

Domain Model Translation Using Graph Transformations

Jonathan Sprinkle, Aditya Agrawal, Tíhamer Levendovszky,
Feng Shi, and Gabor Karsai

Institute for Software-Integrated Systems
Vanderbilt University

jonathan.sprinkle@vanderbilt.edu

Abstract

The implementation of Computer Based Systems (CBSs) is
commonly guided by constraints imposed by the particular
domain of the CBS. Domain-specific programming is a
convenient way to provide a domain expert with a lan-
guage that is customized to the particular constraints and
assumptions of the domain.. The careful thought and de-
sign that precede the development of any domain-specific
visual language restrict the programmer from illegal for-
malisms, and allow for the rapid determination of the va-
lidity of the “program”. Usually, the domain-specific vis-
ual language is designed and produced using a metamodel
of some sort. Occasionally, similar domains can benefit
from models created according to the ontology of this
original metamodel, but usually some amount of model-
transformation is required to give validity of the trans-
formed models. This paper presents a visual language for
transforming domain-models that can express the map-
ping between the meta-models of the “input” (i.e. the
“old” domain) and the “output” (i.e. the “new” domain),
and uses graph-rewriting techniques to transform the
“old” domain-models into the appropriate “new” form.

1. Introduction

The efficient and effective employment of model-based
software engineering could be supported by the use of
domain-specific modeling languages (DSMLs). The real
value in a model-based process is not in the formalism
(i.e. the DSML), but in the models that have been built us-
ing the DSML. This body of domain models could also be
of real value to a similar DSML that implements similar
(if not identical) CBSs. Reusing these models is worth
exploring.

Why should DSMLs explore the idea of model reuse?
Model reuse (similar to code reuse) is an excellent way to
take advantage of the thought and engineering that went
into building the initial models, and thus to implement
CBSs in similar domains using portions of the initial mod-
els. Every model-based software project involves the
careful analysis of the domain, and domain concepts and

constraints are captured in the syntactic and semantic con-
structs available in the DSML. If careful analysis of a
second domain yields similar concepts and constraints, it
is plausible that spending resources to translate those
original domain models will provide a sufficient return of
investment.

Metaprogrammable tools are making their way into
mainstream software engineering, and their feasibility and
practical advantages are being recognized. These tools are
“meta-programmable” in the sense that their (visual and
textual) syntax and domain semantics can be tailored for
some specific domain with a reasonable effort. This usu-
ally happens through the use of metamodels that are mod-
els of modeling languages. Typically metamodels capture
(1) static semantics (in the form of an (a) abstract syntax
tree with (b) well-formedness rules) and (2) dynamics se-
mantics (in the form of a mapping procedure that maps the
abstract syntax of the models into a semantic domain). In
past projects we have developed and successfully used a
metaprogrammable graphical editor, which used UML
class diagrams for (1)(a), OCL for (1)(b), and semi-
formally modeled interpreter procedures for (2). However,
models built in this metamodeling environment were un-
usable in a metamodeling language with completely differ-
ent syntax, but that generated essentially the same output
files. Obviously, the model transformation problem can
be solved by developing simple translator programs (using
procedures or tools like XSL), and can also be automated
for simple cases (e.g. attribute or class name differences,
etc.), but a more reasoned, well-founded technology is
necessary for the general case. This paper introduces such
a technology based on the modeling of the transformation
of domain models using graph-rewriting techniques.

2. Backgrounds

Graph grammars and graph rewriting [1][2] have been
developed during the last 25+ years as techniques for for-
mal modeling and tools for very high-level programming.
Graph grammars are the natural extension of the genera-
tive grammars of Chomsky into the domain of graphs. The
production rules for (string-) grammars could be general-
ized into production rules on graphs, which generatively

enumerate all the sentences (i.e. the “graphs”) of a graph
grammar. One can also define replacement rules on
strings, which consist of a pattern and a replacement
string. The replacement rule’s pattern is matched against
an input string, and the matched sub-string is replaced
with the replacement string of the rule. Similarly, string
rewriting can be generalized into graph rewriting as fol-
lows: a graph rewriting rule consists of a pattern graph and
a replacement graph. The application of a graph rewriting
rule is similar to the application of a string rewriting rule
on strings, only the matching sub-graph is replaced with
another graph. For precise details see [1].

