
IMTC 2003 – Instrumentation and Measurement
Technology Conference
Vail, CO, USA, 20-22 May 2003

Model-Based Fault-Adaptive Control
of Complex Dynamic Systems

Gyula Simon1,2, Gábor Karsai1, Gautam Biswas1, Sherif Abdelwahed1, Nagabhushan Mahadevan1,
Tivadar Szemethy1, Gábor Péceli2 and Tamás Kovácsházy2

1Institute for Software Integrated Systems
Vanderbilt University, PO Box 1829 Station B, Nashville, TN 37235,USA

{simon,gabor,biswas,sherif,nag,tiv}@isis-server.isis.vanderbilt.edu

Department of Measurement and Information Systems,
2Budapest University of Technology and Economics, H-1521 Budapest, Hungary

{peceli,khazy}@mit.bme.hu

Abstract – Complex control applications require capabilities for
accommodating faults in the controlled plant. Fault accommoda-
tion involves the detection and isolation of faults, and then taking
appropriate control actions to mitigate the fault effects and main-
tain control. This requires the integration of fault diagnostics with
control in a feedback loop. This paper discusses a generic frame-
work for building fault-adaptive control systems using a model-
based approach, with special emphasis on the modeling schemes
that describe different aspects of the system at different levels of
abstraction and granularity. The concepts are illustrated by a fault
adaptive notional fuel system control example.

I. INTRODUCTION

Today’s complex systems, like high-performance aircraft
require sophisticated control techniques to support all aspects
of operation: from flight controls through mission manage-
ment to environmental controls, just to give a few examples.
Any real-life system is prone to failures: either physical
(hardware) or logical (software). When a high degree of reli-
ability and safety is desired the effects of these failures must
be mitigated and control must be maintained under all fault
scenarios. In order to manage fault scenarios, we need to
make a series of decisions and control actions: (1) the fault
has to be detected, (2) the fault source has to be identified and
the magnitude of failure estimated (e.g., a partial degradation
versus a total failure), (3) depending on the nature of failure,
a new control algorithm has to be selected that compensates
for the partial or complete failure, (4) the plant has to be re-
configured, and (5) the new control algorithm has to be cho-
sen. All these decisions must be made by a control system
that incorporates not only simple regulatory loops and the
supervisory control logic, but also a set of components that
detect, isolate, and manage faults, in coordination with the
control functions.

In this paper, a systematic model-based approach is pre-
sented that can create control systems capable of accommo-
dating faults. We call this approach Fault-Adaptive Control
Technology (FACT). Developing fault-adaptive control gives

rise to a number of technical challenges that go beyond the
capabilities of traditional control approaches. Faults must be
detected while the system is in operation, followed by quick
fault isolation and estimation of the fault magnitude. The next
step is on line decision-making on how to reconfigure the
control system to accommodate the fault. Many alternatives
may have to be evaluated, and metrics will have to be defined
that select the optimal or the best reconfiguration. Finally, the
reconfiguration must be executed, which means that set
points and control parameters may have to be changed, or a
different controller may have to be deployed to continue sys-
tem operation. The challenge is to build an integrated online
approach that combines fault diagnostics, control theory, sig-
nal processing, software engineering, and systems engineer-
ing. The different components of the system require different
kinds of models with different granularity and abstraction
levels. Some of these models are specified by the system de-
signer, while the computational models for on-line analysis
can be automatically generated using model transformation
tools.

This paper introduces the modeling paradigms, and the
main building blocks of a model-based FACT architecture for
complex dynamic systems. Section II presents FACT archi-
tecture. In Section III the modeling paradigms and the differ-
ent models used are discussed. Section IV illustrates the op-
eration of the system through an example: a fault-adaptive
fuel control system.

II. FACT ARCHITECTURE

The overall FACT approach, illustrated in Fig. 1, is centered
on model-based approaches for fault detection, fault isolation
and estimation, and controller selection for hybrid systems.
The plant is assumed to be a hybrid system, i.e. it combines
continuous dynamic behavior in individual modes with dis-
crete modes changes [1]. The mode changes can be autono-
mous (e.g.: water level in a tank reaching the level of a drain
pipe), or they can be attributed to control commands (con-

trolled mode change, e.g.: open or close a valve). The Recon-
figurable Control Unit for the plant control operates in two
layers: (i) the regulatory layer interfaces with the physical
plant through sensors and actuators, and (ii) the supervisory
layer, which is responsible for the high-level control strategy.

