

METAMODEL DRIVEN

MODEL MIGRATION

By

Jonathan Mark Sprinkle

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

in

Electrical Engineering

August, 2003

Nashville, Tennessee

Approved: Date:

__ _____________________

__ _____________________

__ _____________________

__ _____________________

__ _____________________

Copyright © 2003 by Jonathan Mark Sprinkle
All Rights Reserved

iii

Mary Margaret,

I love you, and I’m proud of you too.
Thanks for being here for me.

 Jon

iv

ACKNOWLEDGEMENTS

I give many thanks to my advisor, Dr. Gabor Karsai for being the Best All-

Around Advisor�. Gabor, without your excellent teaching skills and motivational

abilities, I would not be in the position I am today. Vanderbilt is lucky to have you, as

will be any other student under your tutelage.

I also thank very heartily the other members of my committee. Dr. Janos

Sztipanovits, for his political insight (and vision for my future career); Dr. Akos Ledeczi,

for holding my feet to the fire when it comes to sticking up for the value of my research,

and also social interactions within ISIS; Dr. Greg Nordstrom, for (as usual) providing

valuable comments in the discussion of all things metamodeling related, not to mention

being an all-around good guy to bounce ideas all-around with; and of course Dr. Doug

Schmidt, for asking the hard questions, and making me go further than I wanted to.

I also want to thank my double-e professors from my undergraduate days at

Tennessee Tech. Those were some good times. Good times.

Most importantly, thanks to my parents, Kenneth and Teresa, for never allowing

me to think that something cannot be done; and to my substitute parents, Rick and Cindy,

who served as honorary Sprinkles when asking those everyday questions that parents

should ask, like, �when are you going to finish?� And most importantly, special thanks

to Mary Margaret, for whose love and support I am most indebted.

This research was performed under the sponsorship of the Defense Advanced

Research Projects Agency, Information Exploitation Office, Model-Based Integration of

Embedded Systems project, under contract number #F30602-00-1-0580, and also the

NSF ITR on "Foundations of Hybrid and Embedded Software Systems".

v

TABLE OF CONTENTS

Page

DEDICATION... iii

ACKNOWLEDGEMENTS... iv

LIST OF TABLES... viii

LIST OF FIGURES ... ix

LIST OF DEFINITIONS ... xiii

Chapter

I. INTRODUCTION... 1

II. BACKGROUNDS... 9

Model-Integrated Computing... 9
Storage of Domain Models ... 11
DSML ... 12
Metamodeling ... 13
The Meta-metamodel .. 15
Modeler�s Intent.. 16

Domain Evolution.. 17
Driving Forces .. 17
Migration versus Transformation ... 18
Semantics versus Syntax... 20

Syntactic Migration... 21
Semantic Migration... 23

Syntax and Semantics in Evolution .. 26
Basic Types of MM .. 27

Graph-Rewriting .. 30
PROGRES... 32
GReAT.. 39
BOTL .. 45
XSL... 48

State of the Research.. 54
Database Schema Evolution ... 54

Schema Evolution Defined ... 54
Schema-Based Evolutions Emerge ... 55

Ad hoc MM Solutions... 58
MM For Well-Established Domains... 58

vi

MM For Instances of One Domain Evolution 60
Universal Language and Interchange Formats ... 62

Compilers.. 62
The CASE Data Interchange Format (CDIF) 64

Model Transformations And MM... 65
Lemesle ... 66
Milicev .. 67
Thomasson .. 70

III. A DOMAIN EVOLUTION FRAMEWORK.. 71

Justification for a Domain Evolution Framework ... 75
Overview of Components .. 79

Domain-Specific Modeling Language Definitions................................... 80
Transformation Layout ... 82

Transform Types... 83
Legal Items.. 85
Transformation Specification.. 87

Model of Computation for the Framework.. 90
Order of Execution.. 90
Control Flow ... 91

IV. DOMAIN EVOLUTION TOOL FOR METAGME POWERED BY XSLT........... 94

The GME metamodeling environment .. 95
The Container for Metamodel Definitions.. 95
Patterns and Consequences ... 97

Mapping the DEF Model of Computation onto XSL .. 99
Matching Patterns ... 99

XML Representation in GME... 101
The Isomorphism .. 103
Generated XSL.. 104

Mappings... 107
Sequencing.. 109
Tests and Cases ... 111
Paradigm Name... 112
Implementation Details ... 113

Customized Node Classes � Form .. 113
Customized Visitor Classes � Function .. 115

V. CASE STUDY .. 118

Evolution through Specialization of Domain Concept 118
Algorithm.. 120
Transforms and Output XSL... 121
Domain Models � Before and After.. 124

Evolution through Removal of Type ... 126

vii

VI. CONCLUSIONS AND FUTURE WORK.. 132

Comments on Usage .. 133
Remarks on Limitations... 133
Continuing Research.. 135

Other Meta-Metamodels and Graph-Rewriting Engines 135
Framework Enhancements.. 136

Guard Conditions for Sequence Traversal 136
Port Parameters for Creating Algorithm Libraries.......................... 137

Recommendations for Future Work... 137

Appendix

A. MODELING ... 140

B. MORPHOLOGICAL NOTATION .. 148

C. MAPPING CONCEPTS ... 150

REFERENCES ... 153

viii

LIST OF TABLES

Table Page

1. Archetypal concepts and their descriptions in metamodeling [87]........................14

2. Types of changes that require model migration. Rows 10 and 11
show that change requirements are tool-dependent in these cases28

3. Taxonomy of reviewed graph-rewriting languages ...53

4. Classification of functions [105]..149

ix

LIST OF FIGURES

Figure Page

1. Overview of Model Integrated Program Synthesis (MIPS) [3]11

2. The role of the meta-metamodel as a language developer�s tool,
and how it related to the tools of a domain developer ...16

3. Meta-metamodel basic type information for GME [82] ..29

4. (a) A pattern and its transformation rule. (b) The desired
transformation is sometimes difficult to specify unambiguously..........................31

5. The meta-metamodel for PROGRES, specified in its own
metamodeling language [20]..34

6. Example functions in PROGRES [20]...35

7. Example specification of a query and one test used in the query
body [20]..36

8. Example specification of a graph transformation [20] ..37

9. Examples of the three types of patterns in GReAT. (a) simple
pattern, (b) fixed cardinality pattern, and (c) variable cardinality
pattern ..41

10. The GReAT framework ...44

11. An example BOTL rule set, r = (r0,r1) [25]...46

12. A model fragment match [25]..47

13. Example XPath expression inside an XSL select statement..................................51

14. Functional overview of MetaIntegration Works [63] ..59

15. Instructions for ad hoc model migration during system upgrade for
Netscape Directory Server [66] ...61

16. sNet notation [77] ..66

17. An example transformation of a graph specified using the sNet
formalism [77] ...67

x

18. Example transformation overview using Extended UML Object
Diagrams [57][58]..68

19. The DSME evolution specification (∆1) and the generated model
migration executable (∆2) ..72

20. Layers of the domain evolution tool for MetaGME and XSL. Note
that the final domain evolution specification is one particular
evolution of domain models from GME Metamodel 1 (M1) to
GME Metamodel 2 (M2) ...77

21. Simplified overview of the domain evolution framework.
Comparison of this figure with Figure 20 shows the interfaces
required for a domain evolution specification to be created with the
framework ..79

22. The transformation requires the formally defined "old" and "new"
metamodels ..80

23. The class diagram of important elements of the transformation
layout..82

24. Legal items (without meta-metamodel definitions defined)85

25. Legal items specification for the UML class diagram
metamodeling language ...86

26. The Transformation Specification layout ..88

27. Test statement as described in the style of the domain evolution
framework (representative, but not actual syntax). Note that the
Cases are defined to either match or not, so they are essentially a
boolean result ...92

28. The OldClassDiagram and NewClassDiagram objects are
pointed to the MetaGME ParadigmSheet object. This denotes
that an object of type ParadigmSheet will be used to specify
the Transformation. Once again, both metamodels are of the
same meta-type ..96

29. Specializing Patterns and Consequences for use with the
UML paradigm...98

30. An example domain-specific modeling language created using the
UML metamodeling environment. The red draws attention to
object type and its dispersion throughout the paradigm and
transform, while blue draws attention to the attribute type100

xi

31. Formal mapping from a GME metamodel definition and the XML
representation of an instance of that model created using GME.102

32. Formal mapping of hierarchy in a GME metamodel to an instance
example of that hierarchy represented in XML format102

33. Formal mapping of association in a GME metamodel to an
instance example in XML format ..103

34. The isomorphic transform used in XSL...104

35. Formal mapping from a graphical pattern in a transform and its
XSL representation ..105

36. Mapping a containment pattern into XSL..106

37. Mapping an association pattern (connection) into XSL107

38. Mapping transformation specified as a named template......................................109

39. Example transformation exemplifying the translation into a
sequenced execution ..111

40. Execution example for Transformation with Test and Cases112

41. When building the class hierarchy for the interpreter, FCO and
ProxyBase (types in the UML meta-metamodel) derive from
abstract class LegalItem. This allows visitor classes to visit
LegalItem nodes and perform transforms specific to this meta-
metamodel through polymorphism in the LegalItem type114

42. Class hierarchy for the traversal of nodes in the interpreter,
utilizing the Visitor design pattern. Ghosted classes denote where
other meta-metamodels may be incorporated in other designs,
while the darkened classes show the specialization of the visitor �
initially to the GME meta-metamodel, and then to the XSL graph-
rewriting specification. Several classes are omitted for brevity116

43. The original metamodel (left) and the evolved metamodel (right)......................119

44. The sequence of Transforms to evolve the domain models121

45. Contents of the HierarchyInputs Transform ..122

46. XSL Output for the HierarchyInputs Transform (named templates)...................122

47. XSL Output for the HierarchyInputs Transform (main stylesheet
matched templates) ..123

xii

48. Contents of the DoInputs Transform ...124

49. An original domain model in the SignalFlow domain...125

50. The evolved domain model in the evolved SignalFlow domain..........................126

51. Excerpts from the existing ESML metamodel and the evolved
ESML� metamodel...129

52. Rule to migrate the ComponentProxy to ComponentType..................................130

53. The four-layer metamodeling approach [83] ...141

54. The necessary components of a DSME ...143

55. Comparison of the parts of a DSME to those of a traditional
programming language ..144

56. Mapping of a person to favorite breakfast (adapted from [59])...........................151

57. The identity map (adapted from [59])..152

xiii

LIST OF DEFINITIONS

Definition Page

1. ..19

2. ..19

3. ..20

4. ..21

5. ..21

6. ..21

7. ..21

8. ..21

9. ..22

10. ..24

xiv

LIST OF ABBREVIATIONS

BOTL � The Bidirectional Object Oriented Transformation Language

DEF � Domain Evolution Framework

DSME � Domain-Specific Modeling Environment

GME � Generic Modeling Environment

LHS � left-hand side

OMG � Object Management Group

MDA � Model Driven Architecture

MGA � MultiGraph Architecture

MCL � MultiGraph Constraint Language

MIC � Model-Integrated Computing

MIPS � Model-Integrated Program Synthesis

MM � Model Migration

OCL � Object constraint language

RHS � right-hand side

UDM � Universal Data Model

UML � Unified Modeling Language

XML � Extensible Modeling Language

XSL � Extensible Stylesheet Language

XSLT � XSL Transform

1

CHAPTER I

INTRODUCTION

One of the disadvantages of evolving a system in terms of its low-level source

code is that even a small change in the requirements of the program could necessitate

drastic changes in large portions of the code. Consider the Y2k challenge of the late

1990s: the size of the requirement change � change the year representation from two

digits to four � was small; but the risk and effort required to implement the change was

comparatively large. One approach to mitigating this disparity between code changes

and requirements changes is to provide a development environment customized for a

system expert that allows the expert to manipulate the system using concepts of the

system. The domain, or family of systems, has a set of concepts, or ontology, each of

which has a particular meaning in the domain; this ontology makes up the set of

constructs for a domain-specific language. A domain-specific language is used by a

domain expert instead of low-level code to create systems in the domain. The domain-

specific language decreases construction time and provides a specialized interface for

managing the domain concepts. This approach, called Model-Integrated Computing

(MIC) [1], can be used to apply a sort of �golden rule� to drive the development of a

domain-specific language: the size of the change in requirements should be proportional

to the size of the change in the implementation. This basic tenet correlates highly with

the metric of maintainability for computer programs: the better the rule is satisfied, the

easier to maintain the system.

2

Domain-specific language development, however, is not a trivial task. In addition

to the exploration and understanding of the domain, there is the development of the

language ontology, abstract and concrete syntax, well-formedness rules and semantics, in

addition to their representation and implementation [86]. A technique called

metamodeling can be used to easily � yet precisely � describe the syntax and static

semantics (the well-formedness rules) of a modeling language. The artifact of the

metamodeling process � called the metamodel � is generally retained in an object

database for later manipulation, and can later be evolved to create a new version of the

domain-specific modeling language (DSML) [5].

Domain models are instances of system types, and are used to represent the

structural or behavioral aspects of an existing system. The domain models are translated

into a domain artifact that is useful in a semantic domain. The semantic domain is an

ontology and semantics that can be used to describe this particular family of systems.

Thus, the semantic domain could be low-level code (e.g., C or Java), a processor

instruction set, or possibly another domain-specific language. The semantic domain is

usually cumbersome compared to a DSML so translators are created to map domain

models from a DSML onto the appropriate semantic domain while maintaining the

correct semantics of the DSML.

When a system is modified in its instantiation (e.g., if it is modified structurally or

behaviorally) then the current domain artifact no longer accurately describes the system.

In this case application evolution is required. Application evolution is performed through

modification of the existing domain models (the models of the system) to reflect the new

structure and/or behavior of the application. In this case the �golden rule� of

3

maintenance is satisfied, since all changes to the system are expressed using the domain-

specific language, not the implementation language (i.e., semantic domain). The

semantic translator (i.e., the translator from the modeling language to the semantic

domain) performs the task of ensuring that generated application in the semantic domain

reflects the intent of the modeler. Application evolution, then, is required by changes to

the system, and driven by changes to the model of the system.

The DSML is key in providing the modeler with the ability to perform application

evolution in a domain-specific fashion. Before metamodeling became a widely used

method for creating DSMLs [4][5][71][77][81][82][84][85][86][87], most such languages

were not apt to evolve quickly. One key reason for this was that it was a significant

amount of work to modify the syntax of the language, update its semantic translator, and

re-educate end-users on the usage of the language. Thus, early DSMLs were usually not

fully implemented and deployed until vetted by domain experts. While this resulted in a

language that was satisfactory for system modeling, the process of language development

was somewhat unsatisfactory in that the domain experts were not equipped with

functioning languages during the testing phase, or if they were, then any changes made

took a great deal of time. Metamodeling provided the ability to rapidly develop and

change the domain-specific language. This enabled language developers to provide rapid

prototypes of the language, and thus provide a more realistic language for use by domain

experts during the vetting process. This also enabled the deployment of language

prototypes before they had been vetted by teams of domain experts, with the expectation

that the testing and feedback would be provided over a short period of usage and time.

However, this ability to rapidly create and deploy modeling languages came at a cost:

4

changes to the language also made obsolete any domain models (i.e., models created

using the DSML) created before its update.

However, domains can � and do � change in their essential definition over the

passage of time. That is, eventually the entire family of systems change in some way,

and the entities and principles of the domain that were present in the original design may

change or may be removed for reasons outside the control of the language. The evolution

of the family of systems is called domain evolution. In this case, the DSML � as it is a

model of the domain � must be updated to reflect these changes. The system requires

maintenance on the metamodel level � resulting in an evolution of the domain-specific

modeling language. After changing these formal specifications, the metamodeling

translator is used to generate the evolved domain-specific modeling language. Domain

evolution, then, is required by changes to the domain, thus it should be driven by changes

to the model of the domain � the metamodel.