Beyond the ground-laying work in the theory of graph
grammars and rewriting, the approach has found several
applications as well. Graph rewriting has been used in for-
malizing the semantics of StateCharts [5], as well as
various concurrency models [1]. Several tools —including
full programming environments— have been developed
[4][6] that illustrate the practical applicability of the graph
rewriting approach. These environments have demon-
strated that (1) complex transformations can be expressed
in the form of rewriting rules, and (2) graph rewriting
rules can be compiled into efficient code. Programming
via graph transformations has been applied in some do-
mains [2] with reasonable success. In this paper, we argue
that the graph transformation techniques offer not only a
solid, well-defined foundation for model transformations,
but they can be also applied in the practice.

The need for techniques for model transformations has
been recently recognized in the UML world. For exam-
ples, see [7], [8], [9], [12], and [13]. Model transformation
is an essential tool for many applications, including trans-
lating abstract design models into concrete implementa-
tion models [12], for specification techniques [9], transla-
tion of UML into semantic domains [13], and even for the
application of design patterns [13]. The new developments
in UML (see [10], [11]) emphasize the use of meta-
models, and provide solid foundation for the precise speci-
fication of semantics. A natural extension of these con-
cepts is to use transformational techniques for translating

models into semantic domains: a task for which graph
transformation techniques are —arguably— well-suited.

3. Graph transformations: An approach for
transforming domain models

The fundamental problem of domain evolution is cre-
ated by the change in metamodels. Therefore, the two
metamodels (also called paradigms), referred to through-
out this paper as the “old” and “new” metamodels, are in-
strumental in defining the graph transformation on the
domain models. The high-level functionality of the do-
main translation process is shown in Figure 1. A “model-
transformation language” (MM) allows the domain devel-
oper to create a transformation specification to capture the
mapping between the old and new DSMLs. The transfor-
mation specification is then used by a graph-rewriting en-
gine to execute the necessary transformations on the do-
main models (D) so that they will conform to the new
DSML.

3.1. Describing the patterns

In this paper, we argue that a visual description for pat-
terns of objects is required. The patterns that will be
specified are based on metamodels, so it is important to
understand the language of metamodels as it pertains to
language development. When a domain-specific visual
language is constructed, certain stereotypes are used. In
GME [15], a metaprogrammable visual modeling envi-
ronment, these stereotypes are Atoms, Models, Connec-
tions, Sets, and References.

Consider the metamodel shown in Figure 2. The left
side of the figure shows classes stereotyped as Models,
which are capable of containment in the visual language.
When used, these classes will appear as new language
elements named “Base”, “Primitive” and “Compound”.
However, they will also retain their seterotypes as well –
therefore, a “Base” will be of “Model” type. It is impor-
tant to realize that the language for describing the patterns

Figure 1. A specification using the "old" and "new" metamodels can generate a graph transformation for the
domain models.

will be in terms of these meta-types (such as “Model”), as
well as in terms of the instantiation type (e.g., “Base”).