The heart of the Fault Adaptive Control Unit is the Hybrid
Observer that tracks the behavior of the plant under nominal
conditions. When the Fault Detector detects a discrepancy
between the measured and the expected behavior, the diagno-
sis units are triggered. The Discrete Diagnosis and the Hybrid
Diagnosis units use qualitative reasoning approaches, but
they are based on models of different accuracy and resolu-
tion. The Discrete Diagnosis unit uses Temporal Fault
Propagation Graphs describing the effects of faults to the
system at a high level, while the Hybrid Diagnosis unit uses
detailed models of the plant in the form of the Temporal
Causal Graphs that captures the transient dynamics after fault
occurrence. The possible fault candidates provided by the
diagnosis units are merged and ranked in the Fusion Unit.
The best candidates are then passed to the quantitative Pa-
rameter Estimation Unit that reduces the candidate set to a
single fault candidate by computing the degree of degrada-
tion, and retaining that candidate that has the least prediction
error. The results of the fault diagnosis are used to select the
optimal controller. In the current system, we assume a library
of controllers indexed by sets of characteristics is available.
The controllers are parameterized by the current mode of
operation, the system state vector, and the failed and de-
graded states of components and subsystems. The selection
function is set up so that the new controller best meets the
current and long-term performance objectives.

The Reconfigurable Controller’s task is addressed at two
levels. At the supervisory (discrete) level, reconfiguration
implies modification of high-level control actions. At the
lower (continuous) level of control, the system relies on regu-
lators. Reconfiguration at this level can take on three different
forms: (i) set point changes, (ii) controller tuning, and (iii)
structural changes. The Reconfiguration Manager is respon-
sible for identifying the necessary reconfiguration tasks and
initiating the reconfiguration process. Since the reconfigura-
tion may lead to the introduction of large switching transients

into the system, the Transient Manager performs the actual
reconfiguration in a way that undesired transient effects are
reduced [2]. Based on the result of the parameter estimation
the Plant Model is also modified so that the observer can
again track the behavior of plant properly, and the system can
continue operation in a degraded, but satisfactory level.

III. MODELING PARADIGMS

The FACT approach is model-based, so the designer’s fo-
cus is on building models that correspond to their understand-
ing of the system, rather than on executable program code.
The Reconfigurable Controller and the Fault Adaptive Con-
trol Units are automatically generated from these models of
the plant, controllers, the reconfiguration procedures, and the
plant interface. Different tasks require different models, but
some tasks may use models at different levels of abstraction
achieving results at different granularity levels and with dif-
ferent computational complexity. In this section, the model-
ing paradigms currently used in the system are presented.

A. Hybrid Bond Graphs–Plant Models

We use bond graphs as the modeling paradigm in the con-
tinuous domain [3]. Bond graphs represent energy-based
models of the system in terms of the effort and flow variables
of the system. Bonds represent interconnections between
elements that exchange energy, and they are described by two
generic variables, effort and flow whose product defines the
rate of flow of energy (power). Bond graphs represent a ge-
neric modeling language that can be applied to a multitude of
physical system domains, such as electrical, fluid, mechani-
cal, and thermal systems. An example is shown in Fig. 2.
State-space equations used in the Hybrid Observer and Pa-
rameter Estimation Units can be systematically derived from
the bond graph model of the system. In addition, temporal
causal graphs (TCGs) can also be systematically derived from
bond graphs, and they are used in the Hybrid Diagnosis Unit.
An enhanced form of bond graphs, called Hybrid bond graphs
(HBGs) [4] introduce controlled junctions that facilitate the
modeling of discrete mode transitions (i.e., reconfigurations)
in the system topology.

