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Abstract – Complex control applications require capabilities for 
accommodating faults in the controlled plant. Fault accommoda-
tion involves the detection and isolation of faults, and then taking 
appropriate control actions to mitigate the fault effects and main-
tain control. This requires the integration of fault diagnostics with 
control in a feedback loop. This paper discusses a generic frame-
work for building fault-adaptive control systems using a model-
based approach, with special emphasis on the modeling schemes 
that describe different aspects of the system at different levels of 
abstraction and granularity. The concepts are illustrated by a fault 
adaptive notional fuel system control example. 

I. INTRODUCTION 

Today’s complex systems, like high-performance aircraft 
require sophisticated control techniques to support all aspects 
of operation: from flight controls through mission manage-
ment to environmental controls, just to give a few examples. 
Any real-life system is prone to failures: either physical 
(hardware) or logical (software). When a high degree of reli-
ability and safety is desired the effects of these failures must 
be mitigated and control must be maintained under all fault 
scenarios. In order to manage fault scenarios, we need to 
make a series of decisions and control actions: (1) the fault 
has to be detected, (2) the fault source has to be identified and 
the magnitude of failure estimated (e.g., a partial degradation 
versus a total failure), (3) depending on the nature of failure, 
a new control algorithm has to be selected that compensates 
for the partial or complete failure, (4) the plant has to be re-
configured, and (5) the new control algorithm has to be cho-
sen. All these decisions must be made by a control system 
that incorporates not only simple regulatory loops and the 
supervisory control logic, but also a set of components that 
detect, isolate, and manage faults, in coordination with the 
control functions.  

In this paper, a systematic model-based approach is pre-
sented that can create control systems capable of accommo-
dating faults. We call this approach Fault-Adaptive Control 
Technology (FACT). Developing fault-adaptive control gives 

rise to a number of technical challenges that go beyond the 
capabilities of traditional control approaches. Faults must be 
detected while the system is in operation, followed by quick 
fault isolation and estimation of the fault magnitude. The next 
step is on line decision-making on how to reconfigure the 
control system to accommodate the fault. Many alternatives 
may have to be evaluated, and metrics will have to be defined 
that select the optimal or the best reconfiguration. Finally, the 
reconfiguration must be executed, which means that set 
points and control parameters may have to be changed, or a 
different controller may have to be deployed to continue sys-
tem operation. The challenge is to build an integrated online 
approach that combines fault diagnostics, control theory, sig-
nal processing, software engineering, and systems engineer-
ing. The different components of the system require different 
kinds of models with different granularity and abstraction 
levels. Some of these models are specified by the system de-
signer, while the computational models for on-line analysis 
can be automatically generated using model transformation 
tools.  

This paper introduces the modeling paradigms, and the 
main building blocks of a model-based FACT architecture for 
complex dynamic systems.  Section II presents FACT archi-
tecture. In Section III the modeling paradigms and the differ-
ent models used are discussed. Section IV illustrates the op-
eration of the system through an example: a fault-adaptive 
fuel control system.  

II.  FACT ARCHITECTURE  

The overall FACT approach, illustrated in Fig. 1, is centered 
on model-based approaches for fault detection, fault isolation 
and estimation, and controller selection for hybrid systems. 
The plant is assumed to be a hybrid system, i.e. it combines 
continuous dynamic behavior in individual modes with dis-
crete modes changes [1]. The mode changes can be autono-
mous (e.g.: water level in a tank reaching the level of a drain 
pipe), or they can be attributed to control commands (con-



 

 

trolled mode change, e.g.: open or close a valve). The Recon-
figurable Control Unit for the plant control operates in two 
layers: (i) the regulatory layer interfaces with the physical 
plant through sensors and actuators, and (ii) the supervisory 
layer, which is responsible for the high-level control strategy.  