Successful evolution of the DSML is a necessary � but not sufficient � condition

of a successful domain evolution. In fact, domain evolution carries with it ramifications

that extend past the metamodel to the domain model, and generally all the way to the

semantic domain and application. The valuable portion of an MIC solution is not the

modeling language itself, which can be generated, but the body of models that is built up

by the modeler. When domain evolution is required the model databases created with the

old DSML may no longer be an accurate description of the system they once helped

implement, due to the changes required in the semantic translator and/or semantic

domain. Drastic changes may need to be made to the models such that they map to the

appropriate concepts in the semantic domain. This introduces the following conundrum:

5

�In the evolved domain, should we assume the intent of the modeler, or the intent of the

models?� Either the semantics of the domain models should change with the evolution of

the domain (respecting the intent of the modeler), or they should remain the same

(respecting the intent of the semantic domain).

In these cases, the domain models may need to be modified to be correct not only

syntactically, but also semantically. Regardless of the reason why the changes were

required, the objective is the same: for the domain models to be correct in the evolved

domain. Correct domain models have the appropriate semantics such that they accurately

describe the system in the semantic domain � which may also have changed. The extent

to which the domain models must be modified (and the algorithm to modify them) is a

function of the changes to the DSML and its mapping onto the semantic domain, as well

as possible changes to the semantic domain itself. This is discussed further in Chapter

III.

The requirement that the domain models be �correct� in the evolved domain may

be met by recreating the existing domain models using the evolved domain language.

Rebuilding models by hand is a laborious task, and prone to errors. If this method were

applied en masse it would result in a colossal waste of time and the possibility of

undiscovered bugs due to erroneous entry. As the semantic mapping of the DSML is

defined in terms of syntax patterns, it is possible to use pattern recognition to transform

subgraphs of the existing domain models into the subgraphs in the evolved domain such

that their mapping into the semantic domain is semantically correct, thus recreating the

existing domain models using a generated transformation, rather than human labor. This

6

dissertation contends that these transformations can be applied to solve the domain

evolution problem.

In order to claim a solution to the domain evolution problem, one key element

should hold true: that the �golden rule� of maintenance introduced above is satisfied �

i.e., that the size of the change to the domain is proportional to the effort required to

evolve the domain models. It is, of course, possible to write software using a low-level

or domain-independent language (e.g., Java or C++) that will handle the evolution of a

system from one context to another (a compiler is a common example), but there would

be a distinct advantage to a tool that could generate this transformation without resorting

to low-level coding.

Creating a generic evolution scheme for complex languages that gives significant

freedom to the programmer (e.g., memory indirection) or that utilize non-object-oriented

techniques for basic program execution (e.g., goto statements) is a daunting task.

However, the evolution of models created using formal methods is simpler than the

evolution of software in general due to the restricted nature of most formal methods used

to create languages. Modeling and DSMLs are convenient for creating systems in well-

defined domains because of their restrictive nature. More importantly, DSMLs are

defined using metamodels; in essence, the metamodel acts as a schema for the domain-

specific modeling language. Then, the evolution of a domain-specific modeling language

can be performed by creating an algorithm that is composed of elements from the

language metamodel. The execution of this algorithm on existing domain models to

transform them into domain models that are correct in the evolved domain is called model

migration.

7

Currently there does not exist any DSML that is customized for the development

of domain model evolution algorithms. Such a DSML would allow metamodelers who

choose to evolve a DSML to reuse existing model databases � thus saving a significant

cost of human labor. Furthermore, such a DSML that was metamodel-based (i.e., that

used primitives that were elements from the original and evolved DSML metamodels)

would strengthen the ties of the solution to the metamodels � thus providing the modeler

with elements that are most relevant to the algorithm. Finally, such a DSML should

allow the description of the evolution algorithm to be independent of whatever method is

actually used to modify the physical model database, allowing an algorithm to be applied

as a library across different modeling editors and storage formats. Given these

requirements and objectives, my thesis is,

A description of the change in semantics between an old and a new DSML is

a sufficient specification to transform domain models such that they are correct in

the new DSML. Further, the pattern that specifies the proper model migration is

driven by the change in semantics, and may be fully specified by a model composed

of entities from the old and new metamodels along with an algorithmic description

for their modification.

This dissertation details the definition, requirements, and implementation of a

DSML customized for the domain of domain evolution. The backgrounds chapter

provides some important definitions of modeling science, describes archetypal problems

that provide valuable insights into the domain evolution problem, and gives a formal

definition of the domain evolution problem. At the end of the chapter there is a review of

8

the current state of the art of mapping technology (e.g., graph-rewriting) and currently

implemented domain translation solutions.

Next, justification for and a description of a domain evolution framework is

provided. The model of computation, ontology, and interface for generic extension of the

framework are all described in this chapter. In the following chapter, a particular

instantiation of the domain evolution framework is examined. The domain evolution tool

is aimed at the MetaGME modeling paradigm, and generates XSL graph-transformation

specifications, as required by the MetaGME language.

This domain evolution tool is used in the next chapter in a case study, which

presents information on how to migrate models using the tool with an example driven by

the evolution of a domain in another area of research. The artifacts and results of the case

study are examined, and compared with theoretical domain evolution solutions created by

hand or with other state of the art tools. Finally, conclusions of the presented research,

and recommendations for further investigation are given.

9

CHAPTER II

BACKGROUNDS

A deeper understanding of the concepts and current research is required before the

thesis can be justified. The nomenclature of model-integrated computing is provided in

this section, as well as state of the art research of archetypal problems of which model

migration is a specific instance. For more information on these research subjects, please

see Appendix A.

Model-Integrated Computing

Model-Integrated Computing (MIC) leverages semantics embedded in the

concepts of a domain by applying those same semantics to formalized modeling language

primitives that correspond to domain concepts. Then a mapping is performed to

synthesize program output in the semantic domain that implements the structure and

behavior of a system in the domain. The translation of domain-specific models into the

semantic domain using MIC techniques is called model-integrated program synthesis

(MIPS).

As its own domain, MIC also has concepts that require definition before

continuing with the discussion of the background section. Although modeling and

metamodeling are extensively studied and referred to in research today, the specific

meaning of key terms and phrases can vary between researchers. To avoid confusion, the

following definitions provide context for the domain concepts of MIPS.

• CBS � Computer Based System. The CBS is modeled by domain models

10

• Domain � the realm of existence of a CBS

• Domain Model � model created using a domain-specific modeling language

• DSME � domain-specific modeling environment, a programming

environment that conforms to a paradigm

• DSML � domain-specific modeling language

• Executable Model � the artifact that is produced from the interpretation of the

domain models; written in the language of the semantic domain

• Metamodel � the model of a domain (or more specifically, the model of a

domain-specific modeling language). It defines types of models that are valid

in a particular domain (the ontology of the DSML) and their legal construction

• Model � abstract representation of an entity or system

• Paradigm � the tuple consisting of metamodel ontology, syntax, static

semantics, and dynamic semantics that makes up a MIPS environment

• Semantic Domain � the domain of the output of a MIPS environment. This

is typically another language or domain, and is one implementation language

of the CBS

• Dynamic Semantics � the meaning of models as they exist; dynamic

semantics are applied to models during interpretation in order to produce the

executable model

• Static Semantics � rules that define the well-formedness of a model, but that

are not part of the syntax (defined as constraints on parameters and domain

model structure)

11

• Interpreter � also known as a semantic translator, applies the dynamic

semantics of the domain to the domain models (also serves as the synthesizer

in the MIPS framework) and produces the executable models that operate in

the semantic domain

Model Builder

Model Interpreters

Domain Models

MIPS
Environment

Model
Interpretation

Application
Domain

App.
1

App.
2

App.
3

Application
Evolution

Meta-
Level

Translation

Metaprogramming
Interface

Formal Specifications

Domain
Evolution

Model Builder

Model InterpretersModel Interpreters

Domain ModelsDomain Models

MIPS
Environment

Model
Interpretation

Application
Domain

App.
1

App.
2

App.
3

Application
Evolution

Meta-
Level

Translation

Metaprogramming
Interface

Formal SpecificationsFormal Specifications

Domain
Evolution

Figure 1. Overview of Model Integrated Program Synthesis (MIPS) [3]

Storage of Domain Models

Domain models are instances of objects defined in a metamodel, and they are the

formal description of the CBS [3]. Allowable domain models must be defined within the

metamodel, or the model will not be syntactically correct. Also, the construction of

domain models is done with the concepts and semantics of the domain in mind, and thus

the ontology of the metamodel plays a large role in the selection of domain model types.

12

The ontology of the metamodel also plays a large role in the persistence format of

domain models.

An instance of a domain model contains instance information (true only for that

particular instance, such as attribute values, or connection information), as well as meta-

information (true for all instances of this model, such as such as how many attributes

exist, and what their names/types are). When domain models are loaded into the DSME

this meta-information is used to appropriately visualize instances, and also during

interpretation for the translation into the semantic domain.

Although at least one argument to the contrary has been presented [90], in general

it is a valid assumption that when looking at data, it is possible to obtain information

about the type of that data, since that data must be stored in terms of its type somehow.

That is, it is always true that the data is useful if its type is known, but this dissertation

assumes that the type can be inferred or derived given only the data. This assumption

will play an important role in establishing methodologies for specifying model

transformations, as discussed in Chapter IV.

DSML

Domain models are created with the ontology of the domain-specific modeling

language (DSML). This is the language used by the MIPS environment, and is written

and customized by a language expert to allow programmers to rapidly create programs.

The ontology of a DSML is crafted such that a domain expert is capable of writing

programs without a lesson in general-purpose programming. One popular way this can

be accomplished is to create a visual language, so that users need not understand

primitive language constructs to productively use the language in a relatively short period

13

of time. It is important to distinguish between a DSML and a domain-specific API. The

API is an interface to a library that can be accessed with another language (e.g., a Java jar

file or a C++ library) but is not a standalone application. That is, a shell main function

that calls the API must still be created. The DSML is free from low-level language

requirements that non-programmers find prohibitive. The goal of a DSML is to provide a

way for domain experts to leverage the power of the computer without needing to go to

programming experts when updates to the system are necessary.

Metamodeling

Metamodeling is the formal definition of the modeling concepts that may be used

to define systems within a domain. Modeling concepts are not only the actual domain

concepts (e.g., processes in a signal processing domain, or assembly lines in a factory

domain) but also standard modeling abstractions � patterns that provide a prototypical

solution to a modeling problem � directly supported by the tools. Many such modeling

abstractions exist in engineering but are often focused on a particular solution space or

sub-domain. A precept of metamodeling is the existence of a core set of fundamental

modeling abstractions that (as a set of archetypes) is adequate to express the design

concepts, notions, and artifacts used across all semantic domains. Table 1 lists the

elements of this set.

Whether each of these abstractions is represented by a first-class concept (i.e., it

may be instantiated) is left up to the metamodeling approach used. The Generic

Modeling Environment (GME) [100], which is the modeling environment used in this

dissertation, is a meta-configurable modeling environment that provides in some form the

ability to model using the concepts in Table 1. The metamodeling approach used in

14

GME promotes some of these abstractions to be first-class concepts, while the remaining

abstractions are supported through special embellishments on the basic metamodeling

constructs. Other metamodeling tools, such as DoME [84] and MetaEdit+ [85], may

choose different members of this set to be first-class objects.

Table 1. Archetypal concepts and their descriptions in metamodeling [87]

Members of the set of metamodeling archetypes (that is, the ontology of the meta-

metamodel) are instantiated in a metamodel to create an instance of an archetypal

formalism. For example, the archetypal formalism of containment can be instantiated to

Archetypal
Concept

Description

Classes Specific classes of entities that exist in a given system
or domain. Domain models are entities themselves and
may contain other entities. Entities are instances of
classes. Classes (thus entities) may have attributes.

Associations Binary and n-ary associations among classes (and
entities).

Specialization Binary association among classes with IS-A semantics.
Hierarchy Binary association among classes with �aggregation

through containment� semantics. Performs
encapsulation and information hiding.

Module
interconnection

A specific pattern of relationships among classes.
Classes can be associated with each other by
connecting their ports (specially marked atomic entities
contained in the classes).

Constraints A binary expression that defines the static semantic
correctness of a region of the model: if the objects of
the region are �correct,� the expression evaluates to
�TRUE.�

Multiple
aspects

Allows partitioning a complex model according to part
categories. Used for visibility control, but may also be
used for aggregating specific properties of models with
respect to specific concerns.

15

formalize that an Automobile can contain one or more Seat objects. The semantics of

the containment archetype immediately dictate the relationship between the parent

(Automobile) and child (Seat). This provides a rapid way in which to specify the

abstract syntax of a domain-specific modeling language. The domain-specific modeling

language is in turn used to specify the structure and behavior of domain applications [87].

The Meta-metamodel

The DSME�s language is represented by a metamodel, and the ontology used to

create that metamodel is found in the meta-metamodel. The meta-metamodel is the most

abstract of all languages in domain-specific programming. Its ontology is the

fundamental set of all objects that may be used for creation of domain-specific modeling

languages (see Table 1). Interestingly, the meta-metamodel is also self-descriptive �

meaning that the creation of the meta-metamodel may be done with the meta-metamodel

(e.g., EBNF [4]). Also, there is more than one meta-metamodel. A meta-metamodel can

be used to describe DSMEs, and can be used to describe itself, as well as any other meta-

metamodel. Any number of meta-metamodels can be used to express the syntax and

ontology of a language such as C++, but some are more convenient than others. For the

purposes of this paper, we consider that the DSME�s language, once evolved, is still

expressible using the same meta-metamodel, i.e., we will use a single meta-metamodel.

16

Domain developer’s tools

Language developer’s tools

Meta-metamodel

Metamodel

creates

represents Domain Specific
Modeling Environment

Domain model

creates

Figure 2. The role of the meta-metamodel as a language developer�s tool, and how it related to the tools of
a domain developer

Modeler�s Intent

Charles Simonyi announced in 1999 that �The Future Is Intentional� [7].

Intentional Programming (IP) [8][9] is an example of a growing trend to build software

solutions by design rather than referring to the design. All programming languages are

used to encode of the intention of the programmer (hence the original name of programs,

�codes�). Sometimes the intention is obfuscated in difficult to understand syntax (in the

case of languages like LISP) or in optimized behavior obtained by low-level instruction

(e.g., pointer arithmetic in C). MIC attempts to abstract the details of implementation and

focuses instead on the details of the design � depending on the semantic translator for

optimization and guarantee of behavior.

As a kind of IP, MIC provides an interface that is most like the design of the final

system, and transforms that design into the semantic domain through a translator or

interpreter. The abstractions of a well-designed domain-specific language are convenient

for expressing the existence of object instances in a particular domain. The structure and

17

behavior of domain objects � traditionally specified in the design, and then encoded into

the semantic domain � can be immediately translated into the semantic domain if a

semantic translator exists for the MIC domain. In this way, the intention of the system is

specified by its existence, rather than encoded into a domain-independent language.

Domain Evolution

As with any domain, the power of its domain-specific language is directly tied to

the abstraction level of the domain concepts � notably, that the more semantic meaning

attached to domain-concepts, the less time the modeler spends specifying the domain

models. In the domain evolution domain, there are many definitions and keywords used

that enable a terse discussion of the subject material with few pauses to clarify the

meaning of context-sensitive words such as �language� and �model�. This section

should clarify the meaning and reasoning behind the nomenclature used in the

discussions of domain evolution.

Driving Forces

A domain-specific modeling paradigm consists of language syntax, ontology,

static semantics, and a semantic translator (also known as dynamic semantics). Domain

models created using a paradigm are translated into the semantic domain with the

semantic translator at interpretation time. Changes to any of these key members of the

model-driven design process require an evolution of some kind, the two major types

being application evolution and domain evolution. Application evolution is outside the

scope of this dissertation, which primarily focuses on domain evolution. Domain

evolution is required by one of two reasons,

18

• if any of these members of the paradigm tuple change, or

• if changes take place in the semantic domain.

Regardless of the reason for the change, the solution is the same: to modify the

domain models such that they are correct in the semantic domain. The modification of

the domain models when required by domain evolution is termed model migration (MM).

There is a finite, and ordered, set of operations required to solve the domain

evolution problem. They are as follows:

1. Recognition of a change in the semantic domain or paradigm

2. Evolution of the ontology, syntax, static semantics, and semantic translator

3. Migration of all models

Examination of the driving forces of domain evolution (e.g., whether by paradigm

change or semantic domain change, or both) is crucial to the creation of the algorithm

used to migrate the models. This is examined in detail during the case studies in Chapter

V.