Fault Adaptive Control Unit

Reconfigurable
Controller Unit

Controller
Selector

Reconfiguration
Manager

Supervisory Con-
troller

Plant

Hybrid
Observer

Fault
Detector

Parameter
Estimation

Active State
ModelPlant Models

Fusion

Transient
Manager

Regulators

Hybrid
Diagnosis

Discrete
Diagnosis

Fig. 1. Fault Adaptive Control Architecture

B. Hybrid Automata–Hybrid Observer

Our system model for the plant is a hybrid automaton that
combines finite state machines with continuous representa-
tions [5], [1]. We have derived a transformation scheme for
building hybrid automata models from the HBG models cre-
ated by the modeler. The FSM, whose states correspond to
the modes of operation of the system, captures the possible
mode transitions in the system. A continuous system model
that governs behavior evolution in that state augments each
FSM state.

In a system containing N binary switching elements (i.e.,
N controlled junctions in the HBG) the total number of modes
is 2N, which may be large enough to make it infeasible to
exhaustively generate the complete hybrid automaton. We
avoid this computational problem by enumerating states of
the hybrid automaton (modes of system operation) dynami-
cally as system behavior evolves. The actual dynamical
model of the system is generated in the form of state-space
equations from the Bond-graph model in a particular mode of
the system (Fig. 3). The Active State Space Equations are
regenerated at every mode-change, but the computational
complexity is reduced by caching previously generated
mode-equation pairs. The State Space Equations represent
linear systems, however, in the system the parameters can be
recomputed at every time-step, so a piecewise linear ap-
proximation of a nonlinear system is straightforward. Typical
nonlinear elements in our system are pipes and valves whose
resistance parameters are dependent on the actual flow.

C. Models used by the Fault Detector

The Fault Detector employs simple models of the system and
signals for robust detection of discrepancies between ex-
pected and measured behavior of the plant. The discrepancies
are defined by residuals, i.e. differences between the meas-

ured and predicted signals. The deviation of the residuals
from its ideal zero value is a measure of discrepancy. To han-
dle modeling errors and measurement noise, the Fault Detec-
tor uses a statistical test (approximate z-test [6]) to determine
the significance of the deviation. To perform this task we
employ a standard model, where (i) the measurement noise is
white, Gaussian with zero mean and constant (estimated)
variance, (ii) an upper bound of the modeling error is known,
and (iii) sensor accuracy for each signal is known. Based on
these assumptions the modified z-test can be performed in the
following way:

The variance of each signal is estimated in a large moving
window (preceding the fault occurrence). This is used in the
z-test to determine whether the mean value of a signal calcu-
lated in a small moving window significantly differs from
zero. The confidence level and the window sizes used in the
estimations are parameters provided by the system designer.

D. Temporal Causal Graphs–Hybrid Diagnosis

Our method for hybrid diagnosis is based on a qualitative
approach for analyzing the transients that correspond to an
abrupt change in the parameter value of a component. We
briefly outline our method for analyzing transients in the con-
tinuous time domain, and then discuss its extension to the
hybrid domain, where discrete mode changes cause the model
of the system to switch.

Fault isolation from transients is based on the Temporal
Causal Graph (TCG) that is derived from the Bond graph
model of the system. The TCG captures causal relations be-
tween the system variables, in the form of a directed graph.
The vertices of the graph represent the effort and flow vari-
ables in the system, whereas the links represent the cause-
effect relations among the variables. The labels assigned to
the TCG links capture algebraic and temporal relations. Fur-

HYBRID OBSERVER

PLANT

CONTROLLER

Bond Graph
System Model
(N switches)

Estimates: Xk ,yk

MODEL
TRANSFORMER

Active State
Space

Equations KALMAN FILTER

FINITE
AUTOMATON

2N modes

Autonomous Events

Control Events

Fig. 3. The Hybrid Observer

C R R C

0 1 0 1 0

0

W ing Tank Feed

Pump

Switching

Pipe Switched

Efficienc

Se 0 TF

Fig. 2: Fuel Transfer system and partial HBG model

thermore, the labels also explicitly include information about
the system parameters, i.e., the dissipative (resistance), pro-
portional (transformer and gyrator coefficients), and energy
storage (capacitor and gyrator) elements that govern the rela-
tions between system variables. Mosterman and Biswas [7]
describe in detail the algorithms used to generate fault candi-
dates, their temporal signatures, and progressive monitoring
for tracking the transient after fault occurrence to establish
the true fault candidate. Sometimes the fault isolation scheme
may not succeed in reducing the set of hypothesized fault
candidates to a unique one, but we have shown that the com-
bination of a parameter estimation scheme with our qualita-
tive approach can be successfully employed to generate
unique fault candidates [8].