The heart of the Fault Adaptive Control Unit is the Hybrid 
Observer that tracks the behavior of the plant under nominal 
conditions. When the Fault Detector detects a discrepancy 
between the measured and the expected behavior, the diagno-
sis units are triggered. The Discrete Diagnosis and the Hybrid 
Diagnosis units use qualitative reasoning approaches, but 
they are based on models of different accuracy and resolu-
tion. The Discrete Diagnosis unit uses Temporal Fault 
Propagation Graphs describing the effects of faults to the 
system at a high level, while the Hybrid Diagnosis unit uses 
detailed models of the plant in the form of the Temporal 
Causal Graphs that captures the transient dynamics after fault 
occurrence. The possible fault candidates provided by the 
diagnosis units are merged and ranked in the Fusion Unit. 
The best candidates are then passed to the quantitative Pa-
rameter Estimation Unit that reduces the candidate set to a 
single fault candidate by computing the degree of degrada-
tion, and retaining that candidate that has the least prediction 
error. The results of the fault diagnosis are used to select the 
optimal controller. In the current system, we assume a library 
of controllers indexed by sets of characteristics is available. 
The controllers are parameterized by the current mode of 
operation, the system state vector, and the failed and de-
graded states of components and subsystems. The selection 
function is set up so that the new controller best meets the 
current and long-term performance objectives.  

The Reconfigurable Controller’s task is addressed at two 
levels. At the supervisory (discrete) level, reconfiguration 
implies modification of high-level control actions. At the 
lower (continuous) level of control, the system relies on regu-
lators. Reconfiguration at this level can take on three different 
forms: (i) set point changes, (ii) controller tuning, and (iii) 
structural changes. The Reconfiguration Manager is respon-
sible for identifying the necessary reconfiguration tasks and 
initiating the reconfiguration process. Since the reconfigura-
tion may lead to the introduction of large switching transients 

into the system, the Transient Manager performs the actual 
reconfiguration in a way that undesired transient effects are 
reduced [2]. Based on the result of the parameter estimation 
the Plant Model is also modified so that the observer can 
again track the behavior of plant properly, and the system can 
continue operation in a degraded, but satisfactory level.  

III. MODELING PARADIGMS 

The FACT approach is model-based, so the designer’s fo-
cus is on building models that correspond to their understand-
ing of the system, rather than on executable program code. 
The Reconfigurable Controller and the Fault Adaptive Con-
trol Units are automatically generated from these models of 
the plant, controllers, the reconfiguration procedures, and the 
plant interface. Different tasks require different models, but 
some tasks may use models at different levels of abstraction 
achieving results at different granularity levels and with dif-
ferent computational complexity. In this section, the model-
ing paradigms currently used in the system are presented. 

A. Hybrid Bond Graphs–Plant Models 

We use bond graphs as the modeling paradigm in the con-
tinuous domain [3]. Bond graphs represent energy-based 
models of the system in terms of the effort and flow variables 
of the system. Bonds represent interconnections between 
elements that exchange energy, and they are described by two 
generic variables, effort and flow whose product defines the 
rate of flow of energy (power). Bond graphs represent a ge-
neric modeling language that can be applied to a multitude of 
physical system domains, such as electrical, fluid, mechani-
cal, and thermal systems. An example is shown in Fig. 2. 
State-space equations used in the Hybrid Observer and Pa-
rameter Estimation Units can be systematically derived from 
the bond graph model of the system. In addition, temporal 
causal graphs (TCGs) can also be systematically derived from 
bond graphs, and they are used in the Hybrid Diagnosis Unit. 
An enhanced form of bond graphs, called Hybrid bond graphs 
(HBGs) [4] introduce controlled junctions that facilitate the 
modeling of discrete mode transitions (i.e., reconfigurations) 
in the system topology. 
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B. Hybrid Automata–Hybrid Observer 

Our system model for the plant is a hybrid automaton that 
combines finite state machines with continuous representa-
tions [5], [1]. We have derived a transformation scheme for 
building hybrid automata models from the HBG models cre-
ated by the modeler. The FSM, whose states correspond to 
the modes of operation of the system, captures the possible 
mode transitions in the system. A continuous system model 
that governs behavior evolution in that state augments each 
FSM state.  

