MODEL INTEGRATED PROGRAM SYNTHESIS OF

AGENT INTERACTION PROTOCOLS

By

Jonathan Mark Sprinkle

Thess
Submitted to the Faculty of the
Graduate School of Vanderbilt University
in partid fulfillment of the requirements

for the degree of

MASTER OF SCIENCE
in

Electrica Enginesring

Augusg, 2000

Nashville, Tennessee

Approved: Date:

To my secret agent,
Mary Margaret.

Namaste

ACKNOWLEDGEMENTS

This research was performed under the sponsorship of the Defense Advanced Re-
search Projects Agency, Informaion Technology Office, Autonomous Negotiating
Teams project, under contract number #F30602-99-2-0505.

| give many thanks to my advisor Dr. Gabor Karsai for keeping me close to the
track throughout the development of my research, and especidly this thess. Also, thanks
to Dr. Ted Bapty for providing necessary input towards crafting this paper in a way such
that those who are unfamiliar with agents can better understand it.

To dl the crew here a 1SS: thank you. To Dr. Greg Nordstrom, for his role in my
persond steering committee not to mention his benevolent demeanor when passing mod-
ding knowledge dong. To Chris van Buskirk for giving much knowledge and under-
gtanding of the way agent systems ought to work.

To those who gave me the stamina and perseverance to continue dong the way,
thanks. To Dr. Roger Haggard, who taught me the meaning of what it was to redly do a
project, and aso taught me that it was indeed possible to be productive for more than 24
hours in one day. To Dr. Carl Ventrice, for being the mode professor in action and atti-
tude. To dl of my other professors a Tennessee Technological University (Dr. Ragan,
Dr. Carnal, et. d.), for ingpiring me to pursue a career in academia.

Mogt importantly, thanks to my parents, Kenneth and Teresa, for never dlowing
me to think that something cannot be done, and specia thanks to Mary Margaret, for

whose love and support | am most indebted.

TABLE OF CONTENTS

Page

DEDICATION ...ttt ettt sttt ettt bbbt st e e e et b et nee b i

ACKNOWLEDGEMENTScteiiieese sttt saesse st s s enenneeneens ii

LIST OF FIGURESooiiit sttt st sttt sbenneens Vii

LIST OF FIGURESoooie ettt sttt s ennennennenneenis Vii

LIST OF ABBREVIATIONS.ottt st sae st sre s X
Chapter

INTRODUGCTIONooiiiiesiesie et seesee e seeaessessessessessesseanessesnennes 1

INtrodUCEION 10 AQENES ...ttt e 2

Conceptual Layers of @an AQENT.......couooieiere e 2

INEEraCtion PrOLOCOL.........ccveeiieieeee et nne s 3

The Relation of Negotiation and Interaction Protocolccccceeveeceevieenee. 4

Converging 0N & SOIULIONcceeierienie et 5

o 0] 0TRSO PP PRSPPI 6

THESIS SEAIEMENL ...t 6

. BACKGROUNDSootiieieiesie sttt a et sttt se e ene e 7

F 0 1 =T 7= Yo S 7

INtrac AQENt BENAVIONoveeiieie et s 7

INter-Agent BENAVIONcceoiiiiiiiesee st 8

010000 S = (SR 9

Roles In Negotiation ProtOCOIS...........ccceveeiieieeieee e 10

LIterature REVIEW.c..coviiiiee ettt et 10

The Bond Agent SYStEM ..o 11

The Zeus Agent-Building TOOIKIL.........ccoveeeiiereeiesiese e 11

(@0 SO SRPRRR 13

Other APPrOBCHEScovieiiterieeieeee e 16

Literature CONCIUSIONSooviriiiiinieniesieeie et s 16

MIC @NA MIPS.....eie et 17

The Paradigm ..o 17

THE INEEIPIELEN ...t e 18

. MAPPING CONCEPTSINTO THE MODELING ENVIRONMENT 19
Agent Negotiation CONCEPLS.......coeiirerrierierierie sttt 19

INtrac AQENE BENAVIOToveeieceeciece e s 20

SENAING A MESSATE.eeeiiiciie et 21

RECAIVING AIMESSAGE.......eeeieeriiite ettt 22

Returning the RESUIL.........cceee e 22

Agent Negotiation NOUE..........cceeiiieeceeieee e 23

State Maching CONCEPLS........cceruireerieeie e 24

Possible States and TranSItioNS..........cocveeererinenenereeee e 25

Possible Negotiation OULPULS..........cceveeriereeeeseee e 25

The Default ACHON.........coiieee et e 26

The Overall ProtOCOI..........ccveiireiieseee e 26

The State INterconNECtioN ASPECL.........ccveeeieereeesee e 26

The Graph LayOut ASPECL........cocveiieeieesiee et e 28

TREATC ettt a et et nns 28

LTS3 o o S 29

(@001 = | SRR 30

V. MAPPING THE DOMAIN CONCEPTSINTO AN IMPLEMENTATION........ 31
ZeUS IN MOre DEPRLN........ocueeceieece e 31

The Coordination ENQINE.........ccooiiiirieienee et 32

THENOUE ClESS......eiceeeiieece e 33

Necessary Interpreter OULPULS...........ceviiveeiiiee e siee e snee s 33
Low-Level Mapping of Paradigm Concepts to Behaviorcccccevveviieeiieenee. 34
High-Level Mapping of Model Instances Through Context...........cc.ocveveeeeenee. 35
THENOUE ClESS ..ot 36

The Graph ClaSs.........cocieciece et 40

Overal INtErPreter LOGIC ..ooeeieeiieeiieeie ettt 40

V. SAMPLE PROTOCOL IMPLEMENTATIONccoiitiieeeieere e 42
Graphing The Contract Net ProtoColcccovvieeienienieneeesee e 42
ContraCt Net DESCIIPLIONc..eeuereeieeeriesie et 42
Formalization of the DESCIIPLIONcceveeieeeeseee e 43

Graphical Implementation of the Formalization.............cccccevveviieeiieccieennnnn, 44
Completing the Protocol DEfiNITION..........c.cciiiererieieieresese e 48

Checking COMPIELENESS.......ccoiiiecice e 49
Synthesizing and Examining the Output Implementation.............ccccceeevevveennee. 50

Linking to the Agent Runtime ENVIironmMentcccoveevenenneenesieeseesee e 52

VI. CONCLUSIONS AND FUTURE WORKcccccvieierisieeeeeesiese s 53

ContinUING RESEAICN.........ccieiiee et
FUIUNE@ WOIK ...t
Appendices
A. MODELING ...ttt ettt st sb e sane e nne e s nneennee s
B. CONTRACT NET OUTPUT CODE LISTING......c.coiiiieeieeeieesee e
C. PARADIGM SPECIFICATION. ...ttt
REFERENCES

LIST OF FIGURES

Figure Page
1. Conceptud drawing of an agent [4]. Theinterna layers of the agent are accessed
by the outer layer through APl CallS.ooviiiiic e 3
2. Therelationship of the Agent domain to the IP..........ovoiiiiiee 6
3. Sample Zeus implementation of the contract net protocolcccccevveveeceenecciesenne 12
4. Visualization of 2 COOL CONVEISAION.coueueriirieeeieriesieestesiesese s sse e 14
5. COOL structured language to describe the agent behavior of Figure6 15
6. State machine graphical representation of a COOL behavior..........cccocevvvveenvccinnnnnne 15
7. Simplified UML class diagram of the paradigM..........ccccoeveievieiencesece e 20
8. The Action atom may have multiple result paths ... 21
9. Sending different messages based on message recaipt type........covveeeeereerenereneneens 22
10. The Succeed and Fail atoms signify the end of the behavior definition...................... 23
11. An example Node model, complete With Parts.cccceveeeieevie e 23
12. TRE DEfAUIT ACHON......coeiieiieteeteeee ettt n e sn e nne s 26
13. The State Interconnection aspect of a Protocol containing two Nodes........................ 27
14. The Graph Layout aspect of a Protocol model, containing several Nodes, Arcs, and
L= o SRR SPRRPRRRN 28
15. The coordination engine, and its association With Graphs...........c.cceceeeieninenenennens 32
16. Changing of destination method from exec() 1O continue_exec() wevevreereerreesieerenreenn. 37
17. Multiple Receives are mapped to the same logic blocK ..o 40
18. INterpreter PSEUAOCOUE..........oouirierieeieeeee ettt sttt eesresnenne e 41
19. Legend of the parts used when building the model of a protocal.c.ccccevveuenene. 44
20. The CONraCt NEL INITIAEONceueeeeeeeeetere e 45
21. The exit connections of the “EvalProposal™ aCtion.c.ccoeverirerieeicnenesese e 46

Vii

22. The contract NEL FESPONTEYccveiee et esre e 47

23. Graph Layout aspect of the Contract Net Protocol modelcccoccveveviiiecieccieeen, 49
24. Matching the Sends and Receives in the State Interconnection aspectccoceeeeeee. 50
25. Output representing connection NamMed “ProPoSE”cceeceererieereeresreeseeseesseesseeneens 51
26. Action code segment, as implemented by the Zeus interpretercoccovvveveiienennnns 52
27. Action code segment, as implemented by the Zeus interpreterccccvevevinenene. 52
28. Complete UML Class diagram........ccccecveceeeeenieseesieeseseesieesee e sseessesseesseessssneessesneens 68

viii

LIST OF TABLES

Teble Page
1. FIPA-ACL PErfOrMAaLiVEScoiuiiieieieieeee ettt st s 8
2. FIPA-ACL PAramMELENSc.etieeiteereeiesteesre et sre e n e sne s sseesnesnesneenneennens 9
3. Description of INItiator iINFIQUIE 3eoeeeie et 13
4. Description of the Responder iN FIQUIE 3.........oocvieiie et 13
5. Mapping of concepts to |OW-1eVEl OULPULS...........coereeiiiecreeee e 35
6. Initiator BENaVIOr INthe CN ..o s 43
7. Responder behavior INThe CNcooiieiece e e 44

LIST OF ABBREVIATIONS

ACL — Agent communication language

APl — Application programming interface

CN — Contract net

DSME — Domain-specific modding environment
FIPA —Foundation for Intdligent Physicd Agents
GME — Graphica model editor

| P — Interaction protocol

KQML — Knowledge Query Manipulation Language
MAS — Multi-Agent System

MCL — MultiGrgph condraint language

MIC — Modd integrated computing

MIPS — Modd integrated program synthesis
OCL — Object congraint language

UML — Unified Modding Language

CHAPTERI

INTRODUCTION

A Multi-Agent System (MAS) is a cooperation focused implementation of multi-
ple programs caled agents that coordinate with each other to attempt to converge on the
solution to one or more tasks. Agent negotiation is the convergence upon this solution
through compromise and communication It is the communication portion of negotiation
thet is the focus of thisthess.

Currently, the implementation of agent negotiation is highly dependent on the
programming language in which the agent was developed. Oftentimes, the programmer
who implements the negotiation protocol of the agent behavior will solve the generd
problem of an interaction protocol using condructs native to the agent implementation
language. To do this, the programmer is forced to implement a high-leve concept using
low-levd implementation languager He must think about dructuring strings, looping
structures and temporary variables, etc.

A better solution to the development of agent interaction is to grgphicaly modd
the negotiation interaction on a high level, and produce from that modd the implementa-
tion in the agent's naive language. Such an approach would remove the burden of lan+
guage implementation from the agent developer, and dso provide a visud guide for other

parties interested in the function and organization of the interaction.

Introduction to Agents

Before defining any behavior or organizing any thoughts on interaction protocols
of agents, wha an agent actudly is must be etablished. Unfortunately, it is amost m-
possible to find one particular definition of the term “Agent.” A quick reference to sev-
era documents could yield as many definitions as there are documents, not to mention
documents that examine the fact that there is no hard and fagt definition [1][2][3]. Fortu-
nately, this paper is concerned with the highest levels of agent interaction, so the set of
attributes of an agent for thistopic isfarrly smal.
Agentsin generd,
can exhibit active as well as reactive behavior, diginguishing them from
purely reactive programs, and
are independently devel oped.
Agents are nonttrivid software components, but despite ther complexity they

should 4till be able to communicate with one another in order to solve a problem.