The fault isolation scheme, extended to hybrid diagnosis,
involves two additional steps: (i) qualitative roll-back, and
(ii) qualitative roll-forward. The roll-back algorithm consid-
ers possible delays in fault detection, and because the fault
may have occurred in previous modes, it goes back in the
mode trajectory and creates hypotheses in previous modes
using the observer estimated mode trajectory. During the
crossover from a mode to a previous mode, the symbols are
propagated back across the mode change. The hybrid hy-
potheses generation algorithm returns a hypotheses set, which
includes the mode in which the fault is hypothesized to have
occurred. Once a fault is hypothesized in a previous mode, a
quick roll-forward method is implemented to enable progres-
sive monitoring in the current mode. However, fault occur-
rences may change the parameters of the functions that de-
termine autonomous transitions, therefore, the observer mode
predictions are no longer correct. Mode transitions are also
hypothesized, and this causes branching behaviours in the
progressive monitoring scheme. Details of the hybrid diagno-
sis algorithm are presented in [9].

E. Timed Failure Propagation Graphs–Discrete Diagnosis

Timed failure propagation graphs (TFPG) [10] are causal
models that describe the system behavior in the presence of
faults. The timed failure propagation graph is a labeled di-
rected graph where the nodes represent either failure modes -
which are fault causes - or discrepancies - which are off-
nominal conditions that are the effects of failure modes. Dis-
crepancies can either be monitored (attached to alarms) or

silent, and depending on the way it is triggered by the incom-
ing signals it is further classified as either “AND” or ”OR”
discrepancy. Attributed edges between nodes in the graph
represent causality, and the attributes specify the temporality
of causation given by an upper and lower time constraints on
the propagation of failure between nodes.

An extended version of TFPG model, referred to as hybrid
failure propagation graph [11], was implemented. The hybrid
failure propagation graph allows the representation of failure
propagation in multi-mode (switching) systems in which the
failure propagation depends on the current mode of the sys-
tem. To this end, edges in the graph model can be constrained
to a subset of the set of possible operation modes of the sys-
tem. An example of a hybrid failure propagation graph is
shown in the above figure.

The diagnostic system operates on the TFPG model and
characterizes the fault status (actual current state) of the sys-
tem by hypothesizing about the faults in components and
sensors based on the signals received from the sensors and
the current mode of the system. The diagnoser uses the TFPG
model and the timed sensor/mode-switching signals to gener-
ate a set of logically valid hypotheses of the current state of
the system. The hypotheses are then ranked according to cer-
tain criterion based on the number of supporting alarms ver-
sus the number of inconsistent one. The set of hypotheses
with the highest rank are selected as the most plausible esti-
mations of the current state of the system.

F. Controller Models

In the FACT architecture, the control component repre-
sents all the traditional control functions in an application.
Although this component is implemented mainly in software,
some components might utilize dedicated hardware compo-
nents. This component is also “reconfigurable”: its sub-
components, their parameters, and their interconnection can
be changed during system operation. To represent this recon-
figurable control component we have developed a modeling
language, called Controller Modeling Language (CML) using
the Model-Integrated Computing approach [12]. CML repre-
sents controllers on two levels: regulatory and supervisory
levels. The designer supplies two models describing the
structure and behavior of the controller:
Structural Model: The input and output ports of the controller
entity are defined.
Behavioral Model: The controller behavior is described in
two levels. In the supervisory level a segment of a parallel
state machine is defined in each controller entity, the states of
which represent the modes of operations (thus the ‘Supervi-
sory Controller’ is distributed among the controller entities).
The state transitions are governed by events and guards are
generated from internal events and external (input) signals.
Each state is associated with actions that are executed on en-
try, exit, or continuously while the state is active. Transitions
can also have actions. Each action is associated with one or
more scripts that describe the regulatory-level behavior of the
controller. Figure 4: A hybrid failure propagation graph

G. Reconfiguration Models

The Reconfiguration Model gives the description of different
controller configurations and their associated transitions.
Each Reconfiguration Model contains a state machine and a
set of input ports, output ports, controller blocks, and connec-
tions. The structural reconfiguration on the modeling level is
specified by associating states with the I/O ports, controllers
and connections that have to be active in the particular state.
The state machine may also modify parameters and state
variables, thus providing a means for non-structural recon-
figurations as well.

