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Abstract

Software design, development and maintenance for large
scale systems has been one of the most difficult and expen-
sive phases of the software development life cycle. Design
and maintenance is especially difficult when the system in-
cludes autonomic features. As the system size and variety
of autonomic behaviors scale up, it increases the chance
of many unexpected and unwanted interactions. Separate
design tools can hide these potential interactions. To face
these challenges, we propose an autonomic system integra-
tion platform where holistic design models capture system
structure, target system resources, and autonomic behav-
ior. The fault mitigative, autonomic behavior can be explic-
itly coupled to the components and underlying resources
of the system. System generation technology is used to
create the software that implements these coupled spec-
ifications, including communication between components
with custom data type marshalling and demarshalling, sys-
tem startup and configuration, fault tolerant behavior, and
autonomic procedures for self-correction. This modeling
schema, along with the tools to generate the various system
components are described in this paper.

1. Introduction

System research has long been a part of the computer
based systems landscape.Computer scientists and engineers
have examined ways of combining components- whether
individual transistors, integrated circuits, or devices - into
large scale computer-based systems to provide improved
performance and capability. Large Scale systems are diffi-
cult to design, build, and operate. The high number of com-
ponents and component interactions also makes the system
susceptible to component failure. The challenges stem from
the characteristics of the system itself - large scale, high
complexity and heterogeneity. The applications in which

they operate demand extreme flexibility, trust worthiness,
and distributed operation and administration.Large systems,
however, do not need to be complex by definition. Their
design can be greatly simplified if the component behavior
can be decoupled from system structure, especially if the
components can be linked in a linear fashion and informa-
tion flows in a single direction. These design aspects must
also be separated from the autonomic concerns of the sys-
tem. Tools are needed that can support these multiple rep-
resentations covering these orthogonal aspects of a system
design.

2. Motivation and Challenges

One assumption in applying Model Integrated Comput-
ing [1] [2] [3](MIC) to a variety of systems and application
domains is that every aspect of the system can and should be
described in a single modeling language, a single model,and
a single modeling environment. Clearly there are benefits of
a single modeling language, since the interactions between
different aspects of a system are precisely and explicitly
defined.The common model, however, becomes problem-
atic with multiple designers.Integration with version control
systems, such as CVS, is also a challenge. A key question
then, is how to extend the best practices of large-scale sys-
tem development to MIC, without sacrificing the benefits of
precisely understood interactions between multiple aspects
of a system.

Our research is motivated in the context of a large-scale
real-time physics system, being developed at Fermi Na-
tional Accelerator Laboratory (Fermilab) [27]for character-
izing the sub-atomic particle interactions that takes place in
a high-energy physics experiment. There are several differ-
ent aspects of this complex system, ranging from hardware
topology, communication architecture, to software compo-
nent configuration, fault-tolerance policy specification, data
and message-types, message passing interfaces, run control,
logging, online diagnosis, and deployment. There are large



groups of physicists and engineers (users) involved with
designing these different aspects of the system. Different
aspects of the system interact in varying degrees, and are
evolving on different timelines. In addition, there is a need
to version control the evolution of designs and design arti-
facts. All these aspects must be meaningfully incorporated
in a single logical ”super” modeling language. This is the
focus of an ongoing effort to design and apply these tools.

3. Related Work

The idea of model based autonomic systems focussing
mainly on the software architecture has existed for some
years in variety of context. The use of architectural mod-
els as a centerpiece of model based adaptation has been ex-
plored by number of researchers [28]. The systems speci-
fied in there focussed mainly on the use of specific style to
provide intrinsically-modifiable architectures.IBM’s Tivoli
monitoring is a systems manager using expert systems to
isolate problems and correct them on a local machine [29].
Here the architecture is the operating system itself. The
monitoring software maintains an external model which is
accessed by scripts that isolate problems and repair faults.
Garlan and Schmerl provide a more general approach for
externalized adaptation of distributed applications [30]. Ex-
ternalized adaptation favours a centralized system organiza-
tion. In centralized model-based adaptation, an architecture
manager maintains, analysis and corrects the system model.