Figure 3 shows an example of a pattern description.
The arrow in the corner of the UML class denotes that the
class is a pointer to a class in another diagram. For exam-
ple, the Compound in Figure 3 refers to the Compound in
Figure 2. Despite its similar appearance to a class dia-
gram, Figure 3 is a pattern specification. The semantics of
the pattern, according to the MM language interpreter, is
this:

A “Compound” that contains exactly 1 “Primitive”s

However, even this small pattern can cause complica-
tions if the semantics is not precisely specified. For in-
stance, the metamodel states that Compounds are derived
from a Model of type “Base”. Does it follow then that this
pattern states,

A “Compound” that contains exactly 1 “Primi-
tive”s, but contains exactly 0 other “Compound”s

Without specifying the exact semantics of a pattern it is

quite possible that two different developers will develop
model transformations that, according to their individual
interpretations, should achieve the same goal, but in fact
do not. Of course, one of the advantages of a visual lan-
guage is that it is easy or intuitive to understand, so the
semantics ought not be overcomplicated.

A better definition for the semantics of the pattern is to
consider the pattern as an “if” statement which will return
all of the matched elements if the match is found. The fol-
lowing statement would more accurately describe the pat-
tern in Figure 3.

Return the “Compound” and “Primitive” if the
“Compound” contains the “Primitive”

3.2. Differentiating between instances of the
same type in a pattern

Some patterns will require matching multiple instances
of the same type that are somehow related in the domain
models. Figure 3 showed a pattern specification in which
the pattern objects were nearly indistinguishable from
their representation in the class diagram. One of the rea-
sons for this similarity was that the name “Compound”
was present in the pattern as well as in the class diagram.
However, due to the subtleness of the metamodel from
which the MM language was produced, these two names
need not be identical. Recall that the objects in the pattern
specification are “variables” that are reference pointers to
the actual classes in the class diagram. Therefore, the MM
interpreter can query those referred models to determine
type at interpretation time.

Figure 4 displays a pattern that requires a compound
containing a compound, which contains two primitives.
Note that the names c1 and c2 refer to (and therefore de-
note) Compounds, while foo refers to (and therefore de-
notes) a Primitive.

Figure 3: Pattern specification example

Figure 2. Metamodel for the hierarchical signal flow paradigm

3.3. Specifying what replaces a matched pattern

Of course, once a pattern is matched the process is not
yet completed. Each pattern should have a corresponding
pattern that replaces it in the target domain. To avoid con-
fusion, and because of the inconvenience of using a “dot”
or “prime” as an indicator of change in ASCII text, the re-
placement patterns are known as consequences in the MM
paradigm. Thus, a pattern is matched, and as a conse-
quence of matching the pattern, the following pattern will
replace it.

The language for specifying the consequences is identi-
cal to specifying the patterns. With a few exceptions, the
same graphical semantics apply, and the same rules for de-
termining type are used. The major difference is that
members of the consequence patterns are typically refer-
ences of the new DSML class diagram. That is, unless
some intermediate change of the old domain models is
taking place, the consequences will be new domain mod-
els.

3.4. Mapping between patterns and conse-
quences

Now, the language has patterns, and “new” objects that
should exist as a consequence of those patterns. However,
this is still not sufficient to fully specify a graph transfor-
mation. In string matching, it is easy to say, “replace
‘AC’ with ‘DAWCE’” and there are no unexpected diffi-
culties in the resulting string. Unfortunately, a graphical
language is not defined by the existence of graphical enti-
ties alone, but of complex “sentences” of those entities –
relationships through association and containment, and as-
sociations across containment boundaries, such as point-
ers. It is not enough to specify a pattern and a conse-
quence, therefore, without expressing the relationship be-
tween the pattern objects and the consequence objects.
This allows the removal of ambiguity in the relationships
that the “new” consequence objects have with respect to
existing pattern objects.

The MM visual language, therefore, provides several
association types that give a mapping of pattern objects to
consequence objects. These possible mappings are: (1)
“create new”, (2) replace, (3) same, (4) “create reference”,
(5) “create link”, (6) delete, (7) “refer, else, create”, (8)
“create inside”, and (9) “refer to”. Based on our experi-
ence until now, this set of operators is powerful enough to
express a wide range of graph transformations. Note,
however, that these operators are not suitable for manipu-
lating the attributes of objects; that has to be done in a
procedural language (which is more efficient for that, in
any case). Usage of these associations will become clearer
with an example, so discussion of their semantics and ex-
act syntax is deferred until later in this paper. However,
with the knowledge of these mapping connections we are
now able to examine the differences in semantics between
pattern and consequence objects.