H. Plan-Controller Interface Models

The Plant-Controller Interface model is a structural model
that defines the connections between the controllers and the
plant. It also contains some runtime environment specific
details (e.g. clock rates, etc).

IV. EXAMPLE

We describe the application of the FACT technology to a
real world example. We designed a fault-adaptive controller
for the fuel system of an aircraft, whose schematic appears in
Figure 2. The fuel system must provide an uninterrupted sup-
ply of fuel for the engines while maintaining the center of
gravity of the aircraft.

The control system was developed using model-integrated
computing tools [12]. The toolset developed was based on
GME and a set of run-time components. Plant and controller
models were built in this modeling environment, from which
the implementation code was synthesized. When integrated
with the generic FACT run-time components, the architecture
for a specific application domain was instantiated.

Figure 4 shows the highest level of the hierarchical Bond
Graph Model of the aircraft fuel system. On this level the
blocks represent tanks, pipes, and valves. These elements are
defined inside the blocks with higher detail. A controller
model example is shown in Figure 5. The left hand side de-
picts the Structural Model with the input and output ports.
The associated Reconfiguration Model block is also shown.
The right hand side shows a simple Behavioral Model with

two states, each associated with one action, and each action in
turn associated with one script (the last association is visible
on a different view of the MIC tool). The Plant-Controller
Model and a portion of the TFPG Model are shown in Fig. 6.
Figure 7 illustrates the inner structure of a Reconfiguration
Model. Note that only the active components corresponding
to the selected state are shown, the others are dimmed.

The operation of the system is illustrated in Figure 8 and
Table 1. Two faults were injected: at time 100s the Left Wing
Tank Pump degraded by 33%, while at time 800s the Left
Fuselage Tank Pump degraded by 66%. Table 1 summarizes
the TCG and TFPG diagnosis actions for the first fault. At the
point of fault occurrence, a discontinuity was detected in the
transfer manifold pressure, which resulted in 10 potential
candidates for the TCG, and 5 for the TFPG. As more signals
deviated, more symbols were generated for the TCG and the

Fig. 4. The highest level of the fuel system
Bond graph model

Fig. 5. A Controller Structure Model with the
associated Reconfiguration Model (left) and

a Controller Behavior Model (right).

Fig. 6. a. The Plant-Controller Interface Model. b. A portion of the
time Failure Propagation Graph for tank pump failures.

a. b.

Fig. 7. Reconfiguration model. This view shows the active
ports and controllers associated with a state of the controlling

Finite State Machine. Inactive elements are dimmed.

more alarms were activated and reported to the TFPG rea-
soner. (As indicated, the diagnosis scheme worked through a
number of mode changes.) By time point 159, the TFPG rea-
soner reported a high rank (=3) for the true failure mode Left
Wing Tank Pump failure, and the TCG diagnosis reduced its
candidate set to three at time point 167. At time point 216 the
qualitative diagnosis was terminated without further im-
provement. The parameter estimation was initiated after the
termination of the qualitative diagnosis, with 3 candidates. It
successfully determined the true fault (Left Wing Tank Pump
failure), and the magnitude of the parameter change (0.658).
After the reconfiguration, the system continued to operate, as
seen in the tracking of Fig. 8, but a second fault occurred at
time point 800. This fault was also correctly detected and the
appropriate reconfiguration was made. The TCG and the
TFPG logs illustrate the identification of the first fault, and
the System log shows the reconfiguration actions.

V. CONCLUSIONS

Model-based fault adaptive control architecture was pro-
posed for complex dynamic systems. The FACT architecture
is able to detect, isolate and identify faulty elements and
modify the control strategy so that the operation is main-
tained. The proposed solution utilizes several aspects of sys-
tem models, from which the FACT architecture can be syn-
thesized, using Model-Integrated Computing Techniques.
The modeling paradigms and the basic building blocks were
presented, and the operation of the system was illustrated
through a real world application example.