In a system containing N binary switching elements (i.e., 
N controlled junctions in the HBG) the total number of modes 
is 2N, which may be large enough to make it infeasible to 
exhaustively generate the complete hybrid automaton. We 
avoid this computational problem by enumerating states of 
the hybrid automaton (modes of system operation) dynami-
cally as system behavior evolves. The actual dynamical 
model of the system is generated in the form of state-space 
equations from the Bond-graph model in a particular mode of 
the system (Fig. 3). The Active State Space Equations are 
regenerated at every mode-change, but the computational 
complexity is reduced by caching previously generated 
mode-equation pairs. The State Space Equations represent 
linear systems, however, in the system the parameters can be 
recomputed at every time-step, so a piecewise linear ap-
proximation of a nonlinear system is straightforward. Typical 
nonlinear elements in our system are pipes and valves whose 
resistance parameters are dependent on the actual flow. 

C. Models used by the Fault Detector 

The Fault Detector employs simple models of the system and 
signals for robust detection of discrepancies between ex-
pected and measured behavior of the plant. The discrepancies 
are defined by residuals, i.e. differences between the meas-

ured and predicted signals. The deviation of the residuals 
from its ideal zero value is a measure of discrepancy. To han-
dle modeling errors and measurement noise, the Fault Detec-
tor uses a statistical test (approximate z-test [6]) to determine 
the significance of the deviation. To perform this task we 
employ a standard model, where (i) the measurement noise is 
white, Gaussian with zero mean and constant (estimated) 
variance, (ii) an upper bound of the modeling error is known, 
and (iii) sensor accuracy for each signal is known. Based on 
these assumptions the modified z-test can be performed in the 
following way: 

The variance of each signal is estimated in a large moving 
window (preceding the fault occurrence). This is used in the 
z-test to determine whether the mean value of a signal calcu-
lated in a small moving window significantly differs from 
zero. The confidence level and the window sizes used in the 
estimations are parameters provided by the system designer.  

D. Temporal Causal Graphs–Hybrid Diagnosis 

Our method for hybrid diagnosis is based on a qualitative 
approach for analyzing the transients that correspond to an 
abrupt change in the parameter value of a component. We 
briefly outline our method for analyzing transients in the con-
tinuous time domain, and then discuss its extension to the 
hybrid domain, where discrete mode changes cause the model 
of the system to switch. 

Fault isolation from transients is based on the Temporal 
Causal Graph (TCG) that is derived from the Bond graph 
model of the system. The TCG captures causal relations be-
tween the system variables, in the form of a directed graph. 
The vertices of the graph represent the effort and flow vari-
ables in the system, whereas the links represent the cause-
effect relations among the variables. The labels assigned to 
the TCG links capture algebraic and temporal relations. Fur-
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thermore, the labels also explicitly include information about 
the system parameters, i.e., the dissipative (resistance), pro-
portional (transformer and gyrator coefficients), and energy 
storage (capacitor and gyrator) elements that govern the rela-
tions between system variables. Mosterman and Biswas [7] 
describe in detail the algorithms used to generate fault candi-
dates, their temporal signatures, and progressive monitoring 
for tracking the transient after fault occurrence to establish 
the true fault candidate. Sometimes the fault isolation scheme 
may not succeed in reducing the set of hypothesized fault 
candidates to a unique one, but we have shown that the com-
bination of a parameter estimation scheme with our qualita-
tive approach can be successfully employed to generate 
unique fault candidates [8].  

The fault isolation scheme, extended to hybrid diagnosis, 
involves two additional steps: (i) qualitative roll-back, and 
(ii) qualitative roll-forward. The roll-back algorithm consid-
ers possible delays in fault detection, and because the fault 
may have occurred in previous modes, it goes back in the 
mode trajectory and creates hypotheses in previous modes 
using the observer estimated mode trajectory. During the 
crossover from a mode to a previous mode, the symbols are 
propagated back across the mode change. The hybrid hy-
potheses generation algorithm returns a hypotheses set, which 
includes the mode in which the fault is hypothesized to have 
occurred. Once a fault is hypothesized in a previous mode, a 
quick roll-forward method is implemented to enable progres-
sive monitoring in the current mode. However, fault occur-
rences may change the parameters of the functions that de-
termine autonomous transitions, therefore, the observer mode 
predictions are no longer correct. Mode transitions are also 
hypothesized, and this causes branching behaviours in the 
progressive monitoring scheme. Details of the hybrid diagno-
sis algorithm are presented in [9].  