Migration versus Transformation

Since the metamodel typically undergoes an evolution rather than a revolution

during domain evolution, it is a fair assumption that the metamodel and its evolved self

are more similar than they are different. Given this precept, there are significant

advantages to pursuing a migration approach over a transformation approach. Migration

is defined as creating an evolved model database from an existing model database using

descriptions of the difference of two sets of ontologies, rather than their similarities. The

following formalization defines migration. For a detailed description of the used

functional notation, please refer to Appendix B.

19

Let δ be a domain
Let B be the boolean set

B ≡ {true,false}
Let O be a set of object types (an ontology)
Let Y be a set of syntax rules between objects o1,o2,...on ∈ O
Let Sδ be a set of semantic mapping functions to a domain, δ,

S ≡ { { s(o) } : O ª { δ-object, undefined, false } | o∈ O }
 Where a δ-object is an artifact in the δ domain.
Let Cδ be a set of static semantics (constraints) for the domain, δ,

C ≡ { { c(o) } : O ª B | o∈ O }
Let α be a paradigm, a quadruple of <O,Y,C,S>
Let α� be the new paradigm, quadruple of <O�,Y�,C�,S�>
Let M be a model database (set of domain models) conforming to

paradigm α
Let M� be M evolved to conform to an evolved paradigm, α�
Let m be any original domain model contained in the set M
Let m� be m evolved to conform to a new paradigm α�, contained in the

set M�

m-function: partial function that operates on a model, m, contained in
a model database, M, and produces either the empty set or a model m�,
which is a member of the set M�,

m-function ≡ { mig(m) : M © M� ¿ Ø }
Definition 1

Migration: total function that operates on a model database, M, and
produces a model database, M�, using a set of m-functions. In the
absence of a defined m-function for a model, m, the model is
isomorphically copied into the model database, M�,

 Migration ≡ { { mig(m) } : M ª M� |

 ∀ m∈ M
 if m ∈ dom(mig(m))
 m� = mig(m)
 else
 m� = m
 M�.insert(m�)
 }

Definition 2

The formalization states that the absence of an m-function f(m) implies that m’

will become an unchanged m. However, m’ can be a modified version of m given that an

m-function f(m) is defined. The migration approaches heavily relies on an isomorphism

operator (see Appendix C).

Transformation is similar to migration, except in the case that there does not exist

an m-function f(m). Transformation dictates that in this event m will not be placed in the

output set. Formalized,

20

Transformation: total function that operates on a model database, M,
and produces a model database, M�, using a set of m-functions. In
the absence of a defined m-function for a model, m, the model is
ignored,

 Transformation ≡ { { mig(m) } : M ª M� |

 ∀ m∈ M
 if m ∈ dom(mig(m))
 m� = mig(m)
 M�.insert(m�)
 }

Definition 3

A direct consequence of using a transformation approach is this: that a mapping is

required for all objects in the ontology.

This research claims that migration is a superior method of rewriting for the

domain evolution problem, since the absence of a function dictates the copy of an

isomorphic object to the output set. Given that domain evolution generally evolves

models between two similar metamodels, this allows the modeler performing the

evolution to specify only those differences between the two metamodels, thus

maintaining the golden rule of maintenance � that the size of the change in requirements

is proportional to the size of the effort required to implement the requirements change.

Semantics versus Syntax

Syntax and semantics are quite often distinguished as two different, yet related,

aspects of any language (visual and modeling languages included). While it is not

difficult to convince someone that these two concepts are not identical, their relationship

to each other during the model evolution solution is not quite as clear-cut. In order to

explore this further, let us examine the meaning of a semantic versus a syntactic

evolution. The following definitions and formalizations, as well as those introduced in

the previous section, apply,

21

Syntactic Transform: transforms a model, m, in the model database M
into an evolved model, m�, such that m� is syntactically correct
according to the δ syntax rules of a new paradigm

TrSYN ≡ { TrSYN(m): M ª M� | transform m into m� }

Definition 4

Syntax Evaluator: evaluates a model, m, in the model database M against
the set of syntax rules, Y, that exist within paradigm α,

Syn ≡ { Syn(m,α) : M ª { B } | c(m) }

Definition 5

Semantic Evaluator: executes the set of semantic functions for a model,
m, in the model database M, according to the domain semantics, Sδ, of
a paradigm α

Sem ≡ { Sem(m,α) : M ª { δ-object, undefined, false } | s(m) }

Definition 6

Static Semantic Evaluator: evaluates the static semantics of a model,
m, in the model database M, according to the static semantics C, of
the paradigm α,

SemSTAT ≡ { SemSTAT(m,α) : M ª { B } }

Definition 7

Semantic Transform: transforms a model, m, in the model database M into
a model, m�, such that m� is correct according to the 1. δ semantics,
2. δ static semantics, 3. δ syntax rules of a new paradigm, and 4.
previous intent of the models or modeler (as appropriate)

TrSEM ≡ { TrSEM(m) : M ª M�| transform m into m� }

Definition 8

Note that these transforms may be used either by a migration approach or a

transformation approach. In fact, the difference between migration and transformation

could also be distinguished by their ability to produce default transforms for objects not

specified: migration produces an isomorphic transform, and transformation does not.

Syntactic Migration

This is a crude method for the implementation of model migration. This method

modifies the existing domain models sufficiently (either through deletion, or a type of

22

search-replace algorithm) such that the models obey the syntactic rules of the new system

paradigm. When this takes place, we say that a complete syntactic migration has taken

place. A formalization of syntactic migration is as follows:

Syntactic Model Migration: transforms a model database, M, into an
evolved model database, M�, such that M� is syntactically correct in
a new paradigm, α�,

 Preconditions:
 ∃ m ∈ M s.t. Syn(m, α�) == false
 and
 ∀ m ∈ M Syn(m, α) == true

 MMSYN ≡ { f(M,α,α�) : M ª M� |

 ∀ m∈ M
 if Syn(m,α�) == true
 m� = m
 else
 m� = TrSYN(m)
 M�.insert(m�)
 }
 Postconditions:
 ∀ m� ∈ M� Syn(m�, α�) == true

Definition 9

There are two situations in which this technique is advantageous,

• if the required modifications are type-based, or

• if the system is in development stage, and the old domain models were not

intended for the semantic domain

One drawback to a syntactic migration is the complete disregard for the semantics

of the domain models. If syntactic migration is used to migrate domain models intended

for the semantic domain, then a domain expert must examine the migrated domain

models carefully to ensure their semantic correctness. Depending on the number of

models modified during the migration, this task may be too large to complete by hand.

Another possible problem is error on the part of the domain expert, either in ignoring or

23

misinterpreting an incorrect domain model, thus leaving a bug to be found at a future

time.

Just as a trade-off analysis is required to measure the benefits of creating a

modeling paradigm against the time required to develop one, it pays to perform a similar

analysis to justify the creation of a syntactic evolution (as opposed to a more complete

semantic migration). This decision is based on the amount of changes in each model, the

amount of labor anticipated by the domain expert after migration has taken place, and the

number of model databases that need to be changed.

Semantic Migration

This is the most sophisticated method for solving the domain evolution problem.

Semantic migration requires that the meaning of the old domain models is preserved after

the transformation, and that the new domain models conform to the entire set of static

constraints required in the new paradigm. When these two needs are satisfied, we say

that a complete semantic migration has taken place. A formal notation of this

requirement is as follows:

24

Semantic Model Migration: transforms a model database, M, into an
evolved model database, M�, such that M� is syntactically correct,
and semantically correct in a new paradigm, α�,

 Preconditions:
 ∃ m ∈ M s.t. Sem(m, α) != Sem(m, α�)
 or
 Sem(m, α�) is undefined
 or
 SemSTAT(m, α�) == false
 and
 ∀ m ∈ M Syn(m, α) == true

 MMSEM ≡ { f(M,α,α�) : M ª M� |

 ∀ m ∈ M
 if Sδ(m,α�) == Sδ(m,α)
 m� = m
 else
 m� = TrSEM(m)
 M�.insert(m�)
 }
 Postconditions:
 ∀ m� ∈ M� Syn(m�, α�) == true
 and
 SemSTAT(m�, α�) == true

Definition 10

Satisfaction of all of the requirements for semantic migration is not a trivial task.

The domain knowledge of the human programmer creating the evolution algorithm must

be extensive, as the meaning of some syntax in the old domain models must be accurately

transformed into the appropriate syntax in the new domain models that will give that

same meaning in the new domain. This is in stark contrast to a syntactic migration,

where out-dated syntaxes can be deleted or restructured, with no thought given to the

former or future semantics of the domain models. By closely examining Definition 9 and

Definition 10, several things are apparent:

1. the postcondition for syntactic migration is a postcondition for semantic

migration (i.e., semantic migration occurs only if syntactic migration occurs),

2. semantic migration has additional constraints that speak of semantics of

domain models,

3. syntactic migration does not address semantics at all,

25

4. no matching of semantics occurs in the postconditions of semantic migration,

5. syntactic migration includes preconditions not found for semantic migration

(namely, syntactic mismatch).

Out of these five, the last two items are the most interesting. The first of these �

semantics between the domains do not necessarily match � seems somewhat counter-

intuitive. After all, why would one perform a semantic model migration if the semantics

were not to be preserved? The answer is that it is not always necessary (or even

desirable) to preserve the same semantics, but the resulting semantics should always be

correct in the new domain. Thinking back to the reasons for domain environment

evolution, they revolve around evolution of the paradigm versus evolution of the domain.

When the paradigm evolves separately from the domain it is generally preferred to

preserve exact semantics of the output models m’. However, when the domain evolves

along with the paradigm, then the semantics of the output models should match the new

domain, and should be preserved only as much as the TRSEM deems appropriate.

For the last point, the fact that a syntactic mismatch need not be in place for a

semantic migration to take place is, perhaps, perplexing at first. More thought, however,

reveals that just because data types match does not mean that data semantics do.

Consider, for instance, the well-publicized mistake in the Mars spacecraft that failed

based on misunderstanding of the units of given data (meters versus feet) [13]. The

semantics of the data were important � but there was not a problem in the syntax (e.g.,

reading a floating point value).

Since so many factors must be considered, and a great number of syntax patterns

might need to be examined, semantic migration requires a more significant time and

26

training investment to carry through correctly. However, it is generally cheaper to

migrate models than to rebuild them. For significant amounts of data models, the reward

of developing a transform of old data into useful new data might be worth the cost of

creating the semantic evolution algorithm.

Syntax and Semantics in Evolution

Although syntax and semantics are frequently distanced both in definition and

discussion, their relationship in the domain evolution process is unique compared to most

other software applications, because the syntax and semantics are inputs to the domain

evolution process. One interesting property of syntax and semantics in domain evolution

is the link between semantic migration and syntactic migration. In fact, semantic

migration cannot take place unless a syntactic migration has occurred.

This claim is best justified by a consideration of its negation (i.e., it is possible to

perform a complete semantic migration without a complete syntactic migration). If this is

true, then there could exist a domain model that, once evolved, is a semantically accurate

model in the domain. However, if syntactic migration has not occurred, then there would

exist syntactic problems that would prevent the new domain model from being valid in

the new DSME. Thus, it is not possible to perform a semantic migration without

performing a complete syntactic migration (i.e., a semantic migration subsumes a

syntactic migration).

The link between syntax and semantics is further strengthened by the following

claim: that if a complete semantic migration is performed, then the process by which the

semantic migration is specified must be defined as a syntactic migration. That is, the

semantic changes are implemented using syntax transforms. While this might seem

27

extraordinary, consider how the semantics of a language are defined � in terms of the

syntax of that language. The old and new DSMLs are two languages, and the domain

model evolution may be cast as a pattern-based transformation, where syntax patterns in

the old language are transformed into a semantically accurate new syntax.

Syntax and semantics are decoupled as well as united in a semantic model

migration. They are decoupled because the semantic model migration definition is aimed

at solving the semantic problem, not the syntax problem, but the syntax problem is also

solved. They are united because the syntax patterns are used to specify the semantic

migration.

Basic Types of MM

There are five necessary conditions in order that a MM solution is required to

reuse domain models after domain evolution, as was discussed in the previous section.

One of these five requirements was a change to the metamodel. In terms of the syntax of

the metamodel, there are a finite number of cases that will result in the need for model

migration.

Depending on the construction of the meta-programmable environment, and the

instances of the domain models, certain changes to the paradigm might not require any

changes to the domain models for them to be used in the new paradigm. However, since

not all meta-programmable environments are created equal, it is necessary to delineate

each type of change. Table 2 gives each type of change � as well as whether that type of

change will require modification of the domain models � for three meta-programmable

environments: DoME [84], MetaEdit+ [85], and GME2000 [83]. In the far column, a

28

comparable change to a database schema is given to aid in the understanding of the type

of metamodel change.

Table 2. Types of changes that require model migration. Rows 10 and 11 show that change requirements
are tool-dependent in these cases

Type of metamodel change

Affected
domain

models (of
this type)

are present

Change is
required
[83] [84]

[85]

Equivalent schema
change (for
database)

Additions
1 Addition of new type A

Addition of table A

2 Addition of new attribute of
type A

Addition of column in
existing table A

3 Addition of association
between types B and C

Addition of column for
database key reference
between two tables B
and C

4 Addition of type(s) E derived
from type D

Creation of view E
based on existing table
D

5 Addition of constraint on type
F

Addition of database
constraint F

Deletions
6 Deletion of an attribute of type

A
Deletion of column in
non-empty table A

7 Deletion of an existing type B

Deletion of non-empty
table A

8 Deletion of association
between types D and E

Deletion/Rename of
database key in table D
which is used in table E

9 Deletion of constraint on type
F

Removal of database
constraint

Modifications
10 Renaming type A

Rename non-empty
table A

11 Renaming attribute of type A

Rename column in non-
empty table A

12 Changing type of B

Redefinition of view B

13
Addition of type(s) E derived
from type D, that replaces D
in a certain context(s)

Creating a new view E
that some stored
procedures will refer to
instead of D

14 Modification of constraint on
type F

Modification of
database constraint F

29

This is a full and comprehensive set of modifications that require domain

evolution if changes are made to the paradigm. It does not take into account

modifications to the semantic domain. Proof that this is the full set of changes is found in

examining the meta-metamodels used by these types of tools. Each of these 14 �atomic�

types of model migration all depend upon at least one of five semantic concepts of

metamodeling: the type, attribute, association, inheritance, and constraint (refer to

Table 1). It is assumed that aspects do not contain semantic or syntax information, thus

they are not included in this set of concepts. Notably, these five concepts may be used to

classify the full set of first-class objects used in [83][84][85] and relational databases.

See Figure 3 for the first-class object definition of GME [82].

Not coincidentally, these are all instances of the UML concepts [5] of a class

diagram, and in fact, they comprise the full set of four concepts1 used to establish syntax

and static semantics in a UML class diagram. Each of the metamodeling environments of

[83][84][85] use a UML-like interface when creating metamodels.

FCO

Model

Connection

Atom

Set

Reference

Attribute

Figure 3. Meta-metamodel basic type information for GME [82]

1 Since UML considers an attribute to be a special kind of association, there are four key concepts for static
semantics, rather than the five presented in the above table. The reason for this is the different reaction of
modeling tools to changes in attributes rather than changes of other types of associations.

30

The implementation and specific details of each type of first-class object is not

important for this research. The importance of these objects is that the objects defined in

the meta-metamodel determine the possible changes that are required when migrating

domain models. Recall that the meta-information is stored with the domain models. Any

change to the meta-information endangers the validity of the domain models, and the

meta-information may be changed only according to the meta-metamodel. Thus the

information defined by the meta-metamodel is the basis for any model migration that

must take place to preserve the semantic integrity of domain models. This is an

important consequence, and will be recalled when constructing the domain evolution

framework in Chapter III.

Graph-Rewriting

Graph-rewriting is a useful tool for solving abstract problems that have a well-

defined visualization method or that lend themselves to organization by containment or

association. Graph-rewriting has been used to solve compiler theory problems [10][12],

formalization of basic mathematical theory [14], not to mention graph theory and

algorithm problems [15].