As we describe below , our work has focussed mainly
on the more pressing issue which is the integration of the
several components which makes the large scale systems.
In our previous publication [17] we have described the hier-
archical autonomic fault mitigation architecture as the cen-
tre piece of our research , and this paper presents the im-
plementation of this fault mitigation environment using the
ARMOR framework which is the addition to the previous
work along with the other challenging issuse which raises
in the model-based adaptation research such as the Graphi-
cal Monitoring Environment (How do we add visual moni-
toring information on the fly in non-intrusive ways ? what
kinds of things can we monitor visually?)and Automatic
Build Systems of large scale system.

4. Proposed Solution- Model Based Autonomic
Computing

As systems become more interconnected and diverse, ar-
chitects are less able to anticipate and design interactions
among components, leaving such issues to be dealt with
at runtime, often with an implicit solution. Addressing
this concern are the four pillars of autonomic computing
[21], self-configuring, self-healing, self optimizing, self-
protecting which offer a viable alternative for such large

scale systems. Automated tools are required to assist the
system developers in managing the complexity in designing
an autonomic response system. These tools should offer:

• Higher-level abstractions for designing adaptive auto-
nomic behaviors, which are easier to manipulate and
maintain.

• Analysis of the autonomic responses to assess the sys-
tems ability to adapt with respect to different failure
scenarios with a graphical user interface.

• The ability to synthesize low-level programming arti-
facts from the higher-level abstractions.

• Configuration of the system artifacts automatically
from higher level of abstractions.

• The ability to hide details of the underlying communi-
cation protocols while living within their constraints.

This paper describes a tool suite addressing these needs that
is based on the principles of Model Integrated Computing
(MIC) [3] [2] [6]. The key elements of this approach are
a Generic Modeling Environment (GME) as demonstrated
in [6] that is used to instantiate multiple Domain-Specific
Modeling Languages (DSME’s) and a suite of translators
[7]that assist in the transformation of domain models to
low-level programming and simulation artifacts. The tools
incorporate multiple ”narrowly focused” domain specific
modeling languages which will be explained in detail in sec-
tions:

• System Integration Modeling Language(SIML) - High
level specification of the system.

• Data -Types Modeling Language (DTML) - Data type
modeling and creation of a library of abstraction com-
munication protocol API.

• Fault Mitigation Modeling Language (FMML) - Mod-
eling of fault managers.

• GUI- Configuration Modeling Language (GML)-
Modeling of required User Interface and synthesis

• Run Control Modeling Language (RCML)- Modeling
of Run Control component using hierarchical finite
state machine

The following sections describe each of these languages in
detail.



Figure 1. System Level Specification
Figure 2. Component Interactions and
Modeling Languages

5. Systems Integration Modeling Language

The System Integration Modeling Language (SIML) is
the highest level of systems modeling language. SIML is a
loosely specified model of computation used for capturing
components, component hierarchy, and interactions within
the system. It also allows users to model the information
relevant for the system configuration. The proposed sys-
tems architecture has three levels of hierarchy - Regions
(R1, R2 RN), each Region has Nodes (N11 N12 N13 N1N,
N21 N22 ..), and each Node has applications running as
shown in Figure 1. Each region is governed by a Regional
Manager; there may be several regions, each of which has
a set of nodes which the Regional Manager monitors. Each
node has an individual Local Manager to monitor the ap-
plications running locally on that node. The Systems level
will have the overall high level component specification, but
the behavioral aspect of the components will be defined in a
separate language. To address this challenge of representing
the models in multiple languages we are leaning upon the
experiences from the textual programming world. A fairly
simple and intuitive notion that can be borrowed is that of
’import’ or ’include’. Notice that an import or include does
not merge the artifacts together, instead tools such as pre-
processors, compilers, and linkers do all the backend work
transparent to the end user.In languages which rely on el-
ements defined in other languages, we introduce the con-
cept of a Link type. ALink has attributes to identify the
modeling language of the linked object, the file path of the
linked object (relative to a CVS working-directory), and a
persistent ID of the linked object as shown in Figure 3. A
Link is an abstract type which can be specialized into con-

crete types within the language. Note that the abstractLink

Figure 3. Link Specification.

type and its specialization to a concrete type in the model-
ing language capture the mapping and interactions between
different modeling languages precisely. In addition to this
basic augmentation to the modeling languages, we have de-
veloped plug-ins that facilitates the process of link creation
and link navigation. The creation of aLink is non-trivial
since it may require a mapping between concepts in differ-
ent modeling languages. The onus of link creation, how-
ever, is placed on the plug-in developer and not on the do-
main users. There is now an additional challenge, particu-
larly for synthesis in the sense that model translators now



need to navigate across multiple models and modeling lan-
guages. However, this challenge is similar in to those that
have been addressed by pre-processors, compilers, and link-
ers, and there is no reason why similar techniques can not
be brought to bear.