E. Timed Failure Propagation Graphs–Discrete Diagnosis 

Timed failure propagation graphs (TFPG) [10] are causal 
models that describe the system behavior in the presence of 
faults. The timed failure propagation graph is a labeled di-
rected graph where the nodes represent either failure modes - 
which are fault causes - or discrepancies - which are off-
nominal conditions that are the effects of failure modes. Dis-
crepancies can either be monitored (attached to alarms) or 

silent, and depending on the way it is triggered by the incom-
ing signals it is further classified as either “AND” or ”OR” 
discrepancy. Attributed edges between nodes in the graph 
represent causality, and the attributes specify the temporality 
of causation given by an upper and lower time constraints on 
the propagation of failure between nodes.  

An extended version of TFPG model, referred to as hybrid 
failure propagation graph [11], was implemented. The hybrid 
failure propagation graph allows the representation of failure 
propagation in multi-mode (switching) systems in which the 
failure propagation depends on the current mode of the sys-
tem. To this end, edges in the graph model can be constrained 
to a subset of the set of possible operation modes of the sys-
tem. An example of a hybrid failure propagation graph is 
shown in the above figure. 

The diagnostic system operates on the TFPG model and 
characterizes the fault status (actual current state) of the sys-
tem by hypothesizing about the faults in components and 
sensors based on the signals received from the sensors and 
the current mode of the system. The diagnoser uses the TFPG 
model and the timed sensor/mode-switching signals to gener-
ate a set of logically valid hypotheses of the current state of 
the system. The hypotheses are then ranked according to cer-
tain criterion based on the number of supporting alarms ver-
sus the number of inconsistent one. The set of hypotheses 
with the highest rank are selected as the most plausible esti-
mations of the current state of the system. 

F. Controller Models 

In the FACT architecture, the control component repre-
sents all the traditional control functions in an application. 
Although this component is implemented mainly in software, 
some components might utilize dedicated hardware compo-
nents. This component is also “reconfigurable”: its sub-
components, their parameters, and their interconnection can 
be changed during system operation. To represent this recon-
figurable control component we have developed a modeling 
language, called Controller Modeling Language (CML) using 
the Model-Integrated Computing approach [12]. CML repre-
sents controllers on two levels: regulatory and supervisory 
levels. The designer supplies two models describing the 
structure and behavior of the controller: 
Structural Model: The input and output ports of the controller 
entity are defined.  
Behavioral Model: The controller behavior is described in 
two levels. In the supervisory level a segment of a parallel 
state machine is defined in each controller entity, the states of 
which represent the modes of operations (thus the ‘Supervi-
sory Controller’ is distributed among the controller entities). 
The state transitions are governed by events and guards are 
generated from internal events and external (input) signals. 
Each state is associated with actions that are executed on en-
try, exit, or continuously while the state is active. Transitions 
can also have actions. Each action is associated with one or 
more scripts that describe the regulatory-level behavior of the 
controller.  Figure 4: A hybrid failure propagation graph 



 

 

G. Reconfiguration Models 

The Reconfiguration Model gives the description of different 
controller configurations and their associated transitions. 
Each Reconfiguration Model contains a state machine and a 
set of input ports, output ports, controller blocks, and connec-
tions. The structural reconfiguration on the modeling level is 
specified by associating states with the I/O ports, controllers 
and connections that have to be active in the particular state. 
The state machine may also modify parameters and state 
variables, thus providing a means for non-structural recon-
figurations as well.  

H. Plan-Controller Interface Models 

The Plant-Controller Interface model is a structural model 
that defines the connections between the controllers and the 
plant. It also contains some runtime environment specific 
details (e.g. clock rates, etc). 

IV. EXAMPLE 

We describe the application of the FACT technology to a 
real world example. We designed a fault-adaptive controller 
for the fuel system of an aircraft, whose schematic appears in 
Figure 2. The fuel system must provide an uninterrupted sup-
ply of fuel for the engines while maintaining the center of 
gravity of the aircraft.  

The control system was developed using model-integrated 
computing tools [12]. The toolset developed was based on 
GME and a set of run-time components. Plant and controller 
models were built in this modeling environment, from which 
the implementation code was synthesized.  When integrated 
with the generic FACT run-time components, the architecture 
for a specific application domain was instantiated.  