More recently, and to the subject of semantic mappings in high-level languages,

graph-rewriting (in the form of graph transformations) has been used as a sort of

universal semantic description language that allows the specification for transformation

from one syntax pattern to another. This approach appeared in [16] as a semantic

extension for UML. Lately, graph grammars (the syntax used to express graph

transformations) have been suggested as an implementation platform for the Model

Driven Architecture (MDA) [17][18].

31

Graph-rewriting may be cast as a generalization of string grammars or term

rewriting systems. A graph-rewriting system is a set of rules that transforms one instance

of a class of graphs into another instance of the same class of graphs [20]. Graph-

rewriting takes two forms: replacement � where sub-graphs are replaced with sub-graphs

(and consequently, the rest of the graph remains unchanged), and recreation, where every

node and line in the graph are created from scratch.

→ → ?

?
?

??

?
(a) (b)

Figure 4. (a) A pattern and its transformation rule. (b) The desired transformation is sometimes difficult to
specify unambiguously

Unfortunately, rules defined to carry out graph transformations, while simply

drawn up, can be quite difficult to implement. A simple rule, say to replace a triangle

with a bowtie can be ambiguous in its desired implementation. Figure 4(a) shows a rule

that might describe the rewriting of a graph element from triangle to bowtie. However,

Figure 4(b) shows the six possible outcomes of the graph as presented. Should all of

these outcomes be written? Only some of them? Only ones that meet certain criteria? A

graph translation language should be specific enough that such ambiguities are not

present upon translation. Fortunately, there is a significant body of research in the area of

graph transformation, specifically in graph transformation languages. Most of these tools

32

operate on a particular source graph (called the input graph) and produce an output (or

target) graph. Nodes are traversed and matched based on syntax patterns entered into the

graph-rewriting engine, and the output graph is produced based on the mapping between

the syntax patterns and the desired output graph pattern. Well-formed arguments for the

benefits of several types of graph-rewriting approaches are found in [24][96].

There are several functional graph-rewriting solutions that have been developed

through years of research in graph-rewriting and graph grammars. Each language has its

own syntax, model of computation, and benefits for certain problem types (e.g., selective

tree rewriting, or default behavior configuration). The discussion of some mature and

full-fledged languages, as well as some promising experimental languages, is given in the

next few sub-sections.

PROGRES

The recognition of the ability to formulate many problems found in the realm of

computer science as graphical problems led to the concept of programmed graph-

rewriting systems. These systems are a set of graph-rewriting rules that are organized

(programmed) to carry out some algorithm. Advances in these systems led to the

development of the PROGRES language (PROgrammed Graph-REwriting Systems).

PROGRES has been developed by Schürr and others at the University of Aachen. Much

of this description is taken from [20], which provides an excellent tutorial for the use of

the language; more details and interesting studies are also available from

[21][22][24][26][97][98]. PROGRES is a strongly typed language whose underlying

formalism is tied directly to the algorithmic graph-grammar approach [23]. The design of

PROGRES was developed with the following goals,

33

• proper use of graphical and textual syntax where most appropriate,

• distinction between the definition and manipulation of data, as well as the use

of a typed ontology to guarantee the type-correctness of graph

transformations,

• reticence to require users to keep track of rewriting conflicts and backtracking

status,

• independence from a programming paradigm limited to rule-oriented creation

of algorithms, but rather to allow imperative programming and the

specification of rule application strategies.

The underlying data model of PROGRES is similar to that of virtually all

software: a directed attributed graph. A set of basic concepts makes up its metamodel,

namely,

• node types � determine the static properties of the instances of this node

• intrinsic relationships � a kind of edge, or edge type, explicitly manipulated

and restricted in the permitted types of its source and destination (all intrinsic

relationships are binary associations)

• derived relationships � relationships determined at runtime that are defined in

terms of relative associations between instances

• intrinsic attributes � the attributes of a node type, existing for all instances of

the node type(s) they are associated with

• derived attributes � values determined at runtime that are defined by means of

schema-independent methods on node types (e.g., the sum of attribute values,

or the size of a contained set of nodes)

34

• inheritance � a conventional IS-A relationship between two node types;

multiple inheritance is also permitted

Figure 5. The meta-metamodel for PROGRES, specified in its own metamodeling language [20]

PROGRES also takes advantage of visual representation to tersely specify the

semantics of symbols of its graphical notation, using square boxes, rounded boxes, and

various other means to specify semantics. The meta-metamodel for PROGRES is shown

in Figure 5.

As one of the design concepts for PROGRES promised, the use of visual and

textual languages is divided where the language developers deemed it appropriate.

Namely, functions and external types are included in supplemental textual material that is

35

specified at design time for the PROGRES datatypes. Example functions are provided in

Figure 6.

Figure 6. Example functions in PROGRES [20]

As evidenced from close examination of the figure, PROGRES has an extensive

set of intrinsic functions useful for operations in set theory, such as �or� (union) and

�and� (intersection). The functions defined using these keywords may be used on or

attributed to node types in a schema. Note that all PROGRES functions are

nondeterministic in their selection of individual elements when processing a set.

An integral part of the graph transformation process is the selection of appropriate

subgraphs for processing. This is named a graph query in PROGRES, and once again

teams visual diagrams with textual language for the complete specification. Queries are

36

textually defined similar to an interface/function definition in a textual language, with a

name, parameters, and output type. The body of the query is usually a join or intersection

of certain tests, which is the graphical portion of the specification.

Figure 7. Example specification of a query and one test used in the query body [20]

Figure 7 is the textual definition of a query named ConsistentConfiguration

along with one of its three tests, ConfigurationWithMain. This test matches any

subgraph consisting of the nodes and edges bound by its identifiers ‘1, ‘2, etc. to nodes

of the input graph (archetypally named host graph in PROGRES). In addition,

constraints (called restrictions in PROGRES) may be placed on objects in the graph that

37

filter out matches that do not meet supplementary requirements (e.g., that the MODULE

meets the isMain restriction).

After specifying the schema and query portions of a PROGRES graph-rewriting

setup, the last step in the specification is the graph transformation. The graph-rewriting

specification uses a conceptual �left� and �right� hand side, whereby objects on the right

replace objects on the left. As LHS objects are denoted textually by the leading ‘ (e.g.,

‘1 in the query previously presented) RHS objects are denoted textually by a following ’

(e.g., 2’). Existential operators are encoded into visual shortcuts (e.g., the MODULE should

not exist due to its corner markings). An example transformation is shown in Figure 8.

Figure 8. Example specification of a graph transformation [20]

The following rules are given for the model of computation for a graph

transformation:

38

• all nodes in the RHS which are bound to nodes of the LHS are preserved

without performing any not explicitly required intrinsic attribute value or edge

context modifications

• all nodes and edges of the LHS which have no counterparts in the RHS will be

deleted, including all incident edges of deleted nodes

• all nodes and edges of the RHS with no counterparts in the LHS are added to

the host graph

• new attribute values are computed by evaluating expressions which may

reference input parameters as well as old attribute values

This model of computation has several consequences. First, the output graph is

not a modified version of the input graph, but is actually a graph created from scratch,

where bindings from the old to the new (in an effort to preserve the nodes and edges) are

required to keep each existing element of the input graph.

PROGRES is a proven language for performing graph transformations, as shown

by its usage record (see [21][22][24][26][97][98]). It has a complex syntax capable of

solving general purpose graph transformation problems, especially when geared at

problems where graph algorithms lend themselves to the solution. Although PROGRES

meets all of the design goals it set out, there are several drawbacks to the language � the

primary one being its complexity. Arguably, simplistic composition and syntax relieves

some of the general purpose features of the language. It does, though, discourage

someone who may decide to experiment with the language. The choice of graphical

constructs is also somewhat suspect as the concepts are not always intuitively obvious

(e.g., the rounded corner of a node-type versus the square corners of a node-type).

39

Arguably, if a UML style interface (including UML metamodeling concepts) were

adopted, new users might be more receptive to the language constructs.

The non-standard notation decreases the probability of sharing PROGRES

transformation descriptions with someone unfamiliar with the language in order to

explain an algorithm, as additional explanations would need to accompany the

transformation in order to decode it. In this sense, PROGRES is not an effective domain-

specific language in that domain experts cannot readily pick up the tool in order to use it

in a matter of time on the order of hours. In the case of PROGRES, an intuitive interface

is necessary as the tool is not the industry standard for creating simple graph

transformations.

GReAT

The Graph-REwriting And Transformation language (GReAT) is a graph

transformation language developed at Vanderbilt University. GReAT was developed

expressly for the development of graphical language semantic translation. Much of the

information for this description is taken from [28], although significant examples and

design usages may be found in [18][29][30][31]. GReAT was devised as a new approach

for model-to-model transformations, useful for translations from one domain to another.

The following design goals were desired,

• As UML is a widely used and accepted standard for specification of classes

and objects; it should use UML for specification of static structure (i.e. that

data model) and integrity constraints.

40

• There should be support for transformations that create an entirely different

graph based upon a given graph. The two graphs may have different static

structure and integrity constraints.

• The new approach should be expressive enough to specify model interpreters

that convert models of high-level graphical languages to low-level

implementations, with no or minimal textual coding.

• The new language should have efficient implementations of its programming

constructs. The implementation should have comparable efficiency to its

equivalent hand written code.

• The new language should be �user friendly� and increase programmer

productivity.

The language deliberately shies away from textual specifications, relying instead

on an expressive graphical syntax that is related to UML in as many respects as

appropriate. It also is intended to replace textual programming when applied to model

transformation methods. GReAT, as a language, can be divided into three parts,

• pattern specification

• graph transformation

• control flow

GReAT uses an internal representation of a typed attributed multi-graph when

describing any graph. The two basic types of objects (vertices and edges) are given basic

functions that are applicable to any type, namely the name and type (for vertices), and

name, type, src (source) and dst (destination) for the binary edges. The metamodel for

all GReAT input graphs (and thus individual nodes and edges) is UML.

41

Patterns are specified using UML concepts to graphically denote the required

instances and their association with other instances. Patterns can be broken down into

three categories: simple, fixed cardinality, and variable cardinality.

Simple patterns are a one-to-one mapping of objects of a pattern specification to

an instance in the input graph. These patterns are straightforward to specify and easy to

understand. Fixed cardinality patterns are a sort of shorthand for simple patterns that

consists of many nodes, for example matching a node with 14,000 children would hardly

be feasible with a simple pattern. Variable cardinality patterns specify a range of

possible fixed cardinality patterns to match, for example matching a node with anywhere

from 3 to 10 children. Figure 9 displays examples of these three types of patterns.

Figure 9. Examples of the three types of patterns in GReAT. (a) simple pattern, (b) fixed cardinality
pattern, and (c) variable cardinality pattern

The simple approach to the syntax of pattern specifications belies a complicated

semantics required to implement such constructs. For example, in a simple pattern

match, what should occur when P1 contains two P2�s in the pattern, but in the input graph

there exists a P1 containing four P2�s? The model of computation that gives the

semantics of such constructs is complicated, and at times tediously specific. For brevity,

42

it is not explained in-depth in this document. However, it may be summed up with the

following points,

• The algorithm takes as input the pattern, input graph and a partial match and

returns a set of matches.

• The partial match must have at least one vertex of the pattern bound to the

input graph.

• A recursive approach is applied to return a set of matches that do not include

any isomorphic elements when bound to graph pattern specification objects.

• In variable cardinality patterns, the matches returned consist of a set of all

matches made, none of which may be a subset of any other match.

The patterns are used as primitives in the transformation portion of the language.

Graph transformations are specified by mapping from one pattern specification to

another, using these three basic mapping types,

• Bind � used to match objects in the graph

• Delete � also used to match objects in the graph but after these objects are

matched they are deleted from the graph

• New � used to create objects after the pattern is matched

A rule contains a pattern in the input graph and a pattern in the output graph,

along with these mappings between the appropriate objects. The model of computation

for the execution of the rule involves matching every pattern object marked either bind or

delete. If the pattern matcher is successful in finding matches for the pattern, then for

each match the pattern objects marked delete are deleted and then the objects marked new

are created. Sometimes the patterns by themselves are not enough to specify the exact

43

graph parts to match and we need other, non-structural constraints on the pattern. An

example for such a constraint is: �an attribute value of a particular vertex should be

within limits.� These constraints are known as guards, and are described using Object

Constraint Language (OCL) [6] as it is a widely used standard and is directly related to

UML. There is also a need to provide values to attributes of newly created objects and/or

modify attributes of existing object, called �attribute mapping�. Attribute mappings are a

set of assignment statements made in a procedural language that uses C syntax and

provides interfaces to the bound objects through their names on the diagram.

The third and final division of GReAT is its control flow. Based on patterns

matched (or not matched) in a rule, the flow of control can change from one possible rule

to another. This allows for conditional processing of input graphs. In order to increase

the efficiency of the execution of a graph transformation, bindings may be passed from

one rule to another in order to lessen the search space on the graph. There are also rules

for the model of computation of the execution of sequenced rules. With GReAT it is

possible to model both deterministic and non-deterministic behavior of an execution.

This can be important in translations where the outcome of the algorithm is different

based on the order of application. Some algorithms require ordering of rules, while

others do not, and thus deterministic behavior is modeled at the discretion of the modeler

[28].

The underlying semantic domain of GReAT requires the use of the UDM [32]

package (also distributed by Vanderbilt University). UDM, the Universal Data Model, is

a generic programming interface to data created according to metamodels. UDM

generates a domain-specific API, depending on the metamodel, which is a wrapper for

44

the generic API that all UDM objects may be accessed with. In addition, UDM objects

may be stored in different formats of persistency, for example XML, or GME formats.

While GReAT effectively uses the UDM execution model and API to perform its

transformation of the graph transformations the input and output graphs are required to be

in UDM format. UDM is beneficial in that reads XML files of a certain DTD (which

UDM generates from the metamodel of the input/output graph), so the production of

graphs in this format is not as difficult as a proprietary format. However, it can still be a

barrier to the introduction of new users to the project. An overall illustration of the

GReAT framework is given in Figure 10.

Rule Executor

G
en

e r
ic

 U
D

M
 A

P I

G
eneric U

D
M

 A
PI

Graph Rewrite (GR) API

R R

R R

R

Rules Sequencing

Pattern
Matcher Effecter

Sequencer

GReAT E

Input Graph

2 4

3 6

51

Input Meta
Model

D
escribes

Output Graph

A

B

C

D

E

Output Meta
Model

D
escribes

Rule Executor

G
en

e r
ic

 U
D

M
 A

P I

G
eneric U

D
M

 A
PI

Graph Rewrite (GR) API

R R

R R

R

R R

R R

R

Rules Sequencing

Pattern
Matcher Effecter

Sequencer

GReAT E

Input Graph

2 4

3 6

51

Input Graph

2 4

3 6

51

Input Meta
Model

D
escribes

D
escribes

Output Graph

A

B

C

D

E

Output Meta
Model

D
escribes

D
escribes

Figure 10. The GReAT framework

Overall, GReAT is a powerful rewriting concept. However, there are some

drawbacks. The first is that there is no stable, proven release, and it is still undergoing

45

development and research. Second is the lack of an isomorphism operator that may be

used as a wildcard specification for direct copying of matched objects. A final drawback

is the runtime environment, which requires the underlying UDM to be installed and

attached to the GReAT framework. However, this final penalty is not significant when

compared with the others.

BOTL

The Bidirectional Object Transformation Language (BOTL) is a graph

transformation language developed at the Technical University of Munich [25]. BOTL is

designed to be a general purpose graph transformation language, but also has leanings to

the model driven architecture (MDA) proposed by the OMG. In addition, BOTL sets out

to achieve bijectiveness (or to at least allow for the possibility of bijectivity) for any

transform created using its framework. Three properties of a graph transform language

BOTL designers most desire to implement are

• Applicability � the property that the application of a rule set for a given

metamodel doesn�t cause any conflicts for any arbitrary source model,

• Metamodel conformance � the application of a rule set should not generate

output models that do not conform to the proper metamodel,

• Bijectiveness of transformations � the possibility that the rule set can be

inverted and applied to an output set and thus produce an isomorphic version

of the original input graph.

BOTL uses as its underlying storage model a UML style interface. This allows

metamodels that are defined using UML to be used by the BOTL framework (after some

46

slight modifications). Patterns are specified using UML style diagrams that intuitively

provide the meaning of the pattern to a graph transformation domain expert.