Conceptua Layers of an Agent

In the substance of an agent, severa conceptud layers of information exist. The
agent “knows’ about things (its domain, conssting of objects defined in terms of its ar
tology), can perform tasks, can communicate, efc. [4]. The definition of tasks and on-
tologies (or knowledge bases) is typicdly datic to the agent, dthough some agents with
the capability to “learn” are utilized in atifica intdligence gpplications. For this paper,
the most important layer of agent exisence is this outer layer. The internd layers of an
agent, dthough extremely important to the overal behavior of the agent, are considered

implementation details of the agent environment for the purpose of this thes's.
2

More importantly, the world outdde an agent communicaies with the agent
through the communication component of this outer layer. It is the communication with
the outsde world that dlows for the dynamic execution of tasks and the acquigition of
knowledge. The agent is respongble for interpreting messages it receives, and reacting to

themwith its gaticaly defined behavior, or with messages to another agent, or both.

Coordination

Communication Legacy Integration

Internal Layer(s)

Figure 1. Conceptual drawing of an agent [4]. The internal layers of the agent are accessed by the outer
layer through API calls.

Figure 1 shows a conceptual view of an agent at the highest level of dostraction.
The communication portion of this outer layer is the most important with regard to nego-
tiation. Coordination and legacy integration are important for the internd behavior of the
agent, and thus are not an integra part in defining the dructure of an interaction protocol.

This view of an agent is consgent with that set forth by the Foundation for Intdligent

Physicdl Agents (FIPA) [5].

Interaction Protocol
The Interaction Protocol (IP) is the sequence of agent messages that alows two
(or more) communicating agents to conduct a negotiation. Although there exist standards

for the format of messages in agent communication [5], much of the implementation in

generd is nongtandard. Agent communication is implemented in many different lan-
guages, and the internd workings of an agent are not dandardized in any way. Even with
the acceptance of the FIPA notion that agents must have communication, coordination,
and legacy integration aspects, no standard exigs for the implementation of these notions.

Agent sysems, dthough they are differet in implementation, are conceptudly
the same. That is to say, the agent sysems dl have methods to send and receive mes-
sages, link to external databases, gain knowledge of the MAS of which they are a pat,
etc. The solution paint is this: that by conceptudly modding the high-leve interaction of
an agent, the output can be implementation code. The Modd-Integrated Computing
(MIC) and Mode-Integrated Program Synthesis (MIPS) tools have been proven to pro-
vide such solutions [7][8][9][10][11].

The communication portion of an agent is the portion most important to the con
trol flow of an interaction protocol. Therefore, the MIC and MIPS approach to modeling
interaction protocols requires a thorough examinaion and exploration of the concepts of

agent communication.

The Relation of Negotiation and Interaction Protocol
Interaction protocols exist, and are used in agent behavior, without the concept of
negotiation. Two agents may interact through sending certain types of messages, upon
receipt of those messages decide to take a certain logic path, and never converse again.
This is an extremey smple interaction protocol. The crux of interaction is made up of
the sending and receiving of messages.
An interaction protocol is a necessary but not sufficient component of negotiation.

The didinguishing factor between negotiation and interaction is that in negotiation,
4

agents decide whether to relax congdraints and communicate further based on what mes-
sages have been received. The at and science of the negotiation method (often cdled a
drategy) is extremey complicated, and involves the interna date of the agent and what
knowledge the agent has of its environment.

The negoatiation itself 5 not the focus of this thess rather, it is the interaction pro-
tocol. However, the place of negotiation is reserved in the modeling environment, be-
cause interaction protocols are 0 useful in defining negotiation protocols; it is merdy

assumed thet knowledge of the negotiation strategy exists externd to the mode!.

Converging on a Solution

In every problem domain, there exists a congtant part and a variable pat. The
congtant parts of the problem domain are the concepts native to that domain. The vari-
able parts of the domain are the interactions of the constant parts. In a nutshell, the idea
of MIPS is to define concepts of the domain (described in a paradigm), and then dlow
the user to provide the variable part of the problem by modeling it using these concepts.
After the problem is modeled, then a custom program interprets the model, and produces
the compilable code that implements the solution to the problem.

The objective is to modd the domain (in this case, agent interaction) well enough
such that as many target environments (or agent implementations) as possible can use the
same domain concepts, and to then create a custom program for each target environment.
In theory, one would be adle to generate solutions for any agent environment with the

same paradigm.

Scope

Agents have communication, coordination, and legacy integration aspects.
Agents may negotiate with each other through communication, and this communicetion is
genegdly dructured in the form of an interaction protocol. Figure 2 visudly describes
the relationship of agents and interaction protocols. The interaction protocol is composed
of communication concepts tha are found in each and every agent implementation, but
currently, there exids no high-levd process to trandate those communication concepts

into theform of the interaction protocol implementation code.

Acent InteractionFrotocol
o ne gotiates with

4

Leqacy Inteqration

Communication

Co urdinut-iun

chfpess (0"
Communication Concepts

Figure 2. Therelationship of the Agent domain to the IP

Theds Statement

Model-Integrated Program Synthess may be employed to produce compilable

code that implements an agent interaction protocol.

CHAPTERI I

BACKGROUNDS

Agent interaction is bagcaly a specidized type of agent behavior. The modding
solution, therefore, should incorporate the concepts of agent behavior that directly relate
to IPs After invedigaing agent behavior, this chapter then explores the current meth

odsto produce IP's, and then looks at MIPS and what new thingsit brings to the solution.

Agent Behavior

Negotiation between agents is captured in the behavior of the agent with regard to
gimuli. In some respects, therefore, the concepts of agent behavior are used as a subset
of the concepts of agent negotiation; thus behavioral concepts must be identified in order
to be able to model them. The behavior of an agent may be viewed conceptudly in two
tightly coupled categories. what it does internaly, and how it responds to externa <tim-

uli.

Intra- Agent Behavior
Grgphicdly modding the expliat behavior ingde the agent is outsde the scope of
this paper. Firg of dl, each target application’s definition of an agent has different inter-
na capabilities, so by that argument it would not be possble to produce implementations
for dl target gpplications because those individud applications would have to be included

in the modding environmern.

However, the need to represent internd behaviors during negotiation is recog
nized and accounted for. The internd behavior of an agent is lumped into a sngle con
cept, and treated as a black box that may produce a finite amount of outputs. These out-
puts may then be used to further guide the negotiation just as if they were notification
from an externa source. This thess recognizes that interna behavior happens, but it is

not concerned with how it happens.

Inter- Agent Behavior
Agents communicate with each other through messages, and the sending and re-
celving of these messages are the two main concepts of inter-agent behavior. Two gener-
aly accepted standards for messaging are Knowledge Query Manipulation Language
(KQML) [12] and the FIPA Agent Communication Language (FIPA-ACL) [5]. These
standards specify certain performatives and parameters. For this particular modding ent
vironment, the FIPA-ACL is implemented as the standard for describing message sending

and recaiving, and the performatives and parameters are listed in Table 1 and Table 2.

Tablel. FIPA-ACL performatives

Performatives
accept-proposal agree cancel cfp
confirm disconfirm failure inform
informif inform-ref not-understood propose
query-if query -ref refuse reject-proposal
request request-when reguest-whenever subscribe

Table2. FIPA-ACL parameters

Parameters
sender conversation-id
reply-with in-reply-to
content reply-by
language ontology
protocol envelope

Messages are composed of these two basic components. A message is structured
with a peformative (which is required), and any number of parameters that accompany
that performative.

Conceptudly, a any onetime, a negotiating agent is doing one of three things,

Making internd decisons
Sending amessage
Wiaiting to receive amessage

The firg of these behaviors is accounted for in the agent’s internd behavior, and

the last two are the main concepts that exist in the inter-agent communication aspect of

agent behavior.

Protocol State
One way to modd negatiation protocol (or for that matter, any type of behavior)
is with a sate machine. Before continuing on this line of discusson, it is important to
differentiate letween the dtate of the negotiation protocol, and the date of the agent. The

negotiation protocol date is determined by the last message received and its content,

while the agent date is a function of the internd vaues of the agent’s varigbles. In aldi-
tion, the negotiation dtate exids separate from the interacting agents. In fact, should one

of the agents shut down, the negotiation would sill exist, and have a date.

Roles In Negotiation Protocols
There are two digtinct roles in any interaction protocol: that of initiator, and that
of responder. Take for ingtance, the smple protocol of two persons who meet on the

street, say, Jon, and Mary.

Jon: “Hello, how are you?”
Mary: “Fine. How are you?”
Jon: “Just fine.”

Then, Jon and Mary resume their paths, or decide to converse further. Jon and
Mary both knew when this portion of the conversation was over, because they had a ro-
tion of whether they initiated or responded to the conversation. Condder the following

protocol, without this knowledge.

Jon: “Hello, how are you?”
Mary: “Fine. How are you?”
Jon: “Just fine. How are you?”
Mary: “Fine. How are you?”
Jon: “Just fine. How are you?”

Mary: “Fine. How are you?”’

There would be no end to the conversation. This example, dbeit quite smple, I-

lusirates the need for negotiating parties to understand their roles in the ongoing protocol.

Literature Review

The date machine model of agent behavior is not new to agent development.
Severd papers and agent building packages point out this implementation scheme, such

as the Bond agent system [13], Zeus [14], and COOL [4].

10

The Bond Agent System

The Bond agent system defines the entire behavior of an agert (not smply the re-
gotiation portion of it) in a multi-plane state machine. In Bond, he ovedl sate of an
agent is defined by a vector of dates. Each date in this vector is comprised of severd
nodes, and the state of each plane in the state machine is defined by which node is cur-
rently active. The state of an agent changes when a node transitions into another node.

Bond dso has the notion of a drategy component. The drategy examines the
agenda of the agent, and from the current state machine information and internad agent
date determines what the agent’'s next course of action will be. The drategy component
is the Bond implementation of intra-agent behavior.

Bond's agent runtime environment interprets a wel-formed multi-plane state mex
chine defined in the Blueprint language, but currently provides no way to implement such
a machine other than coding it directly. That is, dthough the conceptuad modd of the
agent behavior is a state machine, it must be implemented using procedural code.

A negotigtion protocol in Bond is merdly one of the planes in the mult-plane state
mechine. It may be incduded aong with the other behavior which is specified with the

Bond agent development software.

The Zeus Agent-Building Toolkit
Zeus, like Bond, incorporates the behavior of the entire agent into a state machine
format: specificdly, a directed graph. Zeus agents pursue a god, and to achieve that goa
execute behavior defined dong a directed graph that best describes what they wish to do

(e.g. buy, sdl) to achieve that god.

11

Zeus agents follow a daticaly defined graph dructure. The greph that an agent
traverses is composed of what Zeus cdls nodes, arcs, and sub-graphs. Each of these parts
of the graph define behavior of an agent, and when the behavior is completed, the graph
passes the state information of the agent on to the next node or graph. The Sate informe:
tion is examined on exit of each graph part, and the results of that examination determine
what portion of the grgph will next be executed. In this sense, the agent traverses the
grgph by vigting nodes until reaching an endpoint. These graphs are predefined for al
agents, and therefore need not be implemented to give behavior to an agent.

The agent uses the date information contained within the graph to determine
whether it should converse with another agent to achieve the goa. Should the agent 1e-
quire assgtance from another agent, then an interaction protocol is used for the conversa-
tion.

In Zeus, a negotiation protocol is one of te graphs executed in the Saticdly de-
fined graph dructure. At agent congtruction time, the agent developer specifies the rego-
tiation protocol, and then compiles the agent. Therefore, to produce a negotiation proto-

cal in Zeus, agraph must be produced.

Initiator-side protocol

Al
Sl) | >
C A2 '\8_2/ >

Respondent-side protocol

Figure 3. Sample Zeusimplementation of the contract net protocol

Table3. Description of Initiator in Figure 3

Node/ Ar c Description/Transition Condition

S1 Identify agents that can perform goa

Al Sel ect subset of agents that can perform goal and who
are co-workers (check ' /A

A2 Sel ect subset of agents that can perform goal and who
are peers (check ' A

S2 Send request for proposals to selected agent and await
responses

A3 Check that an accept response has been received

S3 Done

Table4. Description of the Responder in Figure 3

Node/ Ar c Description/ Transition Condition

S4 Eval uat e cost
Send accept message
Awai t response

Ad Contract award nmessage received

S5 Done

Figure 3 and Tables 3 and 4 show an example conceptud implementation in the
Zeus framework. Although when a Zeus agent executes it traverses a well defined graph
(smilar to a dstate mechine), the negotiation protocol itsef is but one node in the graph.

