_PROCESS_ID, RETURN_CODE);

}
SENSE()

/I Sensor Process Periodically enters into this function to read the device for measurements

Log()

// Log function process the measurements and publish the data as topic in DDS domain
SEND_MONITORING_LOG(dds_data_packet);

}

Stop Sensor:

STOP_SENSOR(RETURN_CODE_TYPE* RETURN_CODE)

STOP(SENSOR_PROCESS_ID, RETURN_CODE);
}

Figure 11: Life Cycle of a CPU Utilization Sensor

21

	Introduction
	Preliminaries
	Publish-Subscribe Mechanism
	Open Splice DDS
	ARINC-653
	ARINC-653 Emulation Library
	Ruby on Rails

	Issues in Distributed System Monitoring
	Related Work
	Architecture of the framework
	Sensors
	Topics
	Topic Managers
	Region
	Local Manager
	Leader of the Region
	Global Membership Manager

	Sensor Implementation
	Experiments
	Benefits of the approach
	Application of the Framework
	Future Work
	Conclusion
	Acknowledgement