Figure 11. An example BOTL rule set, r = (r0,r1) [25]

As evidenced by Figure 11 BOTL rules are composed of a LHS and a RHS.

Moreover, the sequence of a set of rules is preserved during the execution of a BOTL

transformation. That is, r0 will be executed before r1.

The process used by BOTL to return subgraphs is similar to that of GReAT. The

patterns are searched across the entire input graph, and a set of matches is returned for

use within the rule. This is shown by Figure 12, and the result is termed a model

fragment match. Model fragment matches are used for obtaining subgraphs of the

47

original input graph for transformation as well as the creation of subgraphs in the output

graph.

Figure 12. A model fragment match [25]

The problem of mapping attributes (and creating default attributes) is attacked

with BOTL-provided concatenation and string operation methods that are by default

given in the framework. However, the architects do provide the caveat that the

concatenation and string operations are not fully capable of all bijective operations. For

instance, they cite the possibility that the output graph may require attribute values to be

concatenated, or numbers summed to produce final values. There is no easy way to take

these strings and break them down into their original values, however.

All output model fragment matches are merged when the output model is created,

which allows the underlying model of computation to consider each individual model

fragment match as its own subgraph, and pass along the full set of created subgraphs for

intelligent insertion into the output graph after all rules have been executed. Proofs for

the feasibility of this mode of implementation are provided in detail in [25]. In addition

48

to these basic concepts of sequenced rules, model fragment matches, and attribute

manipulation BOTL provides advanced features such as variable introduction and

representation for more complex transformations.

Given the basic and advanced BOTL formalisms, the tenets of applicability,

metamodel conformance, and bijectivity are discussed in detail in [25]. No further

explanation is given in this document of these concepts, but some observations are made.

The metamodel conformance of output graphs is not guaranteed without in-depth analysis

of the transformation. This is technically infeasible, due to the complexities of the output

metamodel (including its interdependent constraints and contextual syntax rules) and the

unknown nature of the set of input models. This observation is also made in [25], but

steps are provided to aid in elementary conformance guarantee checks.

Overall, BOTL is an extremely well-defined graph transformation language,

aimed at MDA style approaches to graph transformations (between two well-defined

metamodels). The benefits of BOTL revolve around the easy to read rules and patterns,

as well as the simple design for the ordering or rules, and in general the readability of

BOTL specifications. The failings and drawbacks of BOTL are few, except that it too is

emerging research, and neither proven to work, nor widely used. In fact, no public

releases of BOTL exist at the time of this writing.

XSL

The eXtensible Stylesheet Language (XSL) is a scripting language designed for

the translation of XML data to other formats and maintained by the World-Wide Web

Consortium (w3c) [93]. One of the most common uses of XSL is to transform XML

formatted data into an equivalent HTML format (e.g., turn an XML database into an

49

HTML table with visual effects to accentuate or hide certain attributes). XSL also

includes language constructs that provide an interface useful when producing XML

documents from other XML documents. These language constructs abstract away the

creation of properly formatted XML elements, allowing for focus on the values

prescribed by the XSL Transform (XSLT).

XSL is a Turing complete language [34] that is implemented as a functional

language rather than a procedural language. As suggested by [94] XSL is such a general

purpose language that it can be described as a general tool for transforming the structure

of an XML document (therefore unrestricting the style of output). XSL has created a

significant amount of excitement since its introduction in 1999, and with good reason.

Two compelling features (which were design concepts) of XSL are,

• Separation of data from presentation � the separation of concerns is an ever

growing paradigm for the development of software. XSL provides separation

of data from its visualization, which allows for data reuse in multiple

applications (e.g., using a database of cities in a map-drawing application as

well as weather forecasting)

• Transmission of data between applications � data interchange has heretofore

been limited to two possibilities: formatted ASCII or proprietary binary

formats. With XSL it becomes possible to reformat data created by one tool

to data usable by another tool

XML is a suitable input graph format for discussion in this dissertation for several

reasons. The inherent n-ary tree structure of an XML document allows an XML

document to be properly classified as a graph. Also the widespread use and easy-to-learn

50

nature of XML make it likely that input and output model database will have an XML

representation, and an XML schema that can be modeled as a metamodel.

There are three portions to the execution of any XSL transformation, the input,

output, and stylesheet. The input is an instance XML tree, and the output is of an

unrestricted metamodel (although for the purposes of this discussion we will use an

output metamodel of XML format also). The stylesheet is the meat of the transformation

process.

Technically, a stylesheet is a functional program written using the XSLT

language. The difference between XSL and XSLT is subtle, and not necessary to

understand for the purposes of this dissertation. Therefore �XSL�, �XSL transform� or

�XSLT� will be used interchangeably. An XSL transform is a program written in a

language that is itself in XML format. The fact that an XSL transform is itself an XML

document is appealing because XML generation APIs can be used to create the XSL

document, rather than a textual method.

XSL stylesheets take an input XML document and use nodes that are matched

from that document to create output nodes. The stylesheet is executed by an XSL

processor. The processor selects the root node for processing, and then recursively selects

each of the child nodes of the root. Processing takes place, then, after each node is

selected by the processor and before other nodes are selected by the main execution. The

nodes, once selected, are given to the body of a template for further processing.

Nodes are selected for processing in a template through XPath expressions [95].

The template takes a set of nodes and performs further operations on it, including calling

other templates, production of the output graph, or ignoring elements contained in the

51

current set of nodes. A stylesheet may have any number of templates, and the XSL

processor determines the order in which those templates are applied through a formula

that compares the complexity of matches and attempts to apply the most complicated

first. Each node selected by the processor is compared against each possible template,

and as soon as a match is found no further templates are applied. In this way, the most

complicated matches are attempted first, and the least complicated are reserved for the

end of the processing. Also, nodes are processed only once by the XSL processor, unless

explicitly selected and called by another template. This is designed to prevent multiple

matches, but allows for recursive processing, if so desired. Note that when recursion

occurs, it is on the input document, not on any generated output.

Matching criteria are created using a terse selection language named XPath [95]

that was developed alongside XSL. XPath is similar to a graph matching language in its

ability to select nodes for processing based on,

• Relative context

• Attribute value

• Type

An additional feature of the XPath language is that it allows nodes, once selected

based on these three kinds of values, to be further filtered before passed on to the

stylesheet for processing. An example is given below,

select="model[@kind='Camera']"

Figure 13. Example XPath expression inside an XSL select statement

52

All XPath statements operate on the currently selected node. The XPath

statement given in Figure 13 selects all child elements of the current node that is of type

model. That set of elements is then filtered using the statement found in [], and only

those elements in the set who have an attribute (@) of type kind with value Camera are

returned to the processor. XPath provides a syntax that allows the traversal of trees

through containment, as well as simultaneous filtering on multiple levels of that

containment. Set operations are also possible, as sets can be joined together (union

actions), and filters can be placed anywhere in an XPath statement (intersection actions).

In addition to context matching, XPath also provides a body of functions that are

useful during selection of nodes. These functions can help in the guarantee of

uniqueness, selection of nodes not in this context hierarchy based on unique-id, string

parsing utilities, and rudimentary mathematical operations. Location and selection of

unique elements allows XPath to traverse multi-graphs that are encoded in XML format.

XPath functions (like expressions) are composable, allowing for arbitrarily long

expressions and functions to be combined to select a certain set of objects.

Overall XSL is an extremely powerful language capable of any calculation. Its

terse syntax and composable nature make it ideal for code generation. Although difficult

to understand for programmers educated primarily in procedural programming, its

acceptance as a language in the XML community has built a significant user base. Also,

the language is fairly easy to read for a beginner, albeit much more difficult to write

without an extensive manual or example code. Although XML is capable of the traversal

of tree-encoded multigraphs it is not as efficient as its traversal of simple tree graphs due

53

to the need to search the entire input XML document each time an association is

traversed.

Table 3. Taxonomy of reviewed graph-rewriting languages

Table 3 is a taxonomy of all the graph-rewriting languages reviewed in this paper.

Each of these languages is full-featured, but � like metamodeling languages � each has its

own benefits and drawbacks. For example, XSL is not suitable when requiring a domain

expert to implement a model migration solution if she is unfamiliar with XSL, as it is not

an easy language to learn, as well as not graphical in nature (and thus not integrating well

with a graphical metamodeling environment). However, if the graph-rewriting language

was generated from another graphical environment, it would be easier to generate and run

XSL code than the others because it is a textual language only, and can execute with an

Feature PROGRES GReAT BOTL XSL
UML
Interface
Graphical
Component
Textual
Component
Attribute
Management
Can execute
with compile-
time engine

Runtime
engine only
Requires
special domain
model format

Allows
wildcard
matches

54

engine linked in at compile time. The important lesson is that the appropriate graph-

rewriting language should be chosen for the appropriate problem.

State of the Research

The final result of any model migration tool will be domain models that are

semantically and syntactically correct in the new domain. This chapter examines the

state of research for another type of domain evolution: database schema evolution. A

significant amount of research has been performed on database schema evolution, and

these findings, as well as the history of the research, are documented here. There has also

been research on metamodel based graph transforms which is discussed in the last portion

of the section.

Database Schema Evolution

As previously mentioned, the model of a database schema is roughly equivalent to

what MIC researchers call a metamodel. The main difference between an MIC

metamodel and a database schema is that database schemas are a domain-specific

modeling language for database development. However, they serve as a descriptor of

metadata, and are therefore subject to the same difficulties when that metadata changes.

A significant body of research exists that describes frameworks and methodologies for

transforming data to work in different evolutions of a schema.

Schema Evolution Defined

The problem of schema evolution was first encountered in the realm of traditional

database systems [35]. Solutions to this problem emerged as data transformation

55

languages [36][37][38], which operated on the data as a high level language. The

database manager could migrate the data to the new schema, but was required to perform

a great deal of work in the translation of the data integrity requirements into the high

level language.

Note that schema evolution, while related to schema integration, remains a

slightly different problem. For one, schema evolution is concerned with retaining old

data for use with a new schema. Schema integration, however, is concerned with

integrating multiple databases for use with multiple usage points (i.e., clients), and

ensuring usage across changes to the number of databases that integrate, along with their

individual schemas (usually resulting in a global schema with namespace support of some

sort). For more information on schema integration, see [39].

Schema-Based Evolutions Emerge

In order to alleviate the difficulties in translating the data integrity requirements

into the transform language, solutions to the schema migration problem emerged not as

transformation languages, but instead as databases with internal structures that were

tolerant of the evolution of schema. Examples of some of these databases were ORION

[40][41] and GemStone [42]. Although these databases claimed to solve the problem of

schema evolution, their claim must be rejected for some basic reasons.

First, although the built-in transformation engine supported all schema changes

that were made in the database, the list of possible schema changes that could be made

was limited to only a few primitive items. This meant that things such as complex type

changes were not supported. Second, when several primitive changes were made

sequentially, data was not able to be preserved between them. Changes such as data type

56

replacement meant that the data had to be deleted first, and then the new type created �

resulting in the loss of all of the previously deleted data. The way this problem was

solved was with custom code that could preserve the data for later integration with the

database. Thus, while many of the problems encountered by early databases were solved

by ORION and GemStone, the basic problem of translating the data migration into

customized code still remained as a possibility.

Later, more mature databases were developed that provided better solutions than

ORION and GemStone. By providing a database environment that supported multiple

versions of schema, data was able to exist according to several different schema at the

same time. Examples of these databases are found in [43][44][45][46][47][48][49][50].

While this did provide the ability to preserve the database data intact through the

evolution of the schema, it unfortunately decreased performance of the database, and had

large overhead requirements for space, in order that the retrieval and storage algorithms

could decide between schema versions. Other databases preserved one data storage copy,

but simulated previous schema interaction versions by providing table views that

corresponded to the old schema [51][52][53]. This enhanced performance, but strictly

limited changes that could be made to the schema (e.g., primary keys could not be

changed). Also, each point of interaction with the database required its own view, which

created headaches for view administration between users. In an attempt to improve

performance (and decrease downtime between schema changes) [54] describes a method

for dynamic schema evolution.

Finally, coming full circle to the originally defined translation languages, the

TransformGen system emerged [54][55]. Designed for use by Gandalf programming

57

environments [56][57], TransformGen supports the evolution of abstract syntax

grammars. Analogous to type definitions (i.e., schemas), abstract syntax grammar

changes that were supported by TransformGen are analogous to those supported by

ORION and GemStone. However, one key difference remained: TransformGen also

allowed for manipulation of the generated transformation code. This meant that schema

experts could modify the transformers to have the exactly desired effect on the data. This

was taken advantage of in [58] where TransformGen was modified to support flexible

transformation of databases (rather than the abstract syntax grammars).

Most recently, such approaches as [59][60][61] attempt to utilize representations

of the schema as the language for the translation (Entity-Relationship diagrams, for

example). This direction is promising (from the perspective of a domain-specific

environment for migrating domain-specific data), but not yet mature. Also, only a small

amount of research has been committed to maintaining the semantic correctness of the

database constraints [62]. Thus far, the concern for semantics in database schema

migration has been limited to the translation of data, and little thought has been given to

the translation or maintenance of constraints.

The research in database schema migration was useful to the database community,

but does not translate well to formal modeling. One reason for this is the lack of visual

metamodeling in the schema definition of most tools and languages used to migrate the

databases. Second, the speed with which SQL queries can be performed allow for the

ability to select large bodies of data and place them into the new database in the proper

format. Formal modeling lacks a general purpose data selection language (that translates

across all modeling environments) and is heavily dependent on the metamodels for

58

definition, ruling out database schema migration solutions as extendable to implement

model migration solutions. Rather, the lessons learned in database schema migration

should be applied, namely that the matching of abstract syntax grammars, and the

mappings between schemas, are the preferred method of migration.

Ad hoc MM Solutions

These solutions are not engineered, but rather evolve out of necessity. Ad hoc

solutions are often devised through low-level programming for a fixed domain change.

The important note is that all of these processes are defined for a certain schema change.

That is, no general-purpose tool for modeling the migration of customized modeling

domains once those domains change. Solutions exist for two types of problems: between

two well established domains, and instances of one domain evolution.

MM For Well-Established Domains

Certain tools exist that can perform data migration between similar domain-

specific environments. Examples of such tools are Microsoft Word and Excel, which can

convert data stored in Microsoft�s proprietary format to such formats as those for

Borland, or perhaps to HTML format for web display.

Another tool example is more sophisticated, because it is a standalone program

that converts model repositories into new formats, as opposed to Word�s ability to

convert itself into another format. This tool, called MetaIntegration Works [63] allows a

user to query databases of models, and produce as output a database of models

semantically transformed into a new schema. Examples of these transforms are from

Rational Rose [64] to Oracle Designer [65].

59

Figure 14. Functional overview of MetaIntegration Works [63]

However, these migration solutions are based on well-defined meta-models.

Figure 14 displays the overview of the functionality for MetaIntegration Works. Note

that the source and target databases are limited to an a priori list of modeling tools. Any

attempt to use models defined under any customized paradigm in conjunction with the

MetaIntegration software would be unsuccessful. In order to use the software,

MetaIntegration would need to examine the customized paradigm semantically, and write

new components to and from each possible modeling tool.

In addition to their dependence on existing metamodels, these ad hoc migration

solutions do not provide the ability to customize the translation that takes place. For

example, a concept that exists in Microsoft Excel, but not in Borland Quattro-Pro, is

transformed with a loss when encountered in data. The definition of this transform is not

available to the user, because it is locked away in a binary file.

60

MM For Instances of One Domain Evolution

The other, and far more abundant, MM solution that already exists is the

evolution of a particular domain. Since CBSs require system data to operate, upgrades to

CBSs require either MM, or rebuilding the system data by hand. Most CBS upgrades,

however, are not demanding enough to require a general solution to MM. In fact, a

solution is usually found for this particular CBS evolution, and then carried out upon

upgrade.

An example of this is a database system upgrade. A flat-file inventory database

exists on a VMS machine, and the CBS is being upgraded to run on a relational object

database such as MS-SQL Server. Each file of the flat-file database maps to a relational

table, but there is no simple routine to import unknown flat-file formats to SQL Server.