5.1. Data Type Modeling Language

While SIML allows the system developer to specify a hi-
erarchical organization of components and fault-managers
in the system, the communication between each of the man-
agers and the other components is modeled using another
language specific for message data type modeling. Elvin
[26]is a network communications product based on a pub-
lish/subscribe paradigm. Elvin is similar to other pub-
lish/subscribe message passing systems in that messages
are routed to one or more locations via client subscriptions
which are based on the content of messages. Elvin is a com-
mercial product which has high performance, low-latency
and is massively scalable. Large scale processing farms
such as the ones in for the BTeV Level 2/3 [8] [9]require
both massive bandwidth for high data rate processing and
low-latency communication for fault control and diagnos-
tics. In order to hide the complexities of the Elvin commu-
nication, we have developed an abstract layer on the top of
the chosen message passing system. The abstract layer was
created in order to 1) to hide the complexities of the com-
munication protocol and 2) to match the messaging API to
our requirements. Message marshalling and de-marshalling
code that is generated from DTML models conforms to the
Elvin API. The data type modeling language in the BTeV
environment is used for several purposes. First of all to ac-
curately simulate the communication between various com-
ponents in the model.

Furthermore it also helps in using the communication ab-
straction API such that there would be a standard way of
defining these data types and also a standard way of mar-
shalling and demarshalling the data using the Elvin Com-
munication protocol. The BTeV data type modeling para-
digm allows the specification of both simple and compos-
ite types. Simple types such as floats and integers specify
their representation size i.e. number of bits used. Compos-
ite types can contain simple types and other composite types
like struct, enum, union etc. Attributes of the field specify
extra information such as array size or signed/unsigned rep-
resentations. The environment is flexible enough to support
the modeling of data types supported by several message
passing systems. This data type modeling is used by other
modeling environments such as the graphical user interface,
fault managers etc. to model the messages for communica-
tion.

6. Autonomic Fault Mitigation using ARMOR
framework

This section is an extension of the previous autonomic
fault mitigation environment [17]. BTeV trigger system
uses a reconfigurable, fault-tolerant framework based on re-
configurable processes known as Adaptive Reconfigurable
Mobile Objects of Reliability (ARMOR) [13] [14] [15].
Each ARMOR process provides a particular fault mitiga-
tion service. Collectively these processes and their services
form a reconfigurable fault-tolerance framework that is able
to respond to faults from the surrounding environment. The
services provided include, but are not limited to, error de-
tection and recovery of applications on each node. By cus-
tomizing the services that each process provides as well
as the layout of the processes on a network of computing
nodes, we can configure the framework to respond to differ-
ent kinds of faults, thus making the distributed system more
reliable. Configuration and customization for a large-scale
system, however, is a complex task.

To achieve these goals, our fault mitigation approach
has two components: a software implemented fault tol-
erance environment (SIFT) and a Fault-Mitigation Mod-
eling Language (FMML). The SIFT environment operates
over the heterogeneous non-fault-tolerant nodes in a system
through a set of reconfigurable software processes. A SIFT
process can be further decomposed into sub-processes, each
implementing a particular fault-mitigation function. SIFT
processes on a node collectively form a mitigation strategy.
These processes monitor the application software on each
node silently until a failure occurs, at which point the fault-
mitigation functions of one or more processes are invoked to
perform a mitigation action based on the nature of the fault.
As a system’s fault-tolerance requirements may change, the
fault-tolerant framework may need to be reconfigured in or-
der to meet these new requirements. Fault-Mitigation mod-
eling language allows system operators to manage this re-
configuration process easily by providing a high-level inter-
face on top of the implementation details of the SIFT en-
vironment. Reconfiguring the SIFT environment involves
two procedures. The first procedure entails a decision on
the placement of reconfigurable processes on each node
of the system. This decision involves choosing processes
with specific mitigation functionality as well as their quan-
tity. The modeling language provides graphical constructs
that represent these reconfigurable processes along with at-
tributes to specify the mitigation functionality. The second
procedure involves specifying fault-mitigation functionality
for the sub-processes that compose a SIFT processes. The
modeling language utilizes Statecharts-like [12]notation for
this purpose. System states can be defined along with tran-
sitions between states. Mitigation actions are deployed as
a consequence of switching between different states. Users



Figure 4. GUI (Graphical User Interface) using the Data Type Modeling Environment.