This means that, ke Bond, the Zeus negotiation protocol is conceptudly a state machine,

but it isimplemented through procedura code.

The Coordination Language (COOL) implemerts negotiation through what it
terms “conversations.”

the concept for visudization and conceptua organization

COOL

representation of a COOL conversation.

13

COOL dso views negotiation as a finite state machine, and uses

Figure 4 displays the FSM

Wiew conversation statu:

Figure 4. Visualization of aCOOL conversation.

COOL accepts a dructured definition of the state machine as behavior. An a-
vancement (in comparison to the previous implementations) is that the implementation
code of a COOL protocol is not procedural, hut is instead reminiscent of a state machine.
That is, a state machine syntax is used, rather than a procedura layout of case statements.

Figure 5 exemplifiesthe COOL syntax for cregting the behavior shownin Figure 6.

14

(def-conversation-class ‘custoner-conversation
:name ‘customer-conversation
:content-1language ‘i st
: speech-act -1 anguage * kqmnl
cinitial-state ‘start
:final-states ‘(rejected failed satisfied)
:control ‘interactive-choice-control-ka
crules ‘((start cc-1)

(proposed cc-13, cc-2)
(working cc-5 cc-4 cc-3)
(counterp cc-9 cc-8 cc-7 cc-6)
(ask cc-10)

(accepted cc-12 cc-11)))

Figure 5. COOL structured language to describe the agent behavior of Figure 6

Like Zeus, COOL provides a state machine visudization of the agent behavior a
runtime. However, like each previous implementation it provides no development tool

that alows the agent designer to conceptudly mode the conversation and produce from

that modd the implementation code.

rejected

Skt counterp

11
A

accepted

workmng

satisfied

rejected

Figure 6. State machine graphical representation of a COOL behavior

15

Other Approaches

It is not feesble to examine in this thess dl of the available agent packages and
ther shortcomings. However, it is worth noting that there exis more packages than
Zeus, Bond, and COOL, but that the three of these are a representative sample of the
agent packages that consider the interaction protocol as an integral part of agent behavior.
Other packages are very smilar to hese three in that they provide functiondity to input
an interaction protocol into the behavior of the agent.

However, there are packages such as Mad-Kit [6], which do not even recognize
the problem of the interaction protocol. In packages such as this, dl of the kehavior is
implemented with low level computer languages such as Java or C/C++, and any interac-
tion protocol must be added as a layer by the developer. It is the god of this thess to
provide a solution both for agent packages of the kind that acknowledge the presence of

an interaction protocol, as well asthose that do not.

Literature Conclusons

There are severd implementations of agent frameworks that use state machines to
describe behavior. However, the usage of FSM in the development of behavior (specifi-
cdly, negatiation) is lacking. Some of the gpproaches accept a structured definition of
the behavior sate machine, but none of them provide a tool with which to take advantage
of the conceptud nature of a dtate machine (i.e. graphicadly associate states and transi-
tions). The best any of these approaches do is to alow the agent developer to visudize
the current state of the conceptua state machine using custom designed tools for that q-
proach. To implement any of the behavior, the modeler is forced to think on a low-leve

to produce the high-levd effect.
16

Furthermore, even if one of the approaches had provided such a tool, any imple-
mentation code the solution would have generated would be limited to use within that

agent environment.

MIC and MIPS

The solution to the problem of modeling agent interaction protocols must
visudly present the solution during devel opment,
present domain concepts that are specific to interaction protocols, not the
agent environments, and
produce implementation code to dlow the agent environments to utilize
the graphicaly specified behavior.

MIC and MIPS enable a tool to satidfy dl three criteria The nature of a graphica

modding language didies the fird criterion. The next two are sdidfied through the

modding paradigm, and the interpreter.

The Paradigm
The Graphicd Modding Environment (GME), devdoped a Vanderbilt Univer-
gty, is a tool that dlows for the development of Doman Specific Modeling Environ-
ments (DSME's), and domain spedific modds. The paradigm defines the entities and
relaionships of a paticular domain, and maps those alowed entities and relationships
onto generic modding concepts within the GME [15].
Together with the GME, the paradigm is the specification for a grgphicd modd-

ing language. This language has a syntax, with “performatives’ such as models, aomic

17

parts, connections, references, and attributes for al of these peformatives. For an in-

depth study of modeling concepts, please refer to [15], and to Appendix A.

The Interpreter

The interpreter’s role in the solution is the production of agent implementation
code. The paradigm defines the syntax of the modding language, and te daic semant
tics (via condraints), but it is the interpreter that gives semantics to the organization of
the actud modd ingances. Just as textud programming languages have a compiler, the
graphicad language has an interpreter.

When defining the interpreter, behavior is associated with each concept and its e
lationships with other concepts. At interpretation time, the graphicd mode is trandated
into an implementation within the domain (in this case, agent negotiation).

The interpreter is the part of the modeling process that is not domain independent.
In fact, to produce implementations for n agent environments would require n interpreta-
tions of the modds. However, if the modding environment is used often, then the time
necessary to write the interpreter is a smal price to pay compared to the time that would

have been spent writing the implementation code.

18

CHAPTER I

MAPPING CONCEPTS INTO THE MODELING ENVIRONMENT

To create the paradigm for the agent negotiation domain, the domain concepts
must be andyzed and mapped onto the most appropriate modeling concept (e.g. modd,
atom). This chapter assgns domain concepts to modding concepts, and gives judtifica
tion for the assgnment. The paradigm is the MIC portion of the solution, and once the
domain concepts are established in it, then it isa domain-specific modding environment
(DSME).

There are two levels of mapping that must take place in order to have a complete
domain specific modding environment for agent negotiaion. The fird leved revolves
around precisgly defining the concepts of agent negotiation. The second level deds with
designing the modding environment is such a way that & modding time, the environ
ment provides avisud representation of a state machine.

There is ds0 an overdl mapping that can give visudization to the interaction be-

tween roles in a protocol, and provide for abehavior thet links protocols to one another.

Aqgent Negotiation Concepts

As described in Chapter 11, there are three basic concepts in agent behavior: intra
agent behavior, sending a message, and waiting on a message. The names by which the
paradigm refers to the concepts are in bold type, and are capitdized throughout the re-
mainder of the document when they refer to types within the paradigm, and not just types

within the agent domain. Figure 7 shows an abbreviated class diagram of the basic con

19

cepts of the paradigm. For the complete diagram that was used to synthesize the para-

digm refer to Appendix C.
Protocol
[}
Receive 243
0. Node
TypeOfParticipant: (Initiator | Responder)
« PackageName: String Arc
Create.Java: boolean

o
]

+ 4

Send [}
Performative: String
Parameters: String 0.7 ;
DefaultAction
4 Graph
Action 0.
CodeText: String
Returns: String
o 0.
Succeed Fail

Figure 7. Simplified UML class diagram of the paradigm

Intra- Agent Behavior

Intra-agent behavior is treated as a pre-exigting black box that can produce a finite
st of results. Since there is no containment or sub-behavior associated with intra-agent
behavior, it ismodeed as an atomic part, and given the name Action.

There are two attributes of an Action atlom. The firs is the code that is associated
with the execution of this Action & runtime. This code is highly implementation specific,
and is the mogt time-consuming part of the protocol to compose. The second attribute of
an Action aom is the finite set of return vaues that the code has. These return vaues

will be used to determine the next stage of the interaction protocol.

20

Action
Multiple
Dutcomes

Figure 8. The Action atom may have multiple result paths

The return vaues are somewhat more implementation independent than the code
attribute of an Action. They represent on a more conceptud leve the logicd function of
the Action, and the possble answers a which the Action may arive based an the internd
date of the agent and the dtate of the negotiation. For example, regardiess of how an Ac-
tion is implemented, if it is to perform the task of evauating a proposd, it will return val-
ues of “acceptable’ or “unacceptable” and perhaps some variant on these. The visud
mode of the interaction protocol is unaware of the logic of the Action, but is aware the
Action will produce a finite set of answers, as shown in Figure 8 The negotiation proto-

col cares only what the Actionstell it.

Sending a Message
The concept of #nding a message is aso represented as an atomic part, and is re-
ferred to in the paradigm as Send. Each time a message is sent, it must have as dtributes
the performative type, as wel as any parameters that accompany that performeative. The

listing of performatives and parameters was discussed in Chapter 11.

21

Receive » E‘
LY requesi I—

.ﬂ% oo inform
’ (=

propose

Figure 9. Sending different messages based on message receipt type

Recelving aMessage

The recaipt of a message is a0 consgdered as an atomic part in the domain, and is
referred to as a Receive. A Receve aom sgnifies that the interaction protocol is await-
ing a message. However, as more than one message may be plausble a any one time,
the logic to take a certain path based on a certain message lies rot with the Receive atom,
but with the trangtions out of it. That is, a Receive can have multiple behaviors, depend-
ing on its input, so the attributes of the Recealve are located in the connections emandaing
from it. Figure 9 digplays the behavior design of sending different performatives based

on the last message type received.

Returning the Result
After the negotiation is completed, it must have a way to notify the cdler of the
degree of success of the negotiation. Therefore, two more atoms exist, cdled Succeed,
and Fail. These two atoms are aptly named, and in genera represent the end of the nego-
tigtion specification. Figure 10 provides an example usage of the Succeed and Fal at-

oms.

22

S —

Fail

:—I_,@

Succeed

Figure 10. The Succeed and Fail atoms signify the end of the behavior definition

Agent Negotiation Node
All of the concepts that make up a negotiaion are contained in a modd. The re-
gotition node is the container of dl the behaviord atoms of the negotiation. Therefore,

the node is represented as a modd, cdled a Node, with the Action, Send,

ModifiedResponder M=l E3
M arne: IModifiedHespnndeiNnde Ilnstance Aspecl:llnte[actinng ;!IF'rnlocoIs
.,
Froposal
E c EwvalCapabilities
; FindReplacement propose
refuse

|
2] ®
). | Succeed

inform

Figure 11. An example Node model, complete with parts.

23

Recalve, Succeed, and Fail atoms as parts. See Figure 11 for an example of the sructure
of the parts within a Node.

The Node model has severd attributes. There are ®verd housekeeping attributes,
such as the name of the class which is to be created, and whether or not to create an out-
put file a dl for this Node. The reason for this latter attribute, is that there may aready
exis a Node to which this protocol may want to link; however, there would be no need to
generate code for that Node.

As previoudy mentioned, each agent taking part in a negotiaion must have some
concept of what role it plays in that negotiation (e.g. initiator or responder). Therefore, a
role dtribute with the two possble vaues of “Initiator” and “Responder” is part of the
Node mode!.

The lagt atribute is a liging of dass-wide variables for the Node. This exists ke
cause saverd of the Actions may wish to share date information. Therefore, globd vari-
ables are permitted, and specified in the Node. These variables may be as specific as the

Action code, and must therefore be expressed textudly.

State M achine Concepts

A sate machine framework was designed that used as dstates and trangtions the
concepts from intra-agent and inter-agent behavior. The framework follows the concept
of a Medy date machine [16], with the States identified with waiting for a message, and
the behavior of sending a message or performing some action within the state of the agent
viewed as a trangtion The dtate machine framework gives graphical presentation to the

interaction protocol, which is structured using the domain specific concepts.

24

Possible States and Trangtions

For the purpose of this thesis, he only concept of waiting in agent negotiaion is
that of the Recaive. It is possble to wait on as many types of messages as a send mes-
sage action could send (in accordance with the FIPA-ACL). The trangtions extending
from the wat message therefore have an dtribute that specifies the performatives upon
which this Recelve atom is waiting. At modd building time, for each performative type
for which the Recelve is waiting there will be exactly one trandtion extending from the
Recelve. The trangtions of the state machine are mapped into the moddling environment
as connections. Fgure 9 displays two trangtions from a Receive aom, one named “re-

quest”, and the other “cfp”.