The usual solution is to transform the flat-files into some format that SQL Server can

recognize, and then import the files.

This solution is typically written out as numbered directions followed by a trained

operator. Consider, for example, the following customized schema migration utility

(shown in Figure 15) that transforms the contents of a Netscape Directory Server from

version 4.1 to 4.x after the Database and Server have been upgraded [66].

Now, in several key areas, this is a good model migration solution. The solution

is custom designed for the evolution, and the instructions are aimed at a Netscape

Directory domain user (not a schema-migration domain user). However, it does fall short

in one major way: the solution is not created through modeling the meta-data and

generating a migration script/executable. A better solution here is to model the added

61

schema elements, and automatically create the standard object classes described in

section 3.c.iii of the non-standard schema operations.

Figure 15. Instructions for ad hoc model migration during system upgrade for Netscape Directory Server
[66]

Another major problem is the possibility of human error. If even one error is

made during the migration process, the entire process must be repeated from the copying

of the old schema files. In addition to being laborious to perform the steps, it is also

Upgrading standard schema:
1. If you have not already done so, complete "Step 1: Back Up Your

Configuration and Database" and "Step 2: Upgrade the Server".
2. Copy all the files in the following directory:
 <NSHOME>/bin/slapd/install/config/

except slapd.user_oc.conf and slapd.user_at.conf, to the
directory where your 4.0 schema files are stored. By default
this directory is:

 <NSHOME>/slapd-<ServerID>/config/
3. Restart the Directory Server

Upgrading non-standard schema:

1. If you have not already done so, complete "Step 1: Back Up Your
Configuration and Database" and "Step 2: Upgrade the Server".
Make sure you create a backup copy of your schema files.

2. Copy all the files in the following directory:
 <NSHOME>/bin/slapd/install/config/

except slapd.user_oc.conf and slapd.user_at.conf, to the
directory where your old 4.x schema files are stored. By
default this directory is:

 <NSHOME>/slapd-<ServerID>/config/
3. Examine the copy you made during "Step 1: Back Up Your

Configuration and Database" of the old 4.x slapd.at.conf and
slapd.oc.conf files to discover all the schema additions that
you made.

a. If you added attributes to slapd.at.conf, you need to add
them to the new Directory Server using the Directory
Server Console.

b. If you added new object classes to slapd.oc.conf, you
need to add them to the new Directory Server using the
Directory Server Console.

c. If you added attributes to standard object classes in
slapd.oc.conf, then you must do the following:

i. Using the Directory Server Console, create a new
object class that allows your custom attributes.

ii. Place this new object class on every entry in your
directory that uses the custom attributes.

iii. See the Netscape Directory Server Administrator's
Guide for information on adding object classes and
attributes.

4. Restart the Directory Server.

62

frustrating for a domain user to find out that the migration was not successful after she

thought she had done everything correctly. Modeling the system and generating the

migration operations could help to make the migration process smoother.

Universal Language and Interchange Formats

As standards emerge through organizations such as the International Standards

Organization (ISO) and the World-Wide Web Consortium (w3c), some discussion must

be given on the thought of a universal language that could be used for exchange of data

and the expression of semantics for a particular domain.

Compilers

When high-level computer languages emerged as a plausible programming

method, a formidable problem was the production of compiler optimizations that

translated the high-level commands into low-level (i.e., machine code) commands

[67][10]. These optimizations were performed after the language performed any high-

level optimizations (such as removing dead code) and optimize such machine-specific

usages as register allocation.

As languages and architectures proliferated in the early years of computing, the

creation of compilers and optimizations for different architectures required more and

more work [11]. This was not because languages became more complex, nor because the

architectures became more difficult to understand: the problem was that the amount of

work increased in an n x m fashion. In other words, for the mth architecture, n different

optimizations had to be developed, one for each language that might be used with that

architecture.

63

Computer programmers realized that this problem was inconvenient, if for no

other reason, because it was confusing whose responsibility it was to produce

optimization characterizations: the architecture, or the language. The solution that

eventually emerged was the creation of a universal grammar for a particular architecture.

Using this grammar, it was possible to generate the compiler optimization with an

architecture independent program.

The compiler optimizer took in as its input not the computer code (in textual

format) but instead took the semantics set forth by that code, as represented by a

universal semantic graph. This semantic representation was developed independent of

architectures, with languages and algorithms kept in mind [12].

The optimization generator and semantic representation allowed for the reduction

of an n x m expansion to an m-hard problem, placing the burden of �expansion� of

languages to the architecture developers, and leaving the language developers �in the

clear.� Incidentally, these optimizers used graph-rewriting and pattern matching as their

method for generating the final code [11][70][70].

Using a similar approach to solve model migration is tempting, but overall

infeasible due to differences in the semantic domains. First the universal semantic graph

defined for the compiler optimization problem was extremely low-level, as it was dealing

with the optimization of machine code. This was beneficial, in a way, as a limited set of

operations could be used, and the object code out of the compiler was on about the same

level of abstraction as the machine code. However, the domain specific nature of MIC

environments tend to attach complicated semantics to a few domain concepts.

Translating these complicated semantics into a sort of universal semantic graph would be

64

extremely time-consuming, and would still involve the mapping of that semantic graph

back to the particular MIC environment. Also, translation between domains does not

always preserve semantics, and thus there would need to be different inputs from the

semantic graph. An approach to input/output to a common structure can be beneficial,

however, between very similar domains, as is exemplified by the next section dealing

with CDIF.

The CASE Data Interchange Format (CDIF)

The explosion in the number of Computer-Aided Software Engineering (CASE)

tools in the 1990�s led to a similar problem to that of MM: the interchange of models

between modeling tools. Dozens of tools could generate skeleton code and

documentation from class diagrams and other UML-based software engineering

notations. Of course, once a tool was chosen for a particular application, then that tool

had to be used for the duration of the application�s life. This was because the UML-

based notation was stored in proprietary formats that were not easily interchanged

between tools.

Software engineers realized that it was not feasible to create a solution from each

individual CASE tool to every other tool, if for no other reason, the enormity of the task

(recall the expansion of the number of solutions to the compiler optimization problem as

described in the previous section). Another, more important, reason is that it would not

be possible for CASE tools written in 1994 to provide functionality to export models to

those written in 2004. What was decided instead was to develop a standard interchange

format between CASE tools [71]. It would be the responsibility of each tool to provide

the ability to import models in this format, and also to export their own models to this

65

format [71][72]. Incidentally, CDIF used a 4-layer architecture similar to that

implemented by UML, and thus had metamodels, and a meta-metamodel, etc., so the data

was well structured, and could be examined for well-formedness.

This is a viable solution to MM between tools that are quite similar, and that are

modeling environments of the same (or very similar) domains. An example is the tools

that deal with the modeling and simulation of hybrid systems (e.g., HyVisual [73],

Charon [74], Checkmate [75]), which commonly export and import using the Hybrid

Systems Interchange Format (HSIF) [76]. In this way it becomes much simpler to

encode domain models in this universal (to the domain) semantic graph, because the

concepts are on the same level of abstraction.

However, to use such an intermediate language to attempt to program all possible

domain models is simply not feasible, due to the abstractions required, and the difficulty

to get everyone who programs anything in the world to use the common language.

Model Transformations And MM

Despite the dearth of MM solutions that are model-based and paradigm

independent, a significant body of research exists which is aimed at solving a problem

quite similar to MM, which is model transformation. This research uses the ideas of

graph matching and graph transformations, and also integrates the idea of UML as a basis

for the description of these graph transformations. The research exists in the form of

theory and proofs of concept rather than as packaged toolsets, so the division of concepts

is denoted by researcher rather than toolset name.

66

Lemesle

In [77], Lemesle describes some basic formalisms for the development and

existence of transformations rules that are based on metamodels. The formalism, which

is termed sNet in the paper, is based on the notion of a semantic graph network wherein

only nodes and edges of the semantic graph can be manipulated. Using metamodeling

techniques these nodes and edges are mapped onto the concepts and relationships of a

domain. The notation for sNet is given in Figure 16.

Figure 16. sNet notation [77]

There are four entities in this figure,

• the Address node, which is the representation of an address class,

• the �Address� node which is the name of the class,

• the Classifier node which is the type (or meta) class, and

• the An Object Model class which describes the context of the Address class

(i.e., in what context the Address class is applicable, or may be found).

Not based on UML standards, this is a tedious, albeit sufficient, method in which

to specify the existence of graphs that are abstractions of domain concepts. Other

methods of specifying these objects are provided in the paper, some of which are easier to

67

read and explain, but overall they are translated into some form similar to the above

(although possibly in textual form) for processing with the transformation engine.

Using the meta nodes of the sNet formalism, transformations are textually

specified using a syntax similar to that of first order calculus. An example transformation

would be,

Classifier(c) name(c,n) -> Table(t) name(t,n);

Figure 17. An example transformation of a graph specified using the sNet formalism [77]

This transformation specifies that for every node of type classifier, a table type

node should replace it, and that the name of the previous classifier should become the

name of the newly created table.

This work is an early example of the need to link the transformation of typed-

graphs with the metamodels that give their types. However, the transformations are not

graphically specified (although research in this area was listed as ongoing), and the

graphs and their metamodels are not created using a UML like notation.

Milicev

In [78] and more briefly in [79], a UML-based technique is described that

transforms models in order to take advantage of existing model interpreters. The

advantage to this technique is the application of one model interpretation (i.e., a particular

dynamic semantics) across similar domains can be achieved by changing the domain

models rather than the model interpreter. As more and more interpreters are available for

68

these domains, the advantage to performing a model transformation as opposed to

maintaining several different versions of many interpreters becomes apparent.

This technique relies heavily on the UML specification of metamodels. Given

two metamodels (i.e., domains) implicitly related, a series of UML-like object diagrams

may be used to specify a mapping between them. These diagrams use an extension of

UML, so as to allow for all of the UML class diagram features (such as containment,

inheritance, etc.) to be used in describing the traversal of the domain models according to

the extended classes (e.g., a ForEach class describes a loop of all instances of a certain

type of class).

Figure 18. Example transformation overview using Extended UML Object Diagrams [57][58]

 Figure 18 gives a graphical representation of the transformation of domain

models from one paradigm to another (in this case, both are C++ programs)(Figure 18

describes a specific example transform, and not transformations in general). Figure 18

deals with source and destination metamodels, and their corresponding domain models.

69

However, the real �model migration� in Figure 18 (and consequently, [78][79]) takes

place at the intermediate domain level. Here, the idea is to transform all domain models

of the source domain into some intermediate domain, and to interpret that domain to the

final target domain (which is C++ source code).

In this research many worthy research conjectures are shown to be effective, such

as

• the use of multiple transformation specifications which introduce the

opportunity for code reuse within a transform, and

• specialized transformation models that indicate iterative processing (ForEach,

ForAll, etc.).

The research outlines some possibilities for generality in the specification of

model migration, but does not follow through on those concepts. For example, the

solution�s �destination� domain model never changes, but is essentially a modeled C++

program. Also, no mention of the semantic translation is made. The semantic meaning

of the source domain models is not considered as a factor in the production or generation

of the model transformation. Therefore, the difference between it and any interpreters of

the universal intermediate domain (there is only one listed in the figure) would also not

be considered in the solution. Due to this omission from the solution, the modeler would

require intimate knowledge of the source domain (i.e., the modeler would in effect be the

semantic interpreter of the source domain).

This method � while acceptable for the previous transforms � exists as a particular

instantiation of a framework that is proposed in this dissertation, and not as a general-

purpose extensible solution. Also, its reliance on an intermediate domain does not

70

translate well to a general purpose solution, as described in a previous section discussing

the drawbacks of a universal language for model interchange.

Thomasson

In [80] a transformation from Simulink/Stateflow to CSL is presented, and the

data translation process is modeled using custom-defined transformation rules. Although

the rules were not generated from the models, a comparison of the rules with the

pseudocode they describe relates several necessary conditions for a successful translation

between domains, viz,

• management of attributes,

• ability to query textual information and perform transformations on it,

• well-defined structures for creating and referring to new classes, and

• conditional creation and assignment.

The lessons learned in this transformation approach are that textual information is

an important portion of the specification of the transformation � especially if the source

or destination metamodel defines a textual rather than graphical language.

71

CHAPTER III

A DOMAIN EVOLUTION FRAMEWORK

The key to managing domain evolution is found in understanding how domain

models are created. All software is created in some language; domain models (i.e.,

formally defined domain-specific software) are created using a domain-specific modeling

language [2]. This domain-specific language is also specified using some language, and

that language itself is specified using some language. It is easy to get confused about

which language we are talking about at which time, so at this point we will define the role

of each language, and how it is related to the formally defined domain models and their

evolution.

The evolution of domain models is required when changes are made to the

paradigm in which those domain models were created, i.e., when the domain-specific

modeling language changes fundamentally in its ontology, syntax or semantic intent.

Immediately, the intent of the domain expert who created the domain models becomes

questionable: once migrated to the new language, will (or should) the intent remain the

same, or will (or should) it be changed? It is even possible that the existing intent should

be preserved, but using the new syntax to preserve the originally intended semantics in

the new model of computation.

Figure 19 gives a graphical description of this dilemma. As the figure shows,

there is some difference, ∆1, between the two domain-specific modeling languages (else,

no domain evolution would be required). The size of this difference is the metric as to

whether or not the translation of the domain models from one domain to the next is

72

termed model migration or model transformation. There is no hard definition of the

difference between model migration and model transformation, but when taken to

extremes there are definitely evolutionary changes, where the ∆1 of the two domain-

specific modeling languages is perhaps only one keyword, and revolutionary changes,

where the paradigm ontologies have few (if any) keywords in common, and the two

syntaxes are more often unrelated than similar.

∆1 � Specification of the evolution of the DSME
∆2 � Execution of the migration of the domain model

DSME

Domain models

Executable
system

used to
create

used to create

describe

Metamodeling-language

∆1

=?

DSME’

Domain models’

Executable
system

∆2

used to create

describe

used to
create

∆1 � Specification of the evolution of the DSME
∆2 � Execution of the migration of the domain model

DSME

Domain models

Executable
system

used to
create

used to create

describe

Metamodeling-language

∆1

=?=?=?

DSME’

Domain models’

Executable
system

∆2

used to create

describe

used to
create

Figure 19. The DSME evolution specification (∆1) and the generated model migration executable (∆2)

In Figure 19 the two thick arrows in the center of the diagram show the evolution

of the DSME and the domain models. Regardless of the reason for the evolution of the

DSME (as described in Chapter II) the difference between the DSME and the DSME�

requires that the domain models be updated. The migration of all the domain models

completes the domain evolution process.

73

The objective of the domain evolution framework is to formally represent the

DSME evolution as a specification (as denoted by ∆1) and generate the model migration

executable (as denoted by ∆2). This point bears emphasis, as there is a crucial difference

between ∆1 and ∆2. The evolution specification, ∆1, is a formal representation of the

difference(s) between the two versions of the DSME. The model migration executable,

∆2, is an artifact of the evolution specification; that is, ∆1 describes ∆2. Once generated,

∆2 will migrate the domain models as a standalone executable, or perhaps as a

configuration file to a separate executable. It is important to note that ∆1 is not used to

evolve the DSME, but rather is a description of how the DSME has evolved. In other

words, it is created with a priori knowledge of the DSME and DSME�.

The benefits of using a description of the DSME evolution as the basis for the

model migration are plentiful. Some example benefits are,

• ability to use domain-specific concepts during specification,

• comparison between the two domain-specific modeling language definitions,

and

• integration of domain-specific modeling language definitions with a common

meta-metamodel.

Figure 19 also shows the conundrum of whether or not the executable system of

the translated domain model should be equivalent to that of the original executable

system. The executable system, being the incarnation of the programmer�s intent, should

certainly be consistent with the previous executable system, but the definition of

consistency varies between evolutions of different DSMEs. Generally the type of

74

changes to the paradigm dictates the manner in which the domain models should be

migrated.

Recall the two driving forces behind domain evolution: changes to the paradigm,

and changes to the semantic domain. If changes are made to the semantic domain only,

and the paradigm is preserved then the intent of the modeler should be preserved (i.e., the

domain models will have the same meaning in the semantic domain, but after

modifications to account for changes in the semantic domain). An example of this is the

evolution of a model database that uses English measurement units to one that uses SI

measurement units. Although no portion of the paradigm changes, the values of all unit-

based attributes will not be correct in the semantic domain any longer, and should be

modified.