Figure 5. Fault Mitigation Architecture show-
ing the SIFT Environment.

can choose to perform one or both of the procedures dur-
ing the reconfiguration process. In addition,low-level pro-
gramming artifacts are synthesized by a translator from the
higher-level abstractions in the modeling tool to SIFT en-
vironment specific constructs. Specifically, two types of
artifact is generated. One type of artifact is directly tied
to quantitative and structural placement of reconfigurable
SIFT processes. The second artifact of FMML is the C++
implementation of all SIFT sub-processes’ mitigation func-
tions. Each time a new configuration is specified in the
modeling tool, the artifacts will be automatically regener-
ated conforming to the new configuration. The artifacts is
then used to deploy the SIFT environment.

7. Autonomic Graphical User Interface

Monitoring and diagnostics of these large-scale auto-
nomic systems are essential to ensure the system is func-
tioning correctly and adapting properly to different fault
scenarios. However, monitoring different aspects of the sys-
tem at different times would require several variations of
user interfaces, which are difficult to maintain. In order to
meet the requirements of continuously changing user inter-
faces and in order to bridge the gap between the developers
and the users of the system, the need for configurable user
interfaces arises. Model based approach has been used to
achieve configurability in the design of user interfaces [24].
Configurable user interfaces in the BTeV system enable the
physicists to dynamically view data and error conditions in
ways that aid in system analysis. User interfaces also pro-
vide the mechanisms for system operators to dynamically
configure and control the state of the system. A model-
ing language has been developed in GME that enables the
physicists to configure user interfaces. The language pro-
vides the following features:

• The language allows the users to create multiple user
interface panels as well as specify the plots/controls
that are a part of these panels. This is depicted with
containment hierarchy.

• For each of the plot/control, two primary properties
are to be specified, namely its location as well as the
data from outside the environment that is to be plot-
ted/controlled. This is depicted as two different aspects
of the plot/control objects.



Figure 6. Graphical User Interface Specifications and Generation showing the mapping of the models
to the Matlab code generation.

• The user may specify the properties of all the objects
in the environment. These properties are depicted as
attributes of each object.

• Once the user has modeled the system using the lan-
guage provided, the tool is capable of generating the
code necessary to create the user interface.

• The tool is capable of generating software for a vari-
ety of run-time platforms some examples being Mat-
lab, Experimental Physics and Industrial Control Sys-
tem (EPICS) [25].

The user interfaces are configured using the GUI configu-
ration modeling language. Once the user interface has been
configured using the models, the code for the UI is gener-
ated. The models may be used to generate software for a
variety of run-time platforms. Currently the target environ-
ment for the user interface is Matlab. Figure 6 shows an
example user interface configured using the modeling lan-
guage developed. The figure also shows the generation of
code artifacts from the specified models which include the
following:

1. Structure - The structure of the user interface e.g.
the positioning of the various components as well the
width, height of the components is a direct mapping
from the models positions to the generated Matlab user
interface. The code for the structural information is
generated as Matlab .m files.

2. Dataflow - The data flow aspect models the data type
to be plotted in the User Interface. The UI receives
data continuously. This uses the Link to the Data Type
Modeling Environment (DTML) where the data to be
plotted is modeled. The data transfer in the system
takes place through publish-subscribe mechanism as
mentioned above. The user interface subscribes to spe-
cific messages that contain data to plot. The Matlab
Component Object Model (COM) interface is used for
this purpose. The code for the data flow aspect is gen-
erated in C++. Figure 7 shows a generated user inter-
face obtained from the structural code and data flow
models shown in Figure 6.

8. Autonomic Configuration and Heterogenous
Build Systems

An interesting duality exists between traditional code
compilation procedures and the graphical model translation
process. In fact, one can assert that from a human perspec-
tive, the two processes are the same in principle, with the
only difference being the higher level of abstraction lever-
aged by the modeling process [13]. Systems that incorpo-
rate both the interpretation of models and the compilation
of hand-written source code present a unique challenge to
system designers regarding the maintenance and automatic
building and testing procedures using such a heterogeneous
source-based environment.