Figure 4 shows the highest level of the hierarchical Bond 
Graph Model of the aircraft fuel system. On this level the 
blocks represent tanks, pipes, and valves. These elements are 
defined inside the blocks with higher detail. A controller 
model example is shown in Figure 5. The left hand side de-
picts the Structural Model with the input and output ports. 
The associated Reconfiguration Model block is also shown. 
The right hand side shows a simple Behavioral Model with 

two states, each associated with one action, and each action in 
turn associated with one script (the last association is visible 
on a different view of the MIC tool). The Plant-Controller 
Model and a portion of the TFPG Model are shown in Fig. 6. 
Figure 7 illustrates the inner structure of a Reconfiguration 
Model. Note that only the active components corresponding 
to the selected state are shown, the others are dimmed.  

The operation of the system is illustrated in Figure 8 and 
Table 1. Two faults were injected: at time 100s the Left Wing 
Tank Pump degraded by 33%, while at time 800s the Left 
Fuselage Tank Pump degraded by 66%. Table 1 summarizes 
the TCG and TFPG diagnosis actions for the first fault. At the 
point of fault occurrence, a discontinuity was detected in the 
transfer manifold pressure, which resulted in 10 potential 
candidates for the TCG, and 5 for the TFPG. As more signals 
deviated, more symbols were generated for the TCG and the 

Fig. 4. The highest level of the fuel system  
Bond graph model 

Fig. 5. A Controller Structure Model with the  
associated Reconfiguration Model (left) and  

a Controller Behavior Model (right). 

Fig. 6. a. The Plant-Controller Interface Model. b. A portion of the 
time Failure Propagation Graph for tank pump failures. 

a. b.

Fig. 7. Reconfiguration model. This view shows the active  
ports and controllers associated with a state of the controlling  

Finite State Machine. Inactive elements are dimmed. 



 

 

more alarms were activated and reported to the TFPG rea-
soner. (As indicated, the diagnosis scheme worked through a 
number of mode changes.) By time point 159, the TFPG rea-
soner reported a high rank (=3) for the true failure mode Left 
Wing Tank Pump failure, and the TCG diagnosis reduced its 
candidate set to three at time point 167. At time point 216 the 
qualitative diagnosis was terminated without further im-
provement. The parameter estimation was initiated after the 
termination of the qualitative diagnosis, with 3 candidates. It 
successfully determined the true fault (Left Wing Tank Pump 
failure), and the magnitude of the parameter change (0.658). 
After the reconfiguration, the system continued to operate, as 
seen in the tracking of Fig. 8, but a second fault occurred at 
time point 800. This fault was also correctly detected and the 
appropriate reconfiguration was made. The TCG and the 
TFPG logs illustrate the identification of the first fault, and 
the System log shows the reconfiguration actions.  

V. CONCLUSIONS  

Model-based fault adaptive control architecture was pro-
posed for complex dynamic systems. The FACT architecture 
is able to detect, isolate and identify faulty elements and 
modify the control strategy so that the operation is main-
tained. The proposed solution utilizes several aspects of sys-
tem models, from which the FACT architecture can be syn-
thesized, using Model-Integrated Computing Techniques. 
The modeling paradigms and the basic building blocks were 
presented, and the operation of the system was illustrated 
through a real world application example. 
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Time 
100 
101 

106 
144 
147 
149 
159 
167 
216 
216 
Table 1: Trace of Fault Isolation and Estimation 
Left Wing Tank Pump Degradation 

Measured Deviation Fault Set 
Transfer Manifold Pressure (XMP) 13 fault candidates 

XMP: discontinuous 10 candidates (TCG) 
5 candidates (TFPG) 

Mode Change: Left Feed Tank On 
Mode Change: Left Feed Tank Off 

LeftWing Tank Pressure ++ 4 candidates (TCG)) 
Mode Change: Left Wing Tank – Second Pump On 

Left Feed Tank Pressure -- 1 candidate (TFPG) 
Left Feed Tank Pressure -- 3 candidates (TCG) 

Mode Change: Left Feed Tank On 
Parameter estimation  LeftWingTank.TF  

fault coefficient: 0.658 
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