Possible Negotiation Outputs

Along the trangtions from Receive to Recelve (date to date) are the outputs. The
two types of outputs are the Send and the Action atomic parts. Of these two atoms, only
the Action has attributes for its connections. There is a specific behavior that is associ-
ated with the Send atom, and only one transtion is possble once the Send atom is proc-
esed in the gate machine. However, the Action aom may direct the state machine in a
number of finite directions (specified by its return variable attribute, as described in
Chapter 1l and displayed in Figure §. Therefore, the connections coming from an Action

aom contain as an attribute the name of the return vaue which directs the state nachine

aong this path.

25

The Default Action
As with any state machine, the entry point must be specified. The atom to specify
this is the Default Action atom, shown in Figure 12. There may be only one Default Ac-
tion per Node, and it may connect to any atom in the Node. That atom to which the De-

fault Action pointsis executed upon entry.

DefaultAction

Figure 12. The Default Action

The Overdl Protocol

The Protocol contains one or more Nodes. As the Protocol is a container, it is
therefore represented in the paradigm as a modd. Each of the nodes represents arole in a
negotiation. There is no redriction on how many Nodes that a Particular node may inter-
act with. In the Protocol mode there are two aspects. the State Interconnection aspect,
and the Graph Layout aspect. Also, severd a@oms exis in the Protocol modd that play

the role of structuring the Protocol layout, namely the Arc and the Graph.

The State Interconnection Aspect
In theory each Receve trangtion in one role (either initiator or responder) should

have a corregponding Send in the other role. Otherwise, the protocol could end up in a

26

gae from which it would have no exit.

In this aspect, therefore, it is possble to match

dates and trangtions in one Node to those within another Node as shown in Figure 13.

L cip
L

r,;.,t_u

Fail i

i)
ace o
Suc =}

ModifiedInitiator

.f}:l¢

-] pro -

Lref a_civg—— |
v Fai Suc iw |

Binf

ModifiedResponder

Figure 13. The State Interconnection aspect of a Protocol containing two Nodes

It is the respongbility of the modeler to teke advantage of this feature of the mod-
eing environment; it is not gtrictly enforced or congtrained by the paradigm. The reason
for this is that it is not an error to have Receives that do not match to a Send, because of
implementation details, or specid requirements of the interaction protocol. Hence, this
ability to match aids in omisson erors, but does not redtrict the modeler’s ability to cus-
tom craft the agent negotiation behavior.

Sends and Receives are visudized in this aspect as ports in the Node modd, to d-
low for interconnection. Naturaly, since the interconnection of Sends and Recelves in
this aspect is not enforced, there is no semantic meaning for the connections (dthough

they may be used later for modd verification).

27

The Graph Layout Aspect
This aspect has an overdl semantics of the behavior d an agent with respect to its
interaction protocol. The aspect is provided to give the modeler the opportunity for code
reuse of predefined or dready modeled negotiation protocols. For example, if the falure
of one protocol necesstated the execution of another, it could be specified in this agpect.
Smilar to the Node, the organization of this aspect of the Protocol modd is smilar to

that of a sate machine. The aspect visudizes Arcs and Graphs. Refer to Figure 14 for an

example of the Graph Layout aspect.
- =
Lo ContractNetlhitiatorGraph
ModifiedContractNetnitiatorGraph - !
O | 00 - . (LI Rl R R R et St
Suc |] !] <
5 Suc ®eF--:----: :-“" *Def Fﬂil:i:
L R NP S : : o ' o
o Fai g : c"_ 2 : ' Gt hrittatorDone
i buy_direct b? ' ! ok H
ModifiedInitiator | ;
E ______________ _______________________________E : Suc_y,----:
L hd Fai v
CheckQOutput
Initiator
Suc i Suc ® i
P Fai B re Fai)
! ModifiedResponder E'.".'.’.E- Responder
= ContractNetResponderGraph

ModifiedContractNetResponderGraph

Figure 14. The Graph Layout aspect of a Protocol model, containing several Nodes, Arcs, and Graphs

The Arc
The Arc atom dlows the connection between the return vaues of one Node, and
the Default Action of another node. Because the result of the negotiation is the output of
a Node, the Arc aoms must be sophidticated enough to examine the state information

passed from the negotiation to determine whether the negotiation was a success or a fail-

28

ure. After dl, success to one protocol may be falure to another. Therefore, as the m+
plementation of an Arc must be fairly complex, it is modded smilar to Actions, in that it
provides a text attribute that alows for the input of Code. The Arc must return a boolean
vaue of dther true or fase. Examples of Arcs in FHgure 14 are “buy_direct”, “Check-

Output”, and “ok”.

The Graph

The Graph is an aom that groups together one or more Protocols and Arcs and
combines them into one conceptua protocol. The Graph is a conditiona controller [15],
which means that it operates like a set container (see Appendix A for a detailed descrip-
tion of a conditiond controller). The purpose of the Graph is to define what Node mod-
eswill actudly be implemented in code as interaction protocols.

The Grgph must own not only what Node models are to be included, but aso the
Arcs that connect them. This is to dlow for reuse of Arcs between Graphs. For example,
two Protocol models may have more than one Arc that connects them. The different Arcs
may have different logic, and one Graph may wish to use one Arc as opposed to another.
This degree of control is offered when the Graph aom conditiondly controls both the
Arcs and the Nodes.

To specify which Node modd is the first in the interaction protocol, the Graph
connects to the Default Action port of that Node model. An example Grgph in Figure 14

is “ContractNetInitiatorGraph”.

29

Condtraints
Condraints are enforced by GME a the user’s request, and are expressed when
the paradigm is defined. One of the condraints of this modding environment is that e-
actly one default action is dlowed per Node, and it must connect to one and only one
aom.
Another condraint is that a send atom must have exactly one connection coming
out of it (to exsure that the State machine is deterministic). See Appendix C for a lising

of dl the condraints.

30

CHAPTER IV

MAPPING THE DOMAIN CONCEPTSINTO AN IMPLEMENTATION

The domain concepts, now in place in the paradigm, congtitute a domain-specific
modeling environment. The contents of the doman-specific modding environment
(DSME) dl have a semantic role in the representation of the agent nteraction and nego-
tigion domain. The implementation of the interaction protocol, which is the output of the
MIPS portion of the solution, is assgning a semartics to the modes created in the DSME
by trandating them into code.

The mechaniam that performs this trandation is cadled an interpreter. Since the
output of the mode interpreter is specific to the agent implementation, there must be one
interpreter for every agent package. The mapping of concepts to behavior, whether
through direct trandation or inference of semantics, is different for each interpreter.
Therefore, for the sake of brevity, only one interpreter architecture will be described: the

one for the Zeus toolkit.

Zeus In More Depth

As mentioned in Chapter 1I, the behavior of Zeus agerts is defined through a d-
rected graph. The runtime environment that traverses this graph and its nodes is known
in Zeus as the coordination engine. The coordination engine handles examining the defi-
nition of the graph, determining what node to execute, and executing that node. The re-

gotiation protocol is one of the nodes in this graph, and it is defined in its own sub-graph

31

of the main grgph. It is necessary, therefore, to wnderstand the components of a Zeus
graph, and what it must contain before a negotiation protocol may be produced in Zeus.
Some of the names of the components of the Zeus solution coincide with those of

the paradigm, so the Zeus concepts are written in itaics.

The Coordination Engine
The Zeus coordination engine is a manager of as many different Graphs as the
agent is currently executing. Each Graph relays state information to the coordination e

gine, and the engine responds by putting some Graphs to deep, and waking up others.

CoordinationEngine

managez
q

Graph

shares info
o=

Figure 15. The coordination engine, and its association with Graphs

The coordination engine manages the control flow of the behavior through a
structure defined in the Graph files, as shown in Figure 15. This structure is a state ma-
chine liging of Nodes, Arcs, and other Graphs that define further behavior. Each of these
types of classes has a specid definition within Zeus, but the thing they have in common
isthet they dl implement the function exec().

The coordination engine cdls the exec() function of whatever portion of the d-
rected graph is next. Control is returned from that Node, Arc, or Graph when the exec(

) function returns a vdue. Depending on the vaue returned, the coordination engine e

32

ther continues to cadl methods of this same object, or it moves on to the next portion of
the graph. Arc and Graph implement exec() only, but Node aso implements the con-

ti nue_exec() method.

The Node Class

The Node is the most powerful member of the coordination grgph layout, Smply
because its continue_exec() method dlows it to be executed until some internd Sate
changes. The coordination engine will cal the exec() method of the Node class when
the Node is firs executed. Theresfter, the coordination will cdl the conti nue_exec()
method until it returns a specific vdue (OK, or FAIL). Before returning one of these two
teemind values, the continue_exec() method may return the vaue wWal T, in which
case the coordination engine will put this graph to deep until anew message is received.

The Node may access the dtate of the agent through a specid context variable that
initidizes the Node to an executable state. Through this context, the Node can access
such things as the ontology, resources, community knowledge, as wel as the globd agent

system time and other MAS attributes.

Necessary Interpreter Outputs

Recdl tha in Zeus, the negotiation protocol is a subditution into the behavior
graph of the Zeus agent. Examining current protocol implementations yidds the follow-
ing ligt of requirements.

The negatiation is defined in a Graph class, which consists of at least one
Node class, and may be specified as a directed graph of severa Node

classes.

33

The Node dlass must extend the Node class defined by Zeus, which means
it must implement two methods, exec(), and conti nue_exec()
The Node dass getsitsidea of the MAS through a context variable which
is passed to the Node through its constructor
The Node class must present asits output a variable of type Local D-
St ruct , which isdefined by Zeus
These are the mgor requirements for the output classes. The most involved of
these classes is undoubtedly the Node class, becauseit isin the Node class that the logic

of the interaction is captured.

L ow-Level Mapping of Paradigm Concepts to Behavior

Some concepts in an ingance of the DSME directly trandate to implementation
code with certain semantics, regardless of the context in which the concepts are placed.
These are the basic concepts, which were described in Chapter 111 in the paradigm. Table
5 gves a brief description of the mapping that takes place for these models and atoms
explans some of the lower levd behavior of the interpreter that produces the find im

plementation.

Table5. Mapping of conceptsto low-level outputs

Paradign con- | GME L ow-level mapping

cept Type

Protocol Model The Graph dass in the Zeus environment.

Arc Atom A trandtion from one Node to another in the Graph

Node Model The Node dassin the Zeus environment

Send Atom Writes a gring to execute a Zeus APl method in the
Node of which this Send Message is a child. The
actua name of the method depends upon the context
in which the Send a@om is placed. However, the &-
tributes written remain congtant, and ae obtained
from the atom.

Recave Atom Returns control of the agent to the coordination en

gne, who will notify the Node when it has a new
message. Upon receipt of a message, the Recave
aom trandates into a patern matching if-el se-
el seif dructure. The clauses for the matching di-
rectly correspond to the attributes of the comnections
coming out of the Recelve atom.

Action Atom In the protocol implementation, writes itsdf in a de-
cigon format Smilar to thet of the Receive atom.

1. It executes the code associated with it as an
attribute.

2. It interprets the return vaue of the ®de, and
determines (based on the attributes of the
connections coming out of it) which logicad
path to take next.

The code of the action is written as a private function
of the Node dlass of which it is a child, and it returns
an integer vaue.

Succeed Atom Sets vaues of the output varigble, and returns con
trol of execution to the coordination engine.
Fal Atom Sets vdues of the output variable, and returns con-

trol of execution to the coordination engine.

High-Levd Mapping of Modd Instances Through Context

The high-levd mapping of the implementation derives semantics from syntax, in-

fers semantics from visudization techniques, and draws upon implementation specific

35

information of the target environment to determine other high-level outputs. This map-
ping produces target agent environment spedific implementation details such as what val-
ues to place in the class congtructor, whether low-levd mappings like Send and Recelve
should be arranged in a specid way, etc.

If the interaction protocol modding environment were designed specificdly for
Zeus, then the domain concepts would be Zeus specific. In this case, there would be a
low-level mapping from the concepts to the output. However, the objective is to produce
Zeus specific code from a non-Zeus specific environment, and therefore, some of the i+
formation that Zeus requires may need to be inferred from the modding environment.
Therefore, it is convenient to examine the requirements of Zeus, and then examine the

modeling environment to see how to best extract the required information fromiit.