Figure 5. A portion of the Model Transformation (MM) metamodel (simplified)

Figure 4. Pattern specifying a Compound contain-
ing exactly one Compound containing exactly two
Primitives. Note that the names do not reflect the
types, but that that MM interpreter queries the re-
ferred object to determine its type.

3.5. Semantic differences between patterns and
consequences

Once again, examine Figure 3. This figure was previ-
ously used to show a pattern, but consider the possible
problems if the same semantics were applied to a conse-
quence rather than a pattern. Then, any statement about
finding existing models no longer makes sense, especially
when the aggregation association exists between the two
classes. In the context of the consequence of a match, ag-
gregation has another meaning entirely. In fact, the mean-
ing of the aggregation connection in a consequence is that
the contained consequence should be created inside its
parent (the “diamond” role of the connection).

Unfortunately, it is not obvious by just looking at a
transformation model to tell whether the patterns specified
are consequences or not (or whether the aggregation con-
nections are meant as a consequence or as a pattern). To
the MM interpreter, however, the difference is clear, due
to the roles of the objects.

3.6. Roles of objects

Recall that in UML members participating in associa-
tions play a role. In the MM metamodel, the pattern and
consequence objects (as well as all associations between
them) are from the same types of models (i.e., the trans-
formation is described using two metamodels). Roles,
then, play an important part in distinguishing between a
pattern and a consequence.

Figure 5 shows a simplified portion of the MM meta-
model, where the definition of pattern and consequence
objects is provided, and shows the roles played by those
objects. In order to aid the modeler in creating and view-
ing graphs made up of these objects, three aspects were
created for using the MM language. A Pattern aspect,
which shows only pattern objects; likewise, a Conse-
quence aspect; and finally, a Transform aspect, which
shows both patterns and consequences, and allows for
mappings to be made between them.

3.7. Ordering transformation execution

Now it is possible to specify a transform, and to map
pattern objects to consequence objects. It is non-trivial, at
least, to create exactly one pattern and its corresponding
consequence that will completely transform any set of
domain models. Therefore, it is necessary for more than
one transform to be created which will aid in the rewriting
of the domain model graph. A consequence of having
more than one transform in a transformation (i.e., the col-
lection of transforms) is that performing the transforms in
different orders could result in ambiguous behavior of the

transformation. This requires the capability of ordering
the transforms.

The ordering syntax is based on the following princi-
ple: completion of a particular transform will result in
execution of the next appropriate transform, similarly to a
Finite State Machine (FSM). As in any FSM, the ability
to perform tests or “case by case” execution is also re-
quired (e.g., if this pattern is not located, then a different
path should be chosen). This capability is allowed
through special transform models, called “Test” and
“Case”.

3.8. Test and Case models

A Test model performs the same function as a “switch”
statement in C/C++. Its purpose is to serve as a container
for the Case models that are contained within it. The se-
mantics of the Case execution within a switch is that
execution does not break if a case is true, but rather
continues through all of the cases. Using these semantics,
it is possible to compose Tests in such a way that
execution does break between cases (left as an exercise to
the reader).

A Case model is a Transform model that does not cre-
ate any new models. It may be made up of either pattern
or consequence objects, but cannot create new objects in
the new domain. The main purpose of the Case is to de-
termine (at runtime) whether or not certain patterns still
exist, and if so then to remove them. Also, the presence of
domain models in certain cases may require a different
strategy for transformation, and thus would enable the
modeler to direct the graph-rewriting engine appropriately.