Figure 7. Simple Example- Generated User
Interface from the Models showing the Bar
Graph and the Line Graph.

Inherently, changes to system models require regener-
ation of any domain artifacts produced from the models
which are affected by the change. We see this effect in tra-
ditional source code compilation schema, namely, objects
are built or linked only when the source files are modified.
Accordingly, objects can be linked against new libraries to
provide better functionality without recompilation of the ex-
ecutable (only a link is performed). Similar methods are
currently not employed for the process of model translation.
Source artifacts are typically either 1) generated all at once
from an integrated system model or 2) individual artifacts or
groups of artifacts are generated by the modeler by hand in
one-off fashion and the new artifacts are incorporated into
the system.

This behavior leads to a problem in that many of the gen-
erated artifacts may be quite similar (the same, in fact) to the
artifacts they are replacing. Integration of these newly time-
stamped artifacts may therefore trigger a recompilation of
the generated code regardless of whether any changes are
present or not. Graphical models are often not intermixed
with other types of source code in Code Management Sys-
tems (CMS) due in part between the tight coupling between
model formats, model languages, and the tools which un-
derstand them. Automatic translation, or ”compilation,”
of these models require tools that support the automation
needed for things such as nightly builds, automated testing,
etc. Typically these modeling tools are tied to full graphi-
cal applications and require manual model importation and
translation using a graphical user interface (GME, Ptolemy,
etc). This lack of automotive functionality makes integra-
tion with existing CMS’s extremely difficult. It is desirable,
therefore, to have a code management system which is ca-
pable of managing models in a similar fashion as source
code which employs many of the same time saving features

of traditional CMS’s. The Unified Data Model (UDM) [7]

Figure 8. Additional levels of processing must
be added when incorporating model transla-
tors into heterogeneous automatic build sys-
tems. The textual annotations describe what
each level provides for subsequent levels..

toolset developed at Vanderbilt was used to allow the inter-
pretation of models within a UNIX environment. One fea-
ture of the UDM toolset is the ability to create a standalone
command line executable that is tailored for model trans-
lation in the context of a given language. Both the source
code for these command line model translators as well as
the language specification files is stored in the CMS. How-
ever, this requires a sequence of events be enforced that will
first build the model translators before invoking these trans-
lators on their associated models. The process involves a
strategy to govern the sequence of events necessary to en-
sure that the proper artifacts are generated at each level so
that the next level can execute. The process is the following:

1. Build the set of language specifications from the set
of metamodels using the UDM metamodel translator.
The generated language specifications are needed by
the UDM tools to generate model translators that un-
derstand the languages specified by the metamodels.

2. Build the UDM domain model translators using the
modeling language specifications generated in stage 1

3. Use the newly built UDM translators to interpret the
domain (system) models. These translators may pro-
duce source code artifacts (.cc, .h, makefiles, etc)
which fill in remaining portions of the source tree.

4. Execute a build of the Build Tree



5. Populate the Run Tree for packaging and distribution
to remote nodes.

This approach to integrating model based tools with a tra-
ditional source based CMS involves creating additional
processes to govern the way in which modeling languages,
model translators, domain models, and artifacts are main-
tained. Since the generation of modeling languages from a
meta-level specification is itself a translation process per-
formed by a UDM model translator, both domain model
translation code and the meta-level translation code can be
placed under version control.

9. Conclusion and Future Work

This paper presents an approach to large scale autonomic
system design and development. The tools support automa-
tion of the process, keeping in consideration key factors
such as easy maintenance and the demands of ever evolving
systems. The approach uses concepts of model integrated
computing by providing a set of loosely coupled modeling
languages that allow the specification of different compo-
nents of the system to facilitate easier integration of compo-
nents while preserving the components’ visual interdepen-
dencies. The concepts presented in the paper are motivated
by the example of a large scale real-time physics system
called the BTeV system.

The development of these tools are ongoing as part of the
Fermilab BTeV project and the NSF ITR program. We con-
tinue to refine the modeling paradigm and the interdepen-
dencies between these modeling aspects. In addition, we
continue to scale up the system, with the eventual goal of
supporting the full-scale, 2000-5000 processor BTeV sys-
tem. We also continue to streamline the code generation
process and optimize the generated code. We also are study-
ing the potential for tools to verify target systems prior
to implementation. These include formal analysis of mit-
igation state machines, and the generation of software for
monte-carlo simulations.
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