The Node Class
There are severa high-level concepts within the Zeus Node class that require spe-
cid techniques in implementation. The man caveats ded with the dructure of the two
methods of the class, exec(), and continue_exec(). When the Zeus runtime engine
executes a protocal, it cdls the exec() method. After exec() is cdled, the Zeus run

time environment cdls the conti nue_exec() method until the negotiation protocol re-

turns acertain vaue.

M apping Behavior to the Class Methods

The modeing environment has no way to directly map whether the runtime en

gine should be cdling the exec() or continue_exec() method; if it did, then the

solution would be more Zeus-dependent than is perhaps necessary. However, in

36

lution would be more Zeus-dependent than is perhaps necessary. However, in examining
how the runtime environment cdls the negotiation protocol, a solution may be found.

The negotiation protocol is put to deep each time it wats for a message, and
when an incoming message is received by the Agent, it notifies the protocol by caling
the exec() or continue_exec() method. The key for the implementation is that after
the fira Receave the agent runtime environment will cdl continue_exec(). When
writing the Java output file, then, the interpreter redizes that everything will be written
indde the exec() method, until a Receive atom has been written. After that point, the

logic isinserted into the scope of thecont i nue_exec() method.

FPrepargFirstCip

EvalProposal [l

Figure 16. Changing of destination method from exec() toconti nue_exec()

Figure 16 uses a digoined arrow to represent the changes of the class methods.
As shown by the darker lire, the exec() method recalves dl logic patterns until the first

Receive. As the coordination engine will now be cdling the cont i nue_exec() method,

37

it is the appropricte dedtination for dl logic, even when looping through logic that was

executed dready intheexec() method.

Mapping Didog Ingde the Class Methods

The other mgor high-level concern within the Node dass is that of continuing the
conversation. In Zeus, it is the new di al ogue() and conti nue_di al ogue() methods
that smultaneoudy send a message and sSgnd the runtime-environment to set this nego-
tiation to deep. As may be expected, the new_di al ogue() and conti nue_di al ogue(
) methods are gmilar to the exec() and continue_exec() methods in thet the higher
levels of Zeus interpret the methods differently. However, conceptudly to Zeus it is 4ill
the same thing; sending a message and giving up control of the process (going to deep).
As a dde note, this is aother judtification of the concept of modeling protocols on a high
level, and dlowing the interpreter to perform the implementation.

Smilar to the execution methods, therefore, the context of the Send icon with re-
lation to the Default Action and the fird Receive is conddered when deciding which
method to write. Another condderation is the role of the Node in the protocol. Only the
intiator role begins a new conversation, because the conversation dready exists (i.e. has
a conversation identification number within the Zeus environment used for message rou-

ing) when the responder role recaives the message.

Didog Exigence In a Zeus Negotiation Protocol

In Zeus, the conversation dready exists when a responder protocol is created.
This implies that the message has dready been recaived by the responder Agent. Natu-
raly, the Agent does not expect another message immediatdy; it must first provide some

logic to the negatiation. However, dl agent implementation architectures may not work
38

like this, in fact, some Agent architectures require that an Agent dways be ligening for a
cetain kind of message, while in Zeus, it is assumed for the beginning of a protocol thet
a certan kind of message must have aready been received. Therefore, in the responder
Node of a Protocol, the Recelve atom has no £mantic meaning until a least one message
has been sent.

Rather than create an error if a Receive atom is placed before the first send, the
Zeus interpreter merely derts the user that the atom is out of context, and will therefore
be ignored in the output code. In this way, the same modd may be implemented later
using another agent architecture as the target output, and the mode will not have to be
redrawn, but can use this Receive atom that Zeus deems of no consequence.

The interaction protocol is dso awakened when a message has not been received
for a certain timeout period, 0 the timeout connection of the Recelve aom is trandated

as an execution of the timeout logic of the Node class.

Managing Multiple States Through a Single Entry Point

The entry point to the Node when a message is received is in one and only one
place (the continue_exec() method). This can provide a problem if a negotiation
wants to have two or even three separate message waiting states. To solve this problem a
gpecid mapping takes place. Inthe continue_exec() method, the very firgt logica
block examines the message that was just received. Therefore, dl possble messages this
protocol can receive are listed in this logica block. Figure 17 shows two Recelve atoms
that together expect four possble messages. Therefore, in the logic block at the begin
ning of the continue_exec() method the message received will be tested againgt dl

four possble typesto seeif there was a match.

39

Receive
’y

[requesi Propose

inform

Figure 17. Multiple Receives are mapped to the same logic block

The Graph Class
The Zeus Graph class directly trandates from the modd. The state machine e-
semblance of the Graph Layout aspect of the Protocol modd lends itself well to the con-

gruction of the Graph class, which islaid out as adirected graph in the Graph Java class.

Overdl Interpreter Logic

The basc dgorithm of the interpreter is a combination of traversng the possible
connection paths from atom to atom in a Node modd, and trandaing the context of each
of those atoms into an acceptable Zeus method cal with proper semantics The pseuw

docode for the interpreter isfound in Figure 18.

40

Loop through each Protocol node
Get all nodels and atoms in the nodel
I f Node node
Wite Node cl ass
Create output file and wite header and constructor
Decl are gl obal vari abl es
Decl are return values of Action atons
Fill in exec() nethod
Setup local and timeout variables
Get the Default Action of this Node
Wite the translation of atoms connected to the Default Action
And its further connections until the first Receive is encountered
Fill in continue_exec() nethod
Setup local and timeout variables
Setup received nessage retrieva
Get all Receive atons, and wite out their logic matching
Wite the translation of the atons connected to the
Recei ve atom and its further connections until either
Anot her receive is encountered, or a Succeed/Fail is witten
Get all Action atons
Wite the Code attribute of each Action atomas a private method
If Graph atom
Wite Graph class
Create output file and wite header and constructor
Wite directed Graph specification
Get all nenbers of this conditiona
Get first Node
Fol I ow out put connections contained in the conditional of each Node
to Arc, and wite string that expresses the direction of the
control flow
If Arc atom
Wite Arc class

Create output file and wite header and constructor
Wite Code attribute as the exec() nethod of this class

Figure 18. Interpreter pseudocode

41

CHAPTERV

SAMPLE PROTOCOL IMPLEMENTATION

Graphing The Contract Net Protocol

The contract net (CN) protocal is a high-level protocol for communication among
distributed objects [17]. This formaized communication is Smilar to the common re-
quest for contract bids that inditutions publish. Following is a textuad description that

describes the CN.

Contract Net Description

A player in the contract (the initiator) publishes the desire to ether buy or sdl a
commodity. The bids that contractor hopefuls submit for this buying and sdling are
cdled “proposals.” Thiscal for proposasis often abbreviated asa“cfp.”

Once a contractor (responder) redizes the opportunity for business, he examines
his resources, and determines whether or not to respond with a proposal. Should the re-
sponder provide a proposd, then the cfp/proposal process may continue. The initistor
can cary on negotigtion conversations with more that one responder. However, wanting
to receive the best posshble ded, the initiator reveds information only relevant to that -
sponder, and dl negotiations are kept confidentid. The initistor eventualy determines
that the proposda is acceptable, or that a solution will not converge in the dlotted time for
negotiation, and notifies the responder that the negotiation has either succeeded or failed.

Once a proposal has been accepted, al other negotiating parties are notified that propos-

42

ds are no longer considered, and that the negotiation has completed. At that point, the

initiator provides the responder with the contract.

Formdization of the Description
Usng the textual description provided, the next dep is to examine the description
and determine which parts of the description map directly to Sends and Receives, and
which parts map as Actions. At the same time, careful attention must be paid to which
atoms will be gpplied to the initiator, and which to the responder. It is best to list those
behaviors of the initiator separate from those of the responder, to facilitate the divison.
Tables 6 and 7 lig dl of the possble Send, Receive, and Action behaviors of the initiator

and responder roles of the CN.

Table 6. Initiator behavior in the CN

Initiator
Atom type Function
Send Cip
Accept
Recave Propose
Refuse
Action Prepare the cfp
Evauate the proposa
Acceptable
Unacceptable

43

Table7. Responder behavior inthe CN

Responder
Atom type Function
Send Propose
Refuse
Recave Cip
Accept
Inform
Action Evaluate capabilities
Capable
Not capable
Prepare the proposal

Graphica Implementation of the Formdization
The hightlevel portion of the grgphicd component makeup is complete. The next
dep is to integrate these components into the modding environment using the devel oped
paradigm.
For a legend of the modding concepts used and their representative icons in this

paradigm, see Figure 19.

Action

»
Drafmubiiction

®

Succeed

Fail :J

Figure 19. Legend of the parts used when building the model of aprotocol.

Fird, the initiator and responder roles are implemented in Node models. Figure
20 shows the graphicd implementation of the initistor role of the CN. Note that some
extra message types are dlowed to be received in this implementation, emanating from
thet r_n_p Receve aom. Those four letter are mnemonics for ti meout , ref use, not -
under st ood, and propose. The propose connection extends to the EvaProposa icon,
while the other three go to the Fail icon. The reason for the additional connections is to
dlow for the interpretation of exception conditions (which are not present in the textud

description at the beginning of this chapter).

Imtiator [_ O]

Mame; !Initiatul lNDdE llnstance Aspect; I Interactions _'_iIF'mtDcaIs

—

Fail

Succeed

EwvalProposal

Figure 20. The contract net initiator

Note the “EvaProposal” icon, and that connections go to the “accept” and “Pre-
pareFirsCfp” icons. Those connections have attributes with vaues that directly corre-
spond to the return vaues set in Figure 21. When the EvaProposd aom is written to

code, then, it will take either the“ACCEPTABLE’ or “UNACCEPTABLE" path.

45

i Attributes of EvalProposal

Code Text

int nEwal = evaluator evaluateMest] ds)
ziitch] nEval |

caze StrategyE valuator MESSAGE:
return UMACCEPTABLE:

caze StrategyE valuator OK:

return ACCEPTAEBLE

caze StrateqyE valuator FAIL:
default:

return -1;

All Return Values, separated by CR

ACCEPTABLE
IMACCERTAELE

Cancel l

Figure 21. The exit connections of the “EvalProposal” action.

In addition to the possble retun vaues the “EvaProposd” Action aom aso
contains the code attribute associated with the behavior of this action This code segment
is compliant with the Zeus API, and a certain degree of familiarity with Zeus is necessary
to be proficient in coding the text atribute. However, the Zeus drategy library is ac-
cessed with a farly smdl amount of code, and the EvalProposad atom produces both nec-
essay conceptua vaues of the possible outputs of the evauation of a proposa with only
asmal amount of specific code.

Each Action atom in both the initistor and responder roles has a smilar code

fragment (dthough, some of the fragments are more complex than this one). The re-

46

goonder role is illustrated in Figure 22, and it reflects the formdized representation of the

Reszponder =] E3

M amme: iHespnnder iNu:ude IImtance Aspect:ilnteractinm L"F'rotnc

Proposal

o propose

EvalCapabpilities

—@

Succeed

responder in Table 7.

Figure 22. The contract net responder

lgnored Atoms
The responder defined in Figure 22 graphicdly implements a concept that Zeus

ignores. the expectation to receive a message before the first send. In Chapter IV it was
noted that when Zeus calls a protocol, then a conversation dready exists, and the re-

sponder must contribute to thet conversation before expecting any messages in return.
Therefore, the Receive aom named “C’ is for conceptudization only; no Recelve code is

written toward the reception of a message while in this state. Instead, code production

begins with “ Eva Capabilities”

a7

Other Semantic Inferences

Because of the posshility of many conversations going on & one time between
one initiator and many responders, there must be one centrd location where a decison is
made that the negotiation is completed, and that it is time to choose a winner. In Zeus,
each conversation is spawned off into a new thread, so that if there are ten responders,
then there exig ten threads each participaing in the initistor role When dl of these
threads complete, then the runtime environment of the initistor chooses a winning re-
sponder Agent, and sends the “accept” message to that agent, not to its responder thread.
Therefore, dthough conceptudly the “accept” message goes to the negotiating party, the
negotiation protocol Node never recavesit.

Since everything after sending an “accept” is outsde of the scope of the initiator,
once the “accept” message is encountered al atoms are skipped until a Succeed or Fall
atom is found. Likewise, since the responder negotiation protocol does not actualy send
the “inform” message to the initiator, any Sends of performative type “inform” will be

skipped.