3.9. Passing parameters

Since locating a maximal sub-graph inside a graph is an
NP complete problem, it becomes convenient to pass, as
parameters to some degree, elements of the graph to the
next transform. In this way, it decreases the strain on the
graph rewriting engine to repeatedly locate frequently
used portions of the graph, as well as allow for full explo-
ration of a particular instance, by repeatedly using it for
matching patterns.

Any object may be passed as a parameter, regardless of
whether it is a pattern or a consequence. Parameters may
also be passed into Test and Case models.

3.10. Supplemental expressions

As is the case for most graphical languages, some ele-
ments of the language may be expressed graphically, but it
is often more convenient (and more appropriate) to ex-
press them textually. Also, much of the semantics of a
language is contained in textual attributes of visual ob-

jects. It is necessary, when performing transformations,
that these attributes be correctly transformed as well.
Again, a textual language (supplemental to the visual lan-
guage) is appropriate here.

There are many options for describing the expressions;
one can use OCL (from UML), for instance, or expres-
sions defined in a subset of the C language. Currently, we
are experimenting with CInt: an interpreted variant of
C/C++.

3.11. Implementation details

Now that the language has been explained, let us exam-
ine the implementation details of actually performing the
graph transformation. The language was designed using
its own syntax and semantics, rather than finding a par-
ticular graph rewriting engine (GRE) and modeling its

syntax. This is beneficial for two reasons. First, it allows
for the customization of the MM language to the MM
problem, rather than a graph-rewriting problem. Sec-
ondly, it provides an interface for the modular interchange
of graph rewriting engines to perform the actual modifica-
tions to the domain models.

In order to interface to GREs, then, the MM description
(as laid out by the modeler) is encoded into the language
of the GRE. Thus, for each GRE there is one MM inter-
preter. At this time, a GRE written at ISIS is being used to
perform the transforms, but implementation is not limited
to this one engine.

4. Example

Many of the ideas presented in this paper will come
clear upon reviewing an example. Converting a hierarchi-

Figure 6. a) Metamodel for the Hierarchical Signal Flow domain, b) Metamodel for the Flat Signal Flow
domain

cal signal flow graph to a flat signal flow graph is a non-
trivial process. Although the metamodels are only slightly
different, a significant amount of work must go into trans-
forming the domain models so that the signal flows remain
semantically correct (i.e., the interpretation of the trans-
formed domain models should result in the same signal
processing). The two metamodels are presented in Figure
6.

At first glimpse, the two metamodels seem reasonably
alike. Each has signals, and each has the notion of inputs
and outputs. The biggest difference, and the most difficult
hurdle for the model handling domain evolution, is that
the original domain has the notion of hierarchy, whereas
the new domain does not.

The transformation from a hierarchical framework to a
flattened one has a fairly simple algorithm. However, it is
sufficiently complex to exercise most of the capabilities of
the MM domain. The algorithm is as follows:

1. Change all Compounds without parents to Root-
Containers

2. Change each Port inside a Compound into a
Queue

3. Extract all Compounds from within Compounds
to be Actors

4. Change all Primitives to Actors inside the appro-
priate RootContainer

5. Change all Input Ports inside Primitives to Re-
ceivers

6. Change all Output Ports inside Primitives to
Transmitters

7. Extract all Signals between Ports as appropriate
InputSingals/OutputSignals between Transmit-
ters, Receivers, and Queues

This process may not seem intuitive, but to the devel-
oper of the domain specific languages (Hierarchical and
Flat signal flow) the transformation makes sense. In fact,
if the models were to be rebuilt by hand, it would probably
be in this fashion. The entire process to transform the hi-
erarchical domain models to flattened ones is shown in
Figure 7.

Let us examine several different Transform models
(shown in this figure as an “Iteration”) to see what form
the graph rewriting models take. First, let us see the
“RootContainer” model (shown in Figure 10). The pattern
specifies that (at least) one CompoundComponent must
exist inside the RootFolder (the topmost container in the
hierarchy in this paradigm). Once this pattern is matched,
the consequence is that a RootContainer is created inside
the RootFolder of the new paradigm. Once the execution
of the rule has completed, the RootContainer and Com-
poundComponent models are passed to the next Trans-
form as the “RC” and “CCL” parameters.