The rese
(F30602
like to t
Boeing C

[1] Alur,
speci
al., e
209-2

 [2] Simo
confi
“Self
Oxfo
Com

[3] Rose
Dyna

[4] Most
syste
1998

[5] Bran
brid
33rd
Pape

[6] Kirk,
[7] Most

Syste
tems

[8] Mand
bined
comp
visio

[9] Nara
sis o
(HSC

[10] Misr
tural
Syste
Syste

[11] S. A
Switc
visio

[12] Sztip
Com

Fault 1

Fault 2

Reconf 1

Reconf 2

Fig. 8. Fault detection and reconfiguration. The noisy measurements
and the observer’s predictions are shown on the plots. Two faults oc-

curred (at time instants 100 and 800). Both were detected and the
appropriate reconfigurations were made. The logs (TFPG, TCG and

System) correspond to the first fault.

Time
100
101

106
144
147
149
159
167
216
216
Table 1: Trace of Fault Isolation and Estimation
Left Wing Tank Pump Degradation

Measured Deviation Fault Set
Transfer Manifold Pressure (XMP) 13 fault candidates

XMP: discontinuous 10 candidates (TCG)
5 candidates (TFPG)

Mode Change: Left Feed Tank On
Mode Change: Left Feed Tank Off

LeftWing Tank Pressure ++ 4 candidates (TCG))
Mode Change: Left Wing Tank – Second Pump On

Left Feed Tank Pressure -- 1 candidate (TFPG)
Left Feed Tank Pressure -- 3 candidates (TCG)

Mode Change: Left Feed Tank On
Parameter estimation LeftWingTank.TF

fault coefficient: 0.658
ACKNOWLEDGMENTS

arch was sponsored by DARPA/IXO SEC program
-96-2-0227) and NASA IS NCC 2-1238. We would
hank Dr. Kirby Keller and Mr. Tim Bowman of the

ompany for their support.

REFERENCES

 R. et al., “Hybrid Automata: an algorithmic approach to the
fication and verification of hybrid systems,” in R.L. Grossman, et
ds., Lecture Notes in Computer Science, Springer, Berlin, 736, pp.
29, 1993.
n, G., T. Kovácsházy, G. Péceli, "Transient Management in Re-
gurable Systems," in P. Robertson, H.Shrobe, R.Laddaga (Eds):
 Adaptive Software (First International Workshop, IWSAS 2000,
rd, UK, April 17-19, 2000, Revised Papers), Lecture Notes on
puter Science 1936”. Springer, New York, pp.90-98, 2001.
nberg, R.C. and Karnopp, D.C. Introduction to Physical System
mics, McGraw Hill, NY., 1983.
erman P.J. and G. Biswas, “A theory of discontinuities in physical
m models,” Journal of the Franklin Institute:335B, pp. 401-439,
.
icky, M.S., V. Borkar, S. Mitter, “A Unified Framework for Hy-
Control: Background, Model, and Theory,” Proceedings of the
IEEE Conference on Decision and Control, Lake Buena Vista, FL,
r No. LIDS-P-2239, 1994.
 R.E. Statistics: An Introduction, Wadsworth Publishing, 1999.
erman, P.J. and G. Biswas, “Diagnosis of Continuous Valued
ms in Transient Operating Region,” IEEE Transactions on Sys-
, Man, and Cybernetics,.vol. 29, pp. 554-565, 1999.
ers E.J., S. Narasimhan, G. Biswas, and P.J. Mosterman, “A com-
 qualitative/quantitative approach for efficient fault isolation in
lex dynamic systems,” 4th Symposium on Fault Detection, Super-
n and Safety Processes, pp. 512-517, 2000.
simhan, S. and G. Biswas. An Approach to Model-Based Diagno-
f Hybrid Systems. in Hybrid Systems: Computation and Control
C '02). 2002. Stanford, CA: Springer Verlag.

a A., Sztipanovits J., and Carnes J., “Robust Diagnostics: Struc-
 Redundancy Approach,” Knowledge Based Artificial Intelligence
ms in Aerospace and Industry, SPIE's Symposium on Intelligent
ms, Orlando, 1994.
bdelwahed, G. Karsai, and G. Biswas, “Robust Diagnosis of
hing Systems,” 5th IFAC Symposium on Fault Detection, Super-
n and Safety of Technical Processes, Washington D.C., 2003.
anovits, J., Karsai, G.: “Model-Integrated Computing”, IEEE
puter, pp. 110-112, April, 1997.