Completing the Protocol Definition
With the nodes completely defined now, the next step is to completdy define he
protocol in terms of the Zeus runtime engine, by usng the Graph aom In the Protocol
mode, Graph Layout aspect, the Nodes should connect to a Graph atom that describes

the name of the output protocol.

48

ContractMet =]

Mame; IEontractNet lF'n:utDcoI !Instance Aspect: I Graph Layaout L!

ContractNetlhitiatorGraph

Suc |

e Fai |
Initiator

Sue |

H Fai_|

Responder

ContractNetResponderGraph

-

1| | v

Figure 23. Graph Layout aspect of the Contract Net Protocol model

In Figure 23 the modd depicts a Graph atom named “ContractNetlnitiatorGraph’
that owns a Node caled “Initiator” through conditional control. Below, in the same fig-
ure, is the corresponding Graph atom for the responder role. Once dl of the Node models
are owned by the gppropriate Graph atom, the specification for the entire negotiation pro-

tocol iscomplete.

Checking Completeness
In order to ensure that the usage of sends and receives by each role in the negotia-
tion is accurate, the State Interconnection aspect of the Protocol model enables the mod-
eler to visudly check whether the sends and recelves match up, based on the date of the

negotiation. Figure 24 shows this aspect of the Protocol mode.

49

ContractNet Mi=i E3
M armne: IEontractNet iF'n:utcu:oI |Instance Aspect:IStateInterconnection_ﬂ
-
Qefp
? ace H——
&t r
. - L
Initiate
&
i pro Q-
* a_c &
L Oref il
s R Suc
Fal
Responder
Jhd

Figure 24. Matching the Sends and Receivesin the State | nterconnection aspect

There is a Receive atom that does not have a corresponding Send in this case the
“inform” Recalve aom in the “Initistor” modd. As previoudy mentioned, however, this
atom plays no pat in the Zeus output anyway, SO the missng correspondence is not an

error.

Synthesizing and Examining the Output |mplementation

When the modd is interpreted, Java source files are produced. One note as to the
format of the source files is that the files are written without tabbed logicad arrangement.
This decison was made based on the observation that incorporating such logic into the
interpreter would be an extraordinary amount of work, conddering there are severa Java
environments that provide code formatting as a function of the developing environment.
However, the interpreter does not currently format the output, so it is recommended that
before examining any output code for correctness that the code be formatted.

The following code segments are aportion of the output file for the initiator Node

modd.

50

if(msg_type == "propose")
{

int intl = Eval Proposal ();
switch(intl)

{
case ACCEPTABLE:
Is.result = ds;
output = 1Is;
return OK;
case UNACCEPTABLE:
int int2 = PrepareFirstCfp();
switch(int2)

{
case DONE:
engi ne. conti nue_di al ogue(l s. key,
| s. agent,
"cfp”,
eval uat or. get Goal s()
)
return WAIT,
defaul t:

return FAIL;

defaul t:
return FAIL;
}

Figure 25. Output representing connection named “ propose”

Figure 25 illudrates the output of one connection of a Receive atom in the “Initia-
tor” Node moddl. Notice the state machine format tirough which the logic traces fird to
“EvaProposd,” then to “PrepareFirstCip,” and findly to the continuation of the didog
through the sending of a “cfp” message. Figures 26 and 27 show the implementation
code of the “EvaProposd” and “PrepareFirsCfp” subroutines, respectively. For a com:
plete liging of al source codes generated by the interpreter for this example, please refer

to Appendix B.

51

protected int PrepareFirstCip()
{
int nEval uated;
if(bFirst)
{
nEval uated = eval uator.evaluateFirst(Is.goal,info);
bFirst = fal se;
el se
{
return DONE;
swi tch(nEval uated)
{
case StrategyEval uat or. MESSAGE:
return DONE;
defaul t:
return -1;
}
}

Figure 26. Action code segment, asimplemented by the Zeusinterpreter

protected int Eval Proposal ()

{

int nEval = eval uator.eval uateNext(ds);

switch(nEval)

{

case StrategyEval uat or. MESSAGE:
return UNACCEPTABLE;

case StrategyEval uator. OK:
return ACCEPTABLE;

case StrategyEval uator. FAIL:

defaul t:
return -1;

}

Figure 27. Action code segment, asimplemented by the Zeus interpreter

Linking to the Agent Runtime Environment

The Zeus runtime environment links to the output file of the Graph dom. For the

CN initiator ole, this would be the Java file named Contract Net | ni ti at or Gr aph. j ava.

After the generated Java source files are compiled, then the environment is ready to in-

clude the newly implemented interaction protocol.

52

CHAPTER VI

CONCLUSIONS AND FUTURE WORK

The modding and program synthess environment presented in this thess does
three mgjor things.
1. It providesagraphica language for the expresson of models.
2. It provides an agent domain gpecific medium in that graphica environ-
ment in which to expressinteraction protocols. And findly,
3. It trandates the graphicd modds which are in the language of the agent
domain into compilable code that the agent runtime system can utilize.

The target user of this modding environment may come from ether extreme of
the agent programming world. The experienced agent programmer can use the graphica
language to lay out his concept, and then fill in the Action atoms with the implementation
code. Then, the graphicad mode provides a sdf-documenting explanation of the logic of
the protocol, as wdl as foundation materid for understanding the idiosyncrases of the
agent environment for which the protocol was developed €.g.,, Zeus does not require cer-
tain messages to conclude the negotiation).

The other extreme is the experienced protocol developer who has no experience
with agent development. He may use the modeling environment to lay out a rough sketch
or sets of ideas of the way in which a protocol should work, perhaps even from the mes-
sage matching aspect of the Protocol mode only, and then pass dong the idea to a more

experienced programmer to complete the modd implementation.

53

Continuing Research

A more revised implementation of the modding environment is currently under
devdopment. The new DSME is essentidly the same as the Node modd of the paradigm
presented in this thess. The objective in the newer verson was to remove as much su-
perfluous information as possble, and return to the lightweight agent concepts of sending
and recalving messages, rather than include information about dringing together protocol
nodes and connecting them with a graph object.

The in-production paradigm includes the ability to add together protocols, but it
implements that logic by placing the entire logic into one file, rather than separate ones.
An interpreter is under development to trandate modds of the new paradigm into MadKit
agents[6].

MadKit is a different type of agent package than Zeus. One advantage of Zeus is
that it provides an infrastructure for multiple conversations that incdudes a message
router. This dlows an agent to respond to different kinds of messages by darting new
threads and executing the coordination graph most appropriate. However MadKit is a
amplified agent package that provides methods for sending and recelving messages, but
no build in message router to ensure that the correct portions of the agent get the right
messages. The solution is to provide a message router that is built on top of the MadKit
software through the interpreter. Otherwise, messages could get logt, and the state of the
interaction would be out of synchronization

Once the Zeus interpreter is ported for use with MadKit, the modding environ-
ment will be proven to handle the interpretation of models to multiple agent environ

ments.

Future Work

The modding environment presented in this thess, as wel as the one under cu-
rent development, present the implementaion of internd agent behavior as a didog that
takes as its parameter agent architecture specific code. Because of the nature of express-
ing this interna behavior in the language of the specific target environment, the modeing
environment cannot produce compilable code for two different agent environments from
the same GME project. This is because in producing the output code, if the same code
attributes were written for the Action atoms, then at least one of the agent environments
would not compile.

The degant way to solve this problem is to design an agent interaction layer. This
proposed layer would serve as an APl letween the interpreter and the agent environment.
Certain condructs available in adl mgor languages (e.g. string, int, bool) would be avall-
able, as wdl as loop dructures (while, for) and if-then-dse datements. The mogt difficult
portion of this implementation would be to provide methods for accessng the internd
agent dructures, such as the ontology, dStrategy functions, etc. The reason this has not
been attempted is due to its complexity. Until a formd agent APl is developed by FIPA
or some other governing body, this is not an achievable research task, and even then, the

modd could be said to fully support only that standard.

55

APPENDIX A

MODELING

This gppendix is presented to familiarize readers with the terms and concepts that
surround any discusson of modding. The terms herein described are specific to the
Graphicd Modding Environment (GME), developed a Vanderbilt Universty, and are
taken from [15].

Model Integrated Computing (MIC) through the GME provides an environment in
which to grephicdly modd domain specific problems. Domain concepts are described in
a modding paradigm, which is the definition of the entities and reaionships dlowed in
the given domain. Insde the paradigm are one or more categories, which are containers
of sets of modds, usudly in hierarchica form.

The basic modeling objects are atoms and models. An atom is the dementary do-
ject of a modd, and is dso known as an atomic part. An atom is represented with an
icon, and may contain a predefined set of atributes, which may be given vaues by the
user at modd building time.

A modd is a compound object. Models may contain other objects, and may aso
contain relationships between those objects dong with ways to visudize them. Modds
may contain other models, aoms, references, connections, and conditionals, and may
visudize them with aspects All types of objects (modes, atoms, references, connec-

tions) may have attributes.

56

Atoms contained in modds may be displayed through the model as a port. This
means that when the modd is viewed as a pat within another model, then the atoms
within that modedl are viewable.

A reference is dmilar to a pointer in a programming language, in that it points b-
ward a red object in GME. References may point to atoms, models, or even other refer-
ences. A port may show up n a mode reference, at which time it is known as a refer-
ence port.

Connections are relationships between aoms, atom references, ports, and refer-
ence ports. Only parts which cannot contain other parts may be the ends of a connection.

A conditiond is dmilar to a set. There is a controller (or a set of controllers) to
which the st “belongs’, and then a set of parts and connections that are members of the
conditional. A conditiond is a way to associate parts together without cluttering the dia

gram with connections.

57

APPENDIX B

CONTRACT NET OUTPUT CODE LISTING

There are four main output files associated with the synthess of the implementa
tion code of the CN protocol in Zeus. Two Node files (Initiator.java and Re-
sponder . java), and two Grgph files (Contract Netlnitiator G aph.java and Con-

tract Net Respondent . j ava).
Initiator.java

package zeus.isis.ip;

inmport java.util.*;

import zeus.util.?x*;

i mport zeus.concepts. *;

import zeus.actors.*;

i mport zeus.actors.rtn.*;
import zeus.actors.rtn.util.*;

public class Initiator extends Node {
protected static final double DELTA TIME = 0.25
public Initiator() {
super("lnitiator");

/I menmory useful for backtracking

private StrategyEval uator eval uator = null
Engi ne engi ne

Del egati onStruct ds;

Pr ot ocol DbResul t i nfo;

Goal goal

Local DStruct |Is;

bool ean bFirst = true

/1 G obal variables defined as a node attribute {
/1} end of attribute defined globals vars

/111 Return value constants fromall subroutines {
protected final int DONE = O;
protected final int ACCEPTABLE =
protected final int UNACCEPTABLE
/111 } End

0;
= 1;

protected int exec()
{

engi ne = context. Engine();

I's = (Local DStruct)input;
info = (Protocol DbResult)Is.any;

58

goal = (Goal)ls.goal.elementAt(0);

doubl e ct = goal.getConfirmlime().getTime();
timeout = ct - 1.5*DELTA_TI ME;

Core. DEBUG(3, getDescription() + " Pre-timeout = " + timeout);
Core. DEBUG 3, getDescription() + " Is.gs.timeout =" + Is.gs.tineout);
if(I's.gs.tineout '=0)
timeout = Math.mn(timeout, context.now() + |Is.gs.timeout);
}
Core. DEBUG 3, getDescription() + " Post-timeout =" + tinmeout);
Time t = new Tinme(timeout);
for(int i =0; i < lIs.goal.size(); i++)
{

goal = (Goal)Is.goal.elementAt(i);
goal .setReplyTime(t);
}

msg_wai t _key = |s. key;

evaluator = (StrategyEval uator)createObject(info.strategy);

if(evaluator == null) return FAIL;

eval uator.set(context);

I's.gs.eval uators. add(eval uator);

eval uator.set(|Is.gs.evaluators);

Core. DEBUGF 3, "About to enter a GME-produced protocol (exec)...");

int intO = PrepareFirstCfp();
switch(int0)