A more complex pattern-consequence interaction is
found in the “CompoundsInCompounds_II” model
(shown in Figure 11). This pattern specifies a (parent)
Compound located in another (child) Compound. If a
Signal exists from a Port in the (parent) Compound to a
Port in the (child) Compound, then there is a match re-
turned. As a consequence of this match, the Queue to
which the parent’s Port refers is also set to be referred to
by the child’s Port. In another Transform, an InputSignal
will be created which replaces the existing Signal in the
hierarchical paradigm. This transform is akin to “Com-
poundsInCompounds_I” which performs the same basic
operation, except with regard to what will become an Out-
putSignal in the new paradigm. These two transforms es-
Figure 7: Transformation process for evolving domain models from a hierarchical paradigm to a flattened
signal paradigm. Note the “Test” model type (signified by the question mark), which allows for a decision
point along the transformation. In this case, the decision is based on the dynamic type of a Base type (ei-
ther Primitive or Compound) and routes execution of the transform appropriately.

sentially enable the CompoundComponent and any other
Base components inside to be investigated, and extracted
to the top, by providing a source and destination in the
new RootContainer for the existing signals.

Another interesting Transform is the “CompoundOr-
Primitive” Test. As previously mentioned, a Test contains
Cases (which are Transforms that do not modify the new
domain models). The task of the “CompoundOrPrimitive”
Test is to make a control flow decision based on the dy-
namic type of its input parameter’s child. Figure 8 shows
the Test model (and its contained Cases), while Figure 9
shows the Case that decides whether or not the contained
child is of type PrimitiveComponent.

The semantics of the Test model, as explained earlier,
is that each Case that is found to be true will be executed
as a control path. However, in this Test the Cases are mu-
tually exclusive. As a sidenote, the overall transformation

reveals that if the IfCompound Case is true, then the algo-
rithm recursively runs on the (child) Compound, until only
PrimitiveCompounds remain.

After executing the remainder of the rules, the trans-
formation comes to a completion when no more matches
are found. Due to the definition of the hierarchical signal
flow paradigm, this occurs after the last PrimitiveCompo-
nent has been transformed into an Actor.

5. Summary, conclusions

This paper has provided the syntax and relative seman-
tics of a language used to specify the translation of domain
models from one domain to another. This language is by
no means the only way to perform domain translations,
but it promises to provide an efficient means to rapidly de-

Figure 8. The CompoundOrPrimitive Test

e
Figure 9. The IfPrimitive Cas

fine transformations that preserve the intended meaning of
domain models.

The MM language is itself a domain specific visual
language for translating domain specific visual languages
based on a metamodels. Using these metamodels, the lan-
guage allows for specification of an ordered set of trans-
forms that are capable of performing a full evolution of
the domain models.

Although the example presented in this paper is for two
distinctly different metamodels, the language may be ap-
plied to the problem of small iterations in the evolution of
a domain as well. In fact, the MM language is well suited
for such small changes because a small semantic or syn-
tactic change in the domain will require only a few rewrit-
ing rules to carry out.

While not immediately intuitive to use, the language is

Figure 10. The RootContainer Transform

Figure 11. The CompoundsInCompounds_II Transform

advantageous in that it visually specifies the patterns and
their consequences. It also decreases the time required to
perform domain evolution by removing the need to create
a customized interface for accessing the domain types
(i.e., types, such as “CompoundComponent” or “InputSig-
nal”) and their possible relationships with other domain
types. By generating output (in the form of specifications
for a graph rewriting engine), a mechanism is provided
which will interface with existing or customizable compo-
nents that will perform the actual changes to domain mod-
els.