If the changes are made to the paradigm only, and the semantic domain is

preserved, then the intent of the models should be preserved (i.e., the domain models will

have a different meaning in the semantic domain after modifications to account for

changes to the CBS domain). An example of this is where the types of objects of a

paradigm change, and they now have a different meaning in the semantic domain.

If changes are made to the paradigm and to the semantic domain, then some

combination of these changes will be used. At this point, the modeler creating the

domain evolution specification is actually assuming the role of domain modeler and

revising the intent both of the modeler, and of the models, to reflect the new CBS.

The rest of this chapter focuses on the language framework used to specify

domain evolution specifications, and does not account for the reasons why domain

75

evolution would take place. However, these concepts of the driving forces behind

domain evolution will be used during the case study (Chapter V).

Justification for a Domain Evolution Framework

A meta-metamodel can be used to create a metamodel that describes any

modeling language. That being said, not all meta-metamodels provide a convenient

representation of the same abstractions, and some meta-metamodels, while very

convenient for describing some abstractions, are tedious or counter-intuitive for others.

This requires the concession (or, perhaps conjecture) that there is not now, nor will there

ever be, one ubiquitous meta-metamodel. The consequence of this conjecture is that a

domain evolution tool is required for each meta-metamodel. Although the complete set

of domain evolution tools (one for each meta-metamodel) does not contain any identical

tools, many of the tools will contain similar properties.

A domain evolution framework is a generic representation of the fundamental

properties and algorithms that are contained in each and every domain evolution tool. As

a generic representation it provides some parameters for instantiation, and those

parameters are the meta-metamodel and transformation engine (e.g., graph-rewriting

language) used to instantiate a particular domain evolution tool. This tool then serves as

a domain-specific modeling environment that can be used for the evolution of any

metamodels that are created using that meta-metamodel. When that domain evolution

environment is used to evolve domain models from one metamodel to another, then a

domain evolution specification has been created. The domain evolution specification

must be specified in at least two dimensions: namely, the patterns in domain model D that

are to be recognized and how those patterns should appear in the transformed model, D’.

76

The domain evolution specification generates a model migration specification that

transforms the input model database into a migrated or output model database. The

capability of graph-rewriting tools to perform this transformation lends them to usage as

the model migration specification. However, given that individual graph-rewriting tools

have different strengths and weaknesses when compared against one another, there may

be different �best� implementations of a graph transformation for different styles of

graphs. For example, a paradigm with significant levels of hierarchical containment

would benefit from a graph transformation engine with efficient depth-first search

algorithms. However, a paradigm with no containment would have no use for such a

graph transformation engine, and would instead prefer an efficient breadth-first search

algorithm. The problem is how to determine a methodology or tool that is customizable

for different translation tools, yet allowing for the configuration of the translation in one

central location.

The decoupling of the model migration specification from the graph-rewriting

engine that implements that specification would release the specification from language-

specific concepts, and more easily allow the translation of the model migration

specification into more than one graph-rewriting language. Further, if the model

migration specification were to be created with a language in the domain of model

migration, then the creation of the model migration specification could be composed of

concepts central to model migration, and the low-level details of the graph-rewriting

engine could be delayed until the semantic translation phase. Just like any modeling

domain, model migration has its own semantics and rules, and the ability to interpret a

model migration language into a choice of semantic domains enables the modeler to pick

77

and choose what implementation of graph transformation to use, while at the same time

keeping the transformation rules in model form.

Domain Evolution
Framework (DEF)

DEF
template<GME, XSL>

GME Domain Evolution Tool

M1 ! M2 Domain Evolution Specification

GME Meta
model1

Rules
R1 R2

R4 R3

Sequence
R1 R2

R4 R3

DEF
template<GME, XSL>

GME Domain Evolution Tool

GME Meta
model2

XSL
Script

Domain Evolution
Framework (DEF)
Domain Evolution
Framework (DEF)

DEFDEF

M1 ! M2 Domain Evolution Specification

Rules
R1

(evolution tool layer)
(evolution specification layer)

(evolution framework layer)
(evolution tool layer)

template<meta-metamodel,
 graph-rewriting language>

Figure 20. Layers of the domain evolution tool for MetaGME and XSL. Note that the final domain
evolution specification is one particular evolution of domain models from GME Metamodel 1 (M1) to
GME Metamodel 2 (M2)

Figure 20 is an illustration of these three layers for a particular instantiation of a

domain evolution tool for the GME meta-metamodel and XSL graph transformations.

The layers range from most generic at the top (the framework) to least generic (the

specification that generates an XSL script). The evolution framework layer, at the top,

contains the common information found in all domain evolution tools, and provides an

interface to be customized by meta-metamodel and graph-rewriting language. In this

sense, the evolution framework layer is quite similar to a template class definition in

78

C++. The evolution tool layer, in the center, has tools that are specific instances of the

DEF. Shown in the figure is an example tool that parameterizes the DEF using the GME

meta-metamodel and the XSL graph-rewriting language (of course, other combinations

are possible). The domain evolution tool is an environment usable by a modeler who is

performing model migration, and is roughly equivalent to an instantiated template class

in C++.

The evolution specification layer, at the bottom, is used to create domain

evolution specifications (∆1 in Figure 19) that generate a model migration executable (∆2

in Figure 19). Shown in Figure 20 is an abstract representation of what a domain

evolution specification would look like using the domain evolution tool in the above

layer. Evolution specifications are always specific to the particular DSME evolution, in

this case, M1 ! M2. The GME Metamodel1 and GME Metamodel2 represent the current

and evolved DSMEs, and the rule definitions (specification of the difference between the

DSMEs), along with their sequencing, complete the domain evolution specification. This

is roughly equivalent to the usage of an instantiated templatized class in C++, as the class

exposes member functions through an interface (the two meta-metamodels, rules, and

sequencing in Figure 20). These four parts of the interface are explained in detail

throughout the remainder of this chapter.

This design for a framework has several appealing features. First, the look and

feel of the user interface for defining rules and sequences will always be the same,

regardless of the meta-metamodel used, as these interfaces are common across all meta-

metamodels. Second, the rules used to migrate the domain models are created using a

well-defined model of computation capable of being translated into the appropriate graph

79

transformation language. Finally, the common properties of the domain framework can

be compiled into a library of existing code and operations that can be leveraged during

the development of instantiated versions of the framework (i.e., tools). The remainder of

this chapter is devoted to the definition and semantics of domain evolution framework

concepts.

Overview of Components

The domain evolution framework is a collection of the common architecture

components, user interfaces, programming interfaces of any tool that could be used to

perform domain evolution. Any specific instance of the framework describes has four

distinct parts: (1)(2) the two domain-specific modeling language definitions (as defined

by a common meta-metamodel), (3) transform rules and their sequencing, and (4) the

item types that can be matched along with the types of mappings that can be performed

between matched items. Figure 23 shows an overview of this framework, with the four

components identified.

(3) (4)

(1)

(2)

Transformation

NewClassDiagram

OldClassDiagram

Transform

+Delete : bool
PatternItem

+CreateNew : bool
ConsequenceItem

Mapping

Figure 21. Simplified overview of the domain evolution framework. Comparison of this figure with
Figure 20 shows the interfaces required for a domain evolution specification to be created with the
framework

80

Justification of each of these components, as well as their definition inside the

framework is provided in the remainder of this chapter. Note that the definitions given in

this chapter are for the framework, and that supplemental definition is required to actually

instantiate a particular tool.

Domain-Specific Modeling Language Definitions

Without a formal definition of the domain-specific modeling language (before,

and after, its evolution), it is not possible to provide a formal description of how to evolve

the models to conform to the evolved language. Moreover, the transformation may need

to understand which language is the original, and which is the evolved.

OldClassDiagram

Transformation

NewClassDiagram

1

1

Figure 22. The transformation requires the formally defined "old" and "new" metamodels

Figure 22 shows how the transformation depends on the original and evolved

domain-specific modeling languages. In this diagram, the original class diagram is

referred to as the �old� language, and the evolution as the �new� language. Both

language metamodels are required to have the same metamodel (i.e., all domain models

must have the same meta-metamodel) in order to guarantee that there is a common

storage format. In the framework, the formal description of the domain-specific

81

modeling language abstract syntax (and static semantics) is assumed to be defined in a

form similar to that of a UML [5] class diagram (hence, the class names in Figure 22).

Of course, it is not required that the formal language definitions be in graphical

form, or even in the form of UML. However, for the purposes of this research, a UML

class diagram depiction is assumed. This is a viable assumption because even if a

domain-specific language is described in some other notation, a UML class diagram

could always be created for the purpose of evolution. UML class diagrams are used to

describe the types of data, and a diagram could be created that described the data of the

domain-specific language � if the model database(s) were of a sufficient size to justify the

investment of time and effort to create such a diagram. As it will be discussed in a future

section, the actual implementation of a model migration tool is dependent on the type of

language used to describe the domain-specific modeling language � the meta-metamodel.

82

Transformation

Transform

Mappable

AreSequenced

Case Test

Rule

InitialTransition

Transition

Sequence

0..*

0..*

0..1

0..*

0..1

0..*

dst

src

InitialSequence

dst

src

0..*

0..1

0..*

0..*

0..1

0..*

Figure 23. The class diagram of important elements of the transformation layout

Transformation Layout

The second portion of the framework definition revolves around the definition of

the transform rules, and how they are sequenced (motivation for the necessity of

sequenced rules is provided in a later section). The ordering of Transforms is imperative

to provide the guarantee of determinism of the Transformation. The model of

computation should allow for determinism not necessarily because determinism is

required when migrating models, but rather because if determinism can be guaranteed

then algorithms to migrate the models can be drastically simplified, and libraries of

procedural algorithms can be referred to when designing a model migration solution.

The domain evolution framework prescribes the method of creating a set of

transforms that perform modifications to portions of the input graph, and sequencing

83

these rules to achieve the actual migration of the domain models. The layout of these

transforms, as well as their associations, is defined in the transformation layout.

The UML class diagram in Figure 23 represents an architecture that allows for

deterministic transformations through the sequencing of transforms. The modeling

concepts of inheritance and containment play significant roles in the definition of this

portion of the domain evolution framework. This section gives detailed information of

the inheritance hierarchy of the most used object types.

Transform Types

The two most important portions of this diagram are the Transformation class

and the abstract Transform class (appearing in the upper-left area of Figure 23). In

general the Transformation is made up of sequenced Transforms. Transforms are

used to describe the specific differences between metamodels, but not all Transforms

carry the same semantics. Fundamentally, not all Transforms modify the patterns they

discover. Sometimes, the discovery of a pattern requires a side effect somewhere else in

the Transformation. This gives rise to two mutually exclusive types of Transforms:

those that perform mappings (i.e. have side effects) and those that do not.

However, there is another set of criteria for the existence of a solution:

sequencing. In addition to their ability to describe the differences between metamodels,

Transforms should also be capable of specifying where they should execute in control

flow � their sequence. Transforms are not necessarily required to be sequenced, which

leads to a second set of mutually exclusive types of objects: those that are sequenced, and

those that are not.

84

The expansion of the two sets of types (side effects/not, and sequenced/not) do

not specify a full Cartesian product of the two sets, because one combination does not

make sense. This instance is the case of a not sequenced, side effect free type. It does

not make sense for an object that is not sequenced to also not be able to map anything �

this object would be excluded from sequenced consideration (i.e., it could not take part in

the decision of control flow) yet it would not have a default behavior for the transform, as

it could not map from one domain model to another. Therefore this type is left out,

leaving three possible types which are explained below.

• Rule � has side effects, and is sequenced. It may also contain a sequenced

object (either another Rule or a Test) in order to allow hierarchically

structured Transforms.

• Test � is sequenced, but does not have side effects. It is used to make

decisions in the sequence of Transforms by executing the Cases and other

Tests it contains. Although it does not have side effects, the Cases it

contains may.

• Case � is not sequenced, but has side effects. It is a special kind of Rule that

behaves the same, but without the ability to be sequenced or contain any

Transforms. Its purpose is to perform its mapping (if any) and return a

boolean result if its pattern is matched. The value of the result is used for

decision making in the execution of the model migration algorithm.

85

Legal Items

The replacement of syntax patterns from the old domain with patterns in the new

domain is the basis of domain evolution. The types of objects that can be used to create

these patterns are termed legal items in this paper, and depend on the language used to

create that domain-specific modeling environment � the meta-metamodel. This portion

of the evolution framework deals with those types of items allowed as patterns in a

framework.

Consider, for example, a metamodeling language such as UML. Language

ontologies defined using UML are defined in terms of classes and stereotypes,

associations and composition, attributes and methods. When the language is changed, the

new language is still defined using these same types. Regardless of the metamodeling

language, this will always be the case: that the evolution specification will be defined

using types that are directly dependent on the domain-specific modeling language�s meta-

metamodel.

+Delete
PatternItem

+CreateNew
ConsequenceItem

LegalPatternAssoc LegalConsequenceAssoc

Figure 24. Legal items (without meta-metamodel definitions defined)

Figure 24 introduces four abstract types that, when specialized provide the

archetypes for use in the patterns that are to be matched in the Transforms. All four of

86

these types are used in the next section dealing with the behavior of the individual

transforms. The purpose of these types is to serve as an interface to the transformation

specifications themselves.

+Attributes
+Stereotype

Class

+Attributes
+Stereotype

«proxy»
ClassCopy

+Cardinality
+ChildRole
+ParentRole

Composition
+srcCardinality
+dstCardinality
+srcRole
+dstRole

Association

+Delete
PatternItem

+CreateNew
ConsequenceItem

LegalPatternAssoc LegalConsequenceAssoc

Figure 25. Legal items specification for the UML class diagram metamodeling language

Figure 25 is an example of the legal items specification for a simplified UML

metamodeling language. The key elements are the Class and ClassProxy (a reference

to an existing class, used as a shorthand across class diagrams). The key associations

between these elements are Associations and Composition. The concepts of a proxy

and a class may seem like �implementation details� of the metamodeling language. That

is exactly what they are, and without capturing these implementation details it would be

impossible to migrate models that were defined with those implementation details as part

of the nomenclature of the metamodeling environment. The final result is that languages

87

defined using these UML concepts will be able to be evolved using the same concepts.

The PatternItems all receive an attribute that prescribes whether or not to delete the

item when a match is made. The ConsequenceItems have a similar attribute, but for

creation rather than deletion.

Transformation Specification

Transforms may be sequenced and contained: containment allows Rule

hierarchies. However, each type of Transform performs a different role upon execution

� that behavior is the purpose of the transformation specification portion of the

framework. The Test Transform performs only Parameter passing and flow control.

The other two Transform types (Rule and Case) perform matching, based on their mixin

type of Mappable.

The Mappable class is the center of the TransformationSpecification

diagram, shown in Figure 26. Although six classes are shown in this diagram, the

number of types of actual entities that can be used in a transformation specification is

somewhat misleading. First of all, PatternItems and ConsequenceItems are abstract

classes dependent on the type of meta-metamodel in use (recall that the �old� and �new�

DSMLs must be expressed using in the same meta-metamodel). Secondly,

PatternItems and ConsequenceItems are items of the same type, they merely play a

different role in the Mappable object when instantiated.

Recall that the LegalPatternAssocs and LegalConsequenceAssocs are the

abstract base types for the associations in which PatternItems and ConsequenceItems

(respectively) may participate with each other. The transformation specification is a

88

collection of PatternItems, associated with each other, as they would normally be in a

class diagram, which represents a particular syntactical pattern. The graph-rewriting

engine searches the original domain models for this syntax pattern, and using the

Mapping types of associations transforms PatternItems into ConsequenceItems.