{
case DONE:
engi ne. new_di al ogue(| s. key,
| s. agent,
"cfp",
eval uat or . get Goal s()
)
return WAIT;
defaul t:
return FAIL;
}
}
protected int continue_exec()
{
Core. DEBUG(2, "lInitiator continue_exec");

if(context.now() > timeout)

Core. DEBUG(2, "Initiator Fail: " + context.now() + " > " + tinmeout);
return FAIL;
}

ds = engi ne.replyReceived(|s.key);

String msg_type = ds.nsg_type;

engi ne = context. Engi ne();

I's = (Local DStruct)input;

Core. DEBUG 3, "About to enter a GMVE-produced protocol (continue_exec)...");
if(neg_type == "propose")

{

int intl = Eval Proposal ();
switch(intl)

59

{
case ACCEPTABLE:

Is.result = ds;
out put = Is;
return CK;

case UNACCEPTABLE:
int int2 = PrepareFirstCfp();
switch(int2)

{
case DONE:
engi ne. conti nue_di al ogue(l s. key,
| s. agent,
"cfp",
eval uat or . get Goal s()
)
return WAIT,;
defaul t:
return FAIL;
defaul t:
return FAIL;
}
else if(nmeg_type == "timeout")

return FAIL;
else if(nmeg_type == "refuse")
return FAIL;
else if(msg_type == "not_understood")

return FAIL;

if(msg_type == "tineout")
return FAIL;
}
else if(nmeg_type == "infornl')
Is.result = ds;
out put = Is;
return OK;
/1 should never get here
return FAIL;
}
protected int PrepareFirstCfp()
{
int nEval uat ed,;
if(bFirst)
{
nEval uated = eval uator.evaluateFirst(|s.goal,info);
bFirst = fal se;
}
el se
{
return DONE;
swi tch(nEval uated)
{
case StrategyEval uat or. MESSAGE:
return DONE;
defaul t:
return -1;
}
}

60

protected int Eval Proposal ()

{
int nEval = eval uator.eval uateNext(ds);
switch(nEval)
{
case StrategyEval uat or. MESSAGE:
return UNACCEPTABLE;
case StrategyEval uator. OK:
return ACCEPTABLE;
case StrategyEval uator. FAI L:
defaul t:
return -1;
}
}

61

Responder.java

package zeus.isis.ip;

import java.util.x*;

i mport zeus.util.~*;

i mport zeus.concepts.*;

i nmport zeus.actors.*;

i mport zeus.actors.rtn.*;
import zeus.actors.rtn.util.*;

public class Responder extends Node {
protected static final double DELTA TIME = 0. 25;
public Responder() {
super("Responder");

/I menmory useful for backtracking

private StrategyEval uator evaluator = null;
Engi ne engi ne;

Del egati onStruct ds;

Pr ot ocol DbResul t i nfo;

Goal goal;

G aphStructgs;

bool ean bFirst = true;

/1 d obal variables defined as a node attribute {
/1} end of attribute defined globals vars

/11l Return value constants fromall subroutines {
protected final int |S_CAPABLE = O;

protected final int NOT_CAPABLE = 1;

protected final int DONE = O;

/111 } End

protected int exec()

{
engi ne = context. Engine();
gs = (GraphStruct)input;

info (Protocol DbResult)gs. any;
goal (Goal)gs.goal.elenmentAt(0);

evaluator = (StrategyEval uator)createObject(info.strategy);
if(evaluator == null) return FAIL;

eval uator.set(context);

gs. eval uators. add(eval uator);

eval uator.set(gs.evaluators);

Core. DEBUG(3, "About to enter a GMVE-produced protocol (exec)..."

timeout = goal.getConfirmlinme().getTinme();
msg_wai t _key = gs. key;

int int0 = Eval Capabilities();
switch(intO)

{
case NOT_CAPABLE:
engi ne. conti nue_di al ogue(gs. key,
gs. agent,
"refuse",

62

eval uat or . get Goal s()
)
return FAIL;
case | S_CAPABLE:
int intl = Proposal ();
switch(intl)

{
case DONE:
engi ne. conti nue_di al ogue(gs. key,
gs. agent,
"propose",
eval uat or . get Goal s()
).
return WAIT,;
defaul t:
return FAIL;
}
defaul t:
return FAIL;
}
}
protected int continue_exec()
{

Core. DEBUG 2, "Responder continue_exec");

if(context.now() > timeout)

{
Core. DEBUG(2, "Responder Fail: " + context.now() + " > " + tineout);
return FAIL;

}

ds = engi ne. replyReceived(gs.key);
String msg_type = ds.nsg_type;
engi ne = context. Engine();

gs = (GraphStruct)input;
Core. DEBUG(3, "About to enter a GME-produced protocol (continue_exec)...");

if(msg_type == "cfp")
{

int int2 = Eval Capabilities();
switch(int2)

{
case NOT_CAPABLE:
engi ne. conti nue_di al ogue(gs. key,
gs. agent,
"refuse",
eval uat or. get Goal s()
)
return FAIL;
case | S_CAPABLE:
int int3 = Proposal ();
switch(int3)

{
case DONE:
engi ne. conti nue_di al ogue(gs. key,
gs. agent,
"propose",
eval uat or . get Goal s()
)
return WAIT,;
defaul t:

return FAIL;

defaul t:
return FAIL;
}

63

}

else if(nmeg_type == "timeout")

{
return FAIL;
else if(msg_type == "accept-proposal")
{
gs.confirmed = true;
gs.confirmed_goal = ds.goals;
out put = gs;
return OK;

/1 should never get here
return FAIL;

protected int Eval Capabilities()

{

}

return | S_CAPABLE;

protected int Proposal ()

{

int nEval uat ed;
if(bFirst)
{

nEval uated = eval uator.eval uateFirst(gs.goal,
bFirst = fal se;

}

el se

nEval uated = eval uat or. eval uateNext(ds);

switch(nEval uated)

{

case StrategyEval uat or. MESSAGE:
return DONE;

defaul t:
return -1;

}

info);

R I S T R R R T R R

*

*

*/
/1 This is an automatically generated file fromthe GMVE.
/1 This is file 'ContractNetlnitiatorG aph.java

package zeus.isis.ip;

ContractNetInitiatorGraph.java

The contents of this file are subject to the BT "ZEUS" Open Source

Licence (L77741), Version 1.0 (the "Licence"); you may not use this file
except in conpliance with the Licence. You may obtain a copy of the Licence
from $ZEUS_| NSTALL/licence.htm or alternatively from

http://ww. | abs. bt. conY proj ects/ agents/zeus/licence. htm

Except as stated in Clause 7 of the Licence, software distributed under the
Licence is distributed WTHOUT WARRANTY OF ANY KIND, either express or
inmplied. See the Licence for the specific | anguage governing rights and
limtations under the Licence

The Original Code is within the package zeus.*

The Initial Devel oper of the Original Code is British Tel ecormunications

public limted conpany, whose registered office is at 81 Newgate Street,

London, EC1A 7AJ, England. Portions created by British Tel ecomunications
public limted conpany are Copyright 1996-9. All Rights Reserved

THI'S NOTI CE MUST BE | NCLUDED ON ANY COPY OF THI S FILE

inmport java.util.x*;

i mport zeus.actors.rtn.*;
inmport zeus.actors.rtn.util.*;
i mport zeus.util.*;

public class ContractNetlnitiatorG aph extends Graph {

private static final String[][] entry = {
{"zeus.isis.ip.lnitiator"}
}

public ContractNetlnitiatorG aph() {
super (" ContractNetlInitiatorG aph",entry,"zeus.isis.ip.lnitiator")

65

R I S T R R R T R R

*

ContractNetResponderGraph.java

*

The contents of this file are subject to the BT "ZEUS" Open Source

Licence (L77741), Version 1.0 (the "Licence"); you may not use this file
except in conpliance with the Licence. You may obtain a copy of the Licence
from $ZEUS_| NSTALL/licence. htm or alternatively from

http://ww. | abs. bt. conY proj ects/ agents/zeus/licence. htm

Except as stated in Clause 7 of the Licence, software distributed under the
Licence is distributed WTHOUT WARRANTY OF ANY KIND, either express or
inmplied. See the Licence for the specific | anguage governing rights and
limtations under the Licence.

The Original Code is within the package zeus.*.

The Initial Devel oper of the Original Code is British Tel ecormunications
public limted conpany, whose registered office is at 81 Newgate Street,
London, EC1A 7AJ, England. Portions created by British Tel ecomunications
public limted conpany are Copyright 1996-9. Al Rights Reserved.

THI'S NOTI CE MUST BE | NCLUDED ON ANY COPY OF THI S FILE

*/

/1 This is an automatically generated file fromthe GMVE.
/1 This is file 'ContractNet Responder Graph. java'

package zeus.isis.ip;

inmport java.util.¥*;

nport zeus.actors.rtn.*;
nport zeus.actors.rtn.util.*;
nmport zeus.util.*;

public class ContractNet Responder Graph extends Graph {

private static final String[][] entry = {
{"zeus.isis.ip.Responder"}
}.

r;ubl ic Contract Net Responder Graph() {
super (" Contract Net Responder Graph", entry, "zeus.isis.ip. Responder");

66

APPENDIX C

PARADIGM SPECIFICATION

The paradigm that defines the DSME used in this thess 5 described by the proto-
col.edf file The file was crested using the metamodding environment in use a Vander-
bilt Universty. The UML dass diagram that was used in the metamodeling environment
is in Figure 28. The complete paradigm is disolayed in the printout of the file prot o-
col . edf, and the condraints are described using the MultiGrgph Congraint Language

(MCL) inthefilepr ot ocol . ntl .

67

weibelp sse(D NN 81 |dwo) gz 8B4

=]

bug :s1apwnIRg
bumg :apog

ﬁ uunjanygemnads
0| !
01
0 p| [PUOHIpUOydein
25 PR R
ydeug
o]
4 ais buuys (awopy
i uuoovao 191y UUD)BpON[eUIIE | T
bums -aweNsbejovd [T ; H o -
buing :suonipuodisa) 3 1 : uuojnoawl |
ary
< ofsro|em
........
[Buns : sjpog]
[Buing - Aayoe(g] .
- (asnja1 | asodoid 0|
i eg paamng | pomsiapunjou | wiopn | dgo 4
] . | ;esodosdTydaooe) tadA)
: E buing juapon
uuoguonaY puag aAladay
|0]
2E « 0 " e—
UUDDIG0 | [QUIUa | oo ¥ ;
s falid 3
m.u_m_._or_u:_.._.:m._. colee Rt
: buinsg :sfeqo|n <0
buins (sumay ||_|H
Bumns weajapony— | ||| 0 e | Lo .
(UuoSuoIEVINE}ad | + TOTY [BbBssaH | :
Tal
T =t
L | BF Y, + + bumng awey
i UBa|00q ‘BAR[A)RAL) uuoauod
- buuys (awnpyaboyoel =
Rk uowIneeg 40| (1apuodsay | 1oyeniv]) Juedouequoadi) R
1 3PON i
i) T 1
e L1 " uuadiy
[euoHpuouUaby 3 w !
Y " Lolos s
1 1)
L0
buuyg -awepnaboyoed 1090014 buyg rawep
waby uibague) uuo)bspy ysiuiquen 153 asaguuo)

68

Protocol .edf

<< Generated EDF (Protocol.edf) >>
Dat e: Wednesday, March 01, 2000
Time: 14:04:58
Meta interpreter informtion:
Version: 1
Buil d: 51
Date: 01.06.00

B
~ e~ e~~~ — — ~

par adi gm Prot ocol ;

const {

Pr ot ocol , Code, Ret ur ns, Acti on, Cont ent,

ACCEPT, CFP, | NFORM NOT_UNDERSTOOD, PROPOCSE,

REFUSE, MessageType, Dat aKey, Goal s, Send,

Recei ve, Def aul t Acti on, Succeed, Fai |, ConnDesc,

PackageNane, Arc, Agent, Graph, Connecti onNane,

Por t Conn, Node, Parti ci pants, ArcToDAConn, Ter mi nal ToAr cConn,

Agent Condi ti onal , GraphCondi ti onal , GraphLayout, | NI T, RESP,
TypeParti ci pant Menu, G obal s, Creat eJava, MsgConn, Def aul t Acti onConn,
Ter mi nal NodeConn, Par amet er s, Acti onConn, Al | Conn, Speci al Rul eConn,
Ti meout Conn, Prot ocol s}

atom Action "Action" {
icon "action.bm";
attrs {
Code : page "Code Text" (15 30) "";
Returns : page "All Return Values, separated by CR" (4 30) "";
}

atom Send "Send" {
icon "send_nsg. bmp";
attrs {
Content : field "Message content: " "";
MessageType : menu "Message Type"
{