The next step in the development of the MM environ-
ment is to more formally specify the way in which do-
mains are evolved. The names of types in “old” and
“new” metamodels mean nothing to someone who is not a
domain expert, which is a clue that the process of evolving
domain models is contingent on the differences in con-
straints, semantics between the “old” and “new” domains,
as well as syntax.

6. Acknowledgement

The DARPA/IXO MOBIES program and USAF/AFRL
has supported under contract F30602-00-1-0580, in part,
the activities described in this paper.

7. References

[1] Rozenberg,G. (ed.), “Handbook on Graph Grammars
and Computing by Graph Transformation: Foundations”,
Vol.1-2. World Scientific, Singapore, 1997

[2] Dorothea Blostein, Andy Schürr: Computing with
Graphs and Graph Transformations. Software - Practice
and Experience 29(3): 197-217, 1999.

[3] U. Aßmann, “How To Uniformly Specify Program
Analysis and Transformation”, in: 6th Int. Conf. on Com-
piler Construction (CC '96), T. Gyimóthy (réd.), Lect.
Notes in Comp. Sci., Springer-Verlag, Linköping, Swe-
den, 1996.

[4] Taentzer, G.: AGG: A Tool Enviroment for Algebraic
Graph Transformation, in Proc. of Applications of Graph
Transformation with Industrial Relevance, Kerkrade, The
Netherlands, LNCS, Springer, 2000.

[5] Maggiolo-Schettini, A., Peron, A.: Semantics of Full
Statecharts Based on Graph Rewriting, Springer LNCS
776, 1994, pp. 265--279.

[6] A. Schürr. PROGRES for Beginners. RWTH Aachen,
D-52056 Aachen, Germany.

[7] Milicev, D., "Automatic Model Transformations Us-
ing Extended UML Object Diagrams in Modeling Envi-
ronments," IEEE Transaction on Software Engineering,
Vol. 28, No. 4, April 2002, pp. 413-431

[8] Wai-Ming Ho, Jean-Marc Jézéquel, Alain Le Guen-
nec, and François Pennaneac'h.: UMLAUT: an extendible
UML transformation framework, in Proc. Automated
Software Engineering, ASE'99, Florida, October 1999.

[9] David H. Akehurst: Model translation: A uml-based
specification technique and active implementation ap-
proach. PhD thesis, Computer Science at Kent University
(UK), December 2000.

[10] Tony Clark, Andy Evans, Stuart Kent: Engineering
Modelling Languages: A Precise Meta-Modelling Ap-
proach. FASE 2002: 159-173

[11] Tony Clark, Andy Evans, Stuart Kent: The Metamod-
elling Language Calculus: Foundation Semantics for
UML. FASE 2001: 17-31.

[12] Lemesle, R. Transformation Rules Based on Meta-
Modeling EDOC,'98, La Jolla, California, 3-5, November
1998, pp.113-122.

[13] Heckel, R. and Küster, J. and Taentzer, G.: Towards
Automatic Translation of UML Models into Semantic
Domains, Proc. of APPLIGRAPH Workshop on Applied
Graph Transformation (AGT 2002), Grenoble, France,
2002, pp. 11 - 22.

[14] Karsai G.: Tool Support for Design Patterns, New Di-
rections in Software Technology 4 Workshop, December,
2001.

[15] The Generic Modeling Environment (GME 2000),
http://www.isis.vanderbilt.edu/projects/gme/Doc.html

	A
	Introduction
	Backgrounds
	Graph transformations: An approach for transforming domain models
	Describing the patterns
	Differentiating between instances of the same type in a pattern
	Specifying what replaces a matched pattern
	Mapping between patterns and consequences
	Semantic differences between patterns and consequences
	Roles of objects
	Ordering transformation execution
	Test and Case models
	Passing parameters
	Supplemental expressions
	Implementation details

	Example
	Summary, conclusions
	Acknowledgement
	References