"Accept - Proposal " ACCEPT defaul t;
"cfp" CFP;
"I nforn' | NFORM
"Not Under st ood" NOT_UNDERSTOOD;
"Propose" PROPCSE;
" Ref use" REFUSE;
b
Dat aKey : field "Data Key" "";
Goals : field "Goals" "";
}

at om Recei ve "Receive" {
icon "rcv_nsg. bmp";

at om Def aul t Acti on "Defaul t Action" {
icon "default.bnmp";

at om Succeed "Succeed" {
icon "succeed. brmp";

}

atom Fail "Fail" {
icon "fail.bnmp";

}
at om ConnDesc " ConnDesc" {
icon "conndesc. bmp";
}
atom Arc "Arc" {
icon "arc. bnmp";
attrs {
PackageName : field "Java Package" "";
Code : page "Code Text" (15 30) "";

69

}

}

at om Agent "Agent" {
icon "agent. bmp";

}
atom Graph "Graph" {
icon "graph. brmp";
attrs {
PackageName : field "Java Package" "";
Code : page "Code Text" (15 30) "";
}

model Protocol "Protocol" {
Participants "Statelnterconnection" {
conns {
PortConn { 1 solid line arrow }
{ Node Receive -> Node Receive }
{ Node Receive -> Node Send }
{ Node Send -> Node Receive }
{ Node Send -> Node Send }
attrs {
ConnectionNane : field "Nanme of Connection" "";

b
}

parts {
Agent : Agent;
Node : Node;
}

}
Gr aphLayout " Graph Layout" {
conns {
ArcToDAConn { 1 dashl_1 line arrow }
{ Arc -> Node DefaultAction }
{ Graph -> Node Defaul tAction };
Term nal ToArcConn { 1 dashl_1 |line arrow }
{ Node Fail -> Arc }
{ Node Fail -> Graph }
{ Node Succeed -> Arc }
{ Node Succeed -> Graph };
}
conds {
Agent Condi ti onal Agent:

{1}
{ Node Arc };
GraphCondi ti onal Graph:
{ Term nal ToArcConn ArcToDAConn }
{ Node Arc Graph };

}

parts {
Agent : Agent inherited;
Arc : Arc;

Graph : Graph;

Node : Node i nherited;
}
}

}
model Node "Node" {
Participants "Interactions" {
attrs {
PackageName : field "Java Package" "";
TypePartici pant Menu : menu "Participant Type"

"Initiator” INIT default;
"Respondent" RESP;
b
Gl obals : page "d obal Variables" (4 30) "";
CreatelJava : toggle "Create Java File" true;
}
conns {
MsgConn { 1 solid line arrow }
{ Action -> Send }

70

{ Send -> Action }
{ Action -> Receive }
{ Receive -> Action }

attrs {

ConnectionNane : field "Name of Connection" "";
b
PortConn { 1 solid line arrow }

{ Send -> Send }
{ Send -> Receive }
{ Receive -> Send }
{ Receive -> Receive }
attrs {
ConnectionNanme : field "Nane of Connection" "";

1
Def aul t Acti onConn { 1 dashl_1 line arrow }
{ DefaultAction -> Send }
{ Send -> DefaultAction }
{ DefaultAction -> Receive 1}
{ Receive -> DefaultAction }
{ DefaultAction -> Action }
{ Action -> DefaultAction };
Ter mi nal NodeConn { 1 solid line arrow }
{ Send -> Succeed }
{ Send -> Fail }
{ Receive -> Succeed }
{ Receive -> Fail }
{ Action -> Succeed }
{ Action -> Fail }
a

ConnectionName : field "Nanme of Connection" "";

ActionConn { 1 solid line arrow }
{ Action -> Action }
attrs {
ConnectionNanme : field "Nane of Connection" "";

Code : page "Code Text" (15 30) "";
Paranmeters : page "Parameters" (4 30) "",

All Conn { 1 solid line arrow }
Send -> ConnDesc }
ConnDesc -> Send }
Receive -> ConnDesc }
ConnDesc -> Receive }
Action -> ConnDesc }
ConnDesc -> Action }
Def aul t Action -> ConnDesc }
ConnDesc -> DefaultAction }
Succeed -> ConnDesc }
ConnDesc -> Succeed }
Fail -> ConnDesc }
ConnDesc -> Fail };
Speci al Rul eConn { 1 dashl_1 line arrow }
{ Receive -> Action }
attrs {
Code : page "Code Text" (15 30) "";

P e Laon et Late Lt La Rt Yam Yt Yo Rt

Paraneters : page "Paranmeters" (4 30) "";
b
Ti meout Conn { 1 dashl_1 line arrow }
{ Send -> Succeed }
Send -> Fail }

{ Receive -> Succeed }
{ Receive -> Fail }

{ Action -> Succeed }
{ Action -> Fail }
attrs {

ConnectionName : field "Nanme of Connection" "";

b

71

parts {
Send : Send i nk;
Receive : Receive link;
Action : Action;
Def aul t Action : DefaultAction |link;
Succeed : Succeed |ink;
Fail : Fail link;
ConnDesc : ConnDesc;
}

}
Gr aphLayout " Graph Layout" {
parts {
Fail : Fail link inherited,;
Succeed : Succeed |ink inherited;
Defaul t Action : DefaultAction link inherited,;
}
}
}
category Protocols "CategoryPart"” { Node Protocol }

72

Protocol.mcl

Generated MCL (Protocol.ncl)
Dat e: Thursday, July 20, 2000
Time: 10:11:40

~——
~——

constraint ArcFronmConstraint()
priority=0
"An arc nmust have exactly one 'From connection." {
parts("Arc")->forAll(a2 | a2.connectedFrom()->size() = 1)

on (connect_event, create_event, close_event, delete_event)
constrai nt SendQut put Constraint ()

priority=0
"A send nmust have one and only one output connection"
model s("Node")->forAll(n | n.parts("Send")->connectionsTo()->size() =1)
}
constrai nt Synthesi zedConstraint0()
priority=0

"Every Protocol -kind object nmust contain 2..* Node-kind object(s)" {
model s() - >sel ect (m m ki ndOf () =" Protocol ")->forAll (nmodel |
(rmodel . parts()->select(p | p.kindOf()="Node")->size() >= 2))

}
constraint SynthesizedConstraint1()
priority=0

"Every Node- ki nd object nust contain 1 DefaultAction-kind object(s)" {
nmodel s() - >sel ect (m m ki ndOf () =" Node") - >f or Al | (nodel
(rmodel . parts()->select(p | p.kindOf()="DefaultAction")->size() = 1))

73

REFERENCES

[1] S Franklin, A. Graesser, “Is|t an Agent, Or Just a Program? A Taxonomy for
Autonomous Agents,” Proceedings of the Third International Workshop on Agent
Theories, Architectures, and Languages, Springer-Verlag, 1996.

[2] N.R.Jennings, M. Wooldridge, “ Software Agents’, |EE Review, pp. 17-20, Jan.
1996.

[3] H.Nwana, “ Software Agents. An Overview,” Knowledge Engineering Review Jour-
nal, Vol. 11, No. 3, pp. 205-234, Nov. 1996.

[4] M. Barbuceanu, M. S. Fox, “ Capturing and Modding Coordination Knowledge for
Multi-Agent Systems” International Journal of Cooper ative Information Systems
Vol 5, No. 2, pp. 275-314, 1996.

[5] Foundation for Inteligent Physical Agents, “FIPA 97 Specification,” Part 1, Ver.
2.0, Oct. 1998.

[6] O. Gutknecht, J. Ferber, F. Michd, “The MadKit Agent Platform Architecture,”
Rapport de Recherche, Universite Montpellier, R.R.LIRMM 000xx, May 2000.

[7] G.Karsai, F. DeCaria, “Mode-Integrated Online Problem-Solving Environment for
Chemicd Enginesring,” IFAC Control Engineering Practice, Vol. 5, No. 5, pp. 1-9,
1997.

[8] G.Karsa, J. Sztipanovits, S. Padakar, C. Biegl, “Model Based Intdlligent Process
Control for Cogenerator Plants,” Journal of Parallel and Distributed Systems, pp.
90-103, 1992.

[9] E.Long, A. Migra, J. Sztipanovits, “Increasing Productivity at Saturn,” |EEE Com-
puter Magazine, August, 1998.

[10] A. Misra, G. Karsal, J. Sztipanovits, “ Mode-Integrated Development of Complex
Applications” Proceedings of the Fifth International Symposium on Assessment of
Software Tools, pp. 14-23, Pittsburgh, PA, June, 1997.

[11] J. Sztipanovits, G. Karsal, “Modé- Integrated Computing,” | EEE Computer, pp. 110-
112, April, 1997.

[12] T. Finin, et d., “ Specification of the KQML Agent Communication Language,” The
DARPA Knowledge Sharing Initiative, External Interfaces Working Group, 1992.

[13] L. Baloni, D. C. Marinescy, “A Multi-Plane State Machine Agent Modd,” Fourth
International Conference on Autonomous Agents Jun. 1999.

74

[14] J. Callis, D. Ndumu, H. Nwana, L. Lee, “The Zeus Agent Building Tool-Kit,” BT
Technology Journal, Val. 16, No. 3, pp. 60-68, Jul. 1998.

[15] A. Ledeczi, M. Maroti, G. Karsai, G. Nordstirom, “Metaprogrammable Toolkit for
M odel-Integrated Computing,” Proceedings of the Engineering of Computer Based
Systems (ECBS) Conference, pp. 311-317, Nashville, TN, March, 1999.

[16] J. Wakerly, Digital Design Principles and Practices, 2" edition, p. 468, Prentice
Hall, 1994.

[17] R. G. Smith, “The Contract Net Protocol: High-Levd Communication and Control in
a Digtributed Problem Solver,” IEEE Transactions on Computers, Vol. C-29, No. 12,
Dec. 1980.

[18] Y. Tahara, A. Ohsuga, S. Honiden, “ Agent System Development Method Based on
Agent Patterns’, Proceedings of the 21st International Conference on Software En-
gineering, ACM Press, pp.356-367, 1999.

75

ELECTRICAL ENGINEERING

MODEL INTEGRATED PROGRAM SYNTHESIS OF

AGENT INTERACTION PROTOCOLS

JONATHAN M. SPRINKLE

Thesis under the direction of Dr. Gabor Karsai

Agent based technology is an gpproach to distributed computing that employs dis-
tributed entities (or agents) to work towards a goal. These agents are the actors in a
Multi-Agent System (MAS), and often communicate directly with each other, and not
through a generd controller. Communication dandards define Agent Communication
Languages (ACL’s), and within an ACL a smdl set of speech acts (or performatives) are
dlowed. Two agent systems developed independently may communicate with each other
if they both use the same standard ACL. The advantage of communication within agents
is tha by sharing data through messages, some emergent behavior may occur that alows
a MAS to solve a problem through negotiation. Negotiation is the relaxation of cort
graints, based on the state of the agent interaction.

Agent developers generdly define interaction protocols for negotiaion usng the
same language in which the agent itsdlf is implemented. Since most of these languages
are low-levd textud based languages such as Java or C/C++, the developer is faced with
a coding intensve task, not to mention the need to think on the level of the programming

language, as wel as the level of the find implementation. Also, if the interaction proto-

col, once developed for an agent package, were desired for a different agent package, it
would have to be implemented again from scraich.

This thess uses Model-Integrated Program Synthess (MIPS) to dlow the agent
developer to graphicaly modd agent interaction protocols, and produce from that graph-
cd modd low-level output code. Since the modding takes place on a high levd, it would
adso be possble to produce protocols for more than one agent environment using the
same modding environment. Furthermore, the graphicd nature of the description of the

protocol dlows the user to andyze the structure of the interaction protocol as a graph.

Approved Date