Mappable

Mapping

+Delete
PatternItem

+CreateNew
ConsequenceItem

LegalPatternAssoc LegalConsequenceAssoc

-pattern0..* -consequence0..*

-consequence

0..*-pattern

0..*

src dst

0..*

Figure 26. The Transformation Specification layout

The types for mapping associations form a fundamental set of operations, in

similar fashion to the fundamental set of string replacement operations (i.e., insert,

concatenate, delete, replace). The determination of the fundamental set of replacement

operators for models is a significant problem in its own right. Textual replacement has

only one �association� � position � while object replacement in a graph can have as many

associations as are permitted for that type of object by the metamodel. This dissertation

limits that set of operators to CreateNew, CreateWithin, Becomes, and Delete

(analogous to insert, concatenate, replace and delete for textual manipulation).

• CreateNew � an attribute of a ConsequenceItem. If the LHS is matched then

any object with this attribute set to true will be created. There must be a

89

CreateWithin association in which this ConsequenceItem is either the

source or destination.

• CreateWithin � a binary association between a parent LegalItem

(destination) and child LegalItem (source). The parent and child may be

either a pattern or consequence, but at least one of them must be a

consequence object. An object taking part in this association may not take

part in a Becomes association, and may not have its Delete attribute set to

true if it is a PatternItem.

• Becomes � a binary association between a source PatternItem and a

destination ConsequenceItem. The source may not have its Delete

attribute set to true, and the destination object may not have its CreateNew

attribute set to true.

• Delete � an enumerated attribute of a PatternItem. If this attribute is set to

ObjectOnly, and the PatternItem is part of a match then that item will be

deleted (i.e., will not be copied directly into the output model) and any

children of the object will be preserved by default and placed in the parent of

the deleted object. If this attribute is set to ObjectAndChildren then all

children will be recursively deleted.

The assumption that allows for this limited set of mappings relies on the

definition of additional associations in a metamodel. Since these associations exist

because of the metamodel, then those associations may be treated as objects � and

created, replaced or deleted in their own right. While it may be possible to define more

high-level mappings that ease the burden of the transformation, at this time no further

90

mappings are defined. It is important to note that the Create and Delete mapping

associations are attributes of the objects that are to be created and deleted, rather than

binary mapping associations. This is because during creation and deletion the source and

destination endpoints (respectively) of a binary association would not exist.

Model of Computation for the Framework

The framework is designed to use any full-featured graph-rewriting engine as an

execution tool. Since rewriting engines have different models of computation, it is

important to define the strict execution semantics of the Transform classes, their

sequencing and the passing of parameters so that the Transformations can be

transformed into the artifact required by the graph-rewriting language. An independent

model of computation removes the framework from association with only one type of

graph transformation language, and allows for a mapping of its model of computation

onto that of the preferred semantic domain.

Order of Execution

Generally, the order of execution is specified by linking two AreSequenced type

objects with an ordered binary association. The handling of execution order is somewhat

similar to that of StateCharts [91][92], where the type State is used instead of type

AreSequenced. The specific rules and syntax for the sequencing are given in the

following paragraphs.

A Transformation consists of one or more Transform type objects. When more

than one object exists, then the first to execute must be specified. This is done by

associating the InitialTransition object (which has a semantics similar to the initial

91

transition in StateCharts) with the Transform that should execute first (using an

InitialSequence type association). There must not be more than one

InitialTransition, and if there are more than one Transform objects in the

Transformation, then there must be exactly one InitialTransition, and it must be

the source of exactly one InitialSequence association.

To order the execution of other Transforms the Sequence association is used.

Sequence associations can exist only between objects of type AreSequenced (Tests and

Rules). The Sequence association is a binary association with two endpoints: the source,

and the destination. In this directed association control flows from the source to the

destination when the Sequence association is taken. If there is more than one

AreSequenced object in the Transformation then each AreSequenced object must be

either the source or the destination of a Sequence association. Thus, unlike the

InitialSequence type association there can be more than one Sequence type

association in a Transformation.

Control Flow

Control flow is managed using the Test type object. Since a Test functions

similarly to the C �switch� statement, it is possible to direct the flow of execution by

taking an execution path only if a Case is true (recall that a Test contains 1..* Cases).

The difference between a Test and the �switch� statement is the way in which

the cases are specified. In the switch statement, a case is a value that must exactly equal

the value that is found in the switch specification. In order for a case to be true (in a C-

92

style statement), the value must be matched exactly with that of the variable passed to the

switch.

The Test type operates by comparing each value not as an exact match to a

variable, but instead by the �true� or �false� return value of the Cases inside. The code

found in Figure 27 is an abstraction of this behavior.

Case A { /* matching information */ }
Case B { /* matching information */ }
...
Case N { /* matching information */ }

Test {
if A.match()

/* take specified control path */
if B.match()

/* take specified control path */
...
if N.match()

/* take specified control path */
}

Figure 27. Test statement as described in the style of the domain evolution framework (representative, but
not actual syntax). Note that the Cases are defined to either match or not, so they are essentially a boolean
result

Note that this example is not exclusive as to the control path that can be followed.

It is possible to configure a Test to be exclusive, which means that in the abstract

example above the �if� statements after A.match() would be �else if� statements. A

default execution path may also be specified (only applicable to exclusive Tests) which

functions exactly as the default keyword in a C-style �switch� statement. This means

that Tests not configured to be exclusive will be capable of following a control path for

each Case that it contains.

93

The execution semantics gives no guarantees of determinism for picking a Test

for evaluation. It is also up to the migration designer to create a mutually exclusive Test.

This is because some evolutions may require multiple consequences for a particular

pattern matched (for instance side effects may be required for all types, as well as

different consequences for some specific types). The evolution framework must be

capable of directing multiple paths to be followed from a particular portion of the input

graph.

94

CHAPTER IV

DOMAIN EVOLUTION TOOL FOR METAGME POWERED BY XSLT

The specialization of the DEF is a specific domain evolution tool. This tool

provides a domain-specific interface for creating model migration solutions. As

previously discussed, the specialization occurs along two parameters � the meta-

metamodel, and the graph-rewriting language. The case study examined in Chapter V is

an example of model migration of GME metamodels, so the GME metamodeling

language � MetaGME � is one axis of specialization presented in this chapter. The

second is XSL � chosen because GME domain models are available in XML format.

XSL is also well-defined for transformation across existing runtime engines, so the

implementation of the XSL stylesheet can be performed by the preferred execution

engine of the user and not be limited to one implementation of an XSL engine.

The domain evolution framework presented in the previous section is a useful

framework for migrating domain models. However, to be useful as a domain-specific

modeling language of its own it must be specialized to comprehend a particular meta-

metamodel and to produce a particular graph-rewriting specification. The specialized

domain evolution framework (now called the domain evolution tool) is then a domain-

specific environment that may be used to migrate domain models. Once specialized, the

domain evolution tool uses elements of two metamodels and associates them with one

another using the domain model migration patterns and mappings found in the

Transformation specification. The process to specialize the framework involves

providing the metamodeling types that are to be used as PatternItem and

95

ConsequenceItem (and likewise for Pattern and Consequence associations). The

details of these specializations are given throughout the rest of this chapter.2

The GME metamodeling environment

The Generic Modeling Environment (GME), developed at Vanderbilt University

[100], is a meta-programmable visual modeling tool. As such it may be configured at

design time to provide a domain-specific modeling environment through a metamodel

[101]. The default metamodeling environment uses stereotypes and visualization

standards that are representative of the fundamental design of core technology found in

the MultiGraph Architecture (MGA) [3]. That is, they are the actual types that MGA is

designed to use. As such, they are not necessarily the same types that another tool might

use if it were designed separately from GME. Nevertheless, their existence was a design

decision, and their usage in GME justifies their consideration when performing domain

evolution, as there are a significant number of model databases in which these are the

fundamental types.

The Container for Metamodel Definitions

The domain evolution tool requires knowledge of metamodeling types � the

objects used to establish patterns � but this information alone is useless without

knowledge of where those types are defined. Context of the definitions (which tells the

domain evolution tool from which metamodel individual types are defined) can be used

2 It should be noted that in the unspecialized evolution framework is implemented in class diagram form,
and that many of the classes used in the definition are proxy (i.e., reference) objects that do not refer to any
class. In order to specialize the framework, these classes are redirected to actual objects in the meta-
metamodel. Throughout this chapter when we say a proxy is �pointed to� or �set to� or �will refer to� an
object, then we are stating that the proxy object is redirected to refer to the object in the meta-metamodel.

96

by the domain evolution tool to guarantee that no types from the old metamodel exist in

the migrated software, or that a Transformation does not use types from the new

metamodel as a Pattern of a Rule.3

OldClassDiagram

Transformation

NewClassDiagram

1

1

ParadigmSheet

Figure 28. The OldClassDiagram and NewClassDiagram objects are pointed to the MetaGME ParadigmSheet
object. This denotes that an object of type ParadigmSheet will be used to specify the Transformation. Once
again, both metamodels are of the same meta-type

Figure 22 showed that a Transformation contains two collections � the old and

new class diagrams. In order to specialize the Transformation to work with a particular

meta-metamodel the container type for class definitions must be specified. This type is

seldom the same for two different meta-metamodels (e.g., one meta-metamodel may refer

to it as a ClassDiagram while another prefers DiagramSheet), so the generic

Transformation definition cannot know in advance the specifics of the meta-metamodel

3 As previously mentioned, a constraint that the Patterns be always composed of �old� metamodel types
or that the Consequences be always of �new� metamodel types is not required. However, this is often
the case, and justifies the ability of the domain evolution tool to provide the user with notification that this
constraint is violated.

97

it will be using. The MetaGME paradigm uses a class called ParadigmSheet, so the

OldClassDiagram and NewClassDiagram objects in will refer to the ParadigmSheet

object in the GME meta-metamodel.

Patterns and Consequences

The ParadigmSheet object is defined in order for the Transformation to have

knowledge about the context of the Pattern and Consequence objects � the core objects

of the domain evolution specification. Patterns and Consequences (as well as any

associations between them) are the same types of objects; they merely play a different

role when used to specify an evolution. Recall that when domain evolution is performed

each domain-specific modeling language must be defined using the same meta-

metamodel � in this case, MetaGME. Thus, the Patterns and Consequences must be

able to use the same types of objects when defining the specification.

Whereas the old and new class diagram objects were specialized using reference

redirection (see the previous section) Pattern and Consequence specialization must be

performed using the inheritance concept. This is because different meta-metamodels

have a different number of fundamental types that can be used to describe metamodels.

Any fundamental type that a meta-metamodel defines must be available during the

domain evolution phase, so a more appropriate specialization is to use inheritance

(allowing an arbitrary number of objects to be of the same type) rather than specify a

quantity of types as proxies and then directing those proxies to the actual types.

An example of inheritance specialization for the domain evolution framework was

provided earlier, but is fully defined for MetaGME in Figure 29. Once again, note that

98

the objects from the GME meta-metamodel (ProxyBase, Constraint, FCO, Attribute,

Src, Dst, Composition, etc.) are fully defined in the meta-metamodel, not in this

diagram. Also note that these objects actually utilize multiple inheritance to be both

Patterns and Consequences. The astute reader will be curious as to how an object that

is both a Pattern and a Consequence (though the IS-A inheritance relationship) could

ever be distinguished as a Pattern or Consequence when it is contained in a Transform.

However, this IS-A relationship does not exist when a type is used in a specification,

because the user is asked to choose a role for the type � either Pattern or Consequence.

Thus a Pattern will not use a CreateNew attribute, and a Consequence will not use a

Delete attribute.

+Delete
PatternItem

+CreateNew
ConsequenceItem

LegalPatternAssoc LegalConsequenceAssoc

FCO

+Attributes
+Stereotype

«proxy»
ProxyBase

+Cardinality
+ChildRole
+IsPort

Composition

+dstRole
+srcRole
+dstCardinality
+srcCardinality

Connector

Atom Model Reference Set Connection

«proxy»
AttributeProxy

«proxy»
EnumAttrRef

«proxy»
BooleanAttrRef

«proxy»
FieldAttrRef

Attribute

ReferTo

+dstRole
+Cardinality

Dst

+srcRole
+Cardinality

Src

AttributeContainment

Figure 29. Specializing Patterns and Consequences for use with the UML paradigm

99

Mapping the DEF Model of Computation onto XSL

The previous chapter covered in detail the model of computation of the meta-

metamodel independent DEF, and mentioned that its own model of computation could be

mapped onto that of a full-fledged graph transformation language in order to implement

the domain-specific semantics of model migration in that graph transformation language.

This section will describe the mapping of the DEF onto XSL. First the XML storage

format of GME is discussed, so as to determine the form of the XSL file, and then the

model of computation mapping is provided.

Matching Patterns

The transforms created using a domain evolution tool must be translated into the

semantic domain of a graph-rewriting engine before model migration can take place. The

process of creating a semantic translator from the domain evolution tool to a particular

graph-rewriting engine goes in two phases: first, the graph notation used to describe

persistent models must be understood, and second the mapping from domain evolution

pattern to graph-rewriting pattern must be formalized so that arbitrarily large patterns can

be matched.

Therefore, in order to generate XSL that will traverse and modify models built

according to a GME metamodel we must describe how data created using GME is stored.

Refer to Figure 1 for the process of creating a GME metamodel and building data using

that metamodel. The data is stored in accordance with the domain-specific XML schema

(shown near the center of the figure). This domain-specific schema is generated from the

specifications made in the GME metamodeling environment. Figure 30 shows an

example metamodel, the schema it generates, and some example data conforming to that

100

schema. The colors and arrows show how the type of the object (and its attribute) are

dispersed throughout the paradigm and data files.

<paradigm name="Camera-Meta">
<folder name="RootFolder" metaref="1000"

rootobjects="Camera ">
<attrdef name="ApertureRange"/>
<!-- other attributes omitted for brevity -->
<attrdef name="fps"/>
<atom name="Filter" attributes="Type Density"/>
<model name="Camera" attributes="Size fps">

<role name="Lens" kind="Lens"/>
</model>
<model name="Lens" attributes="FocalLength

AutoFocus ApertureRange">
<role name="Filter" kind="Filter"/>

</model>
</folder>

</paradigm>Generated Paradigm

<project metaname="Camera-Meta">
<!-- some objects and attributes omitted for brevity -->
<model id="id-0065-00000001" kind="Camera">
<name>Pentax</name>
<attribute kind="Size"><value>35mm</value></attribute>
<attribute kind="fps"><value>2.5</value></attribute>
<model id="id-0065-00000002" kind="Lens" role="Lens">
<name>Lens</name>
<attribute kind="ApertureRange"><value>2.8-

22</value></attribute>
<!-- some objects and attributes omitted -->
<atom id="id-0066-00000002" kind="Filter" role="Filter">
<name>Filter</name>
<attribute kind="Type">
<value>Neutral density</value></attribute>

<attribute kind="Density"><value>4</value></attribute>
</atom>

</model>
</model>

</project>

Data (in XML format)GME Metamodel <paradigm name="Camera-Meta">
<folder name="RootFolder" metaref="1000"

rootobjects="Camera ">
<attrdef name="ApertureRange"/>
<!-- other attributes omitted for brevity -->
<attrdef name="fps"/>
<atom name="Filter" attributes="Type Density"/>
<model name="Camera" attributes="Size fps">

<role name="Lens" kind="Lens"/>
</model>
<model name="Lens" attributes="FocalLength

AutoFocus ApertureRange">
<role name="Filter" kind="Filter"/>

</model>
</folder>

</paradigm>Generated Paradigm

<project metaname="Camera-Meta">
<!-- some objects and attributes omitted for brevity -->
<model id="id-0065-00000001" kind="Camera">
<name>Pentax</name>
<attribute kind="Size"><value>35mm</value></attribute>
<attribute kind="fps"><value>2.5</value></attribute>
<model id="id-0065-00000002" kind="Lens" role="Lens">
<name>Lens</name>
<attribute kind="ApertureRange"><value>2.8-

22</value></attribute>
<!-- some objects and attributes omitted -->
<atom id="id-0066-00000002" kind="Filter" role="Filter">
<name>Filter</name>
<attribute kind="Type">
<value>Neutral density</value></attribute>

<attribute kind="Density"><value>4</value></attribute>
</atom>

</model>
</model>

</project>

Data (in XML format)GME Metamodel <paradigm name="Camera-Meta">
<folder name="RootFolder" metaref="1000"

rootobjects="Camera ">
<attrdef name="ApertureRange"/>
<!-- other attributes omitted for brevity -->
<attrdef name="fps"/>
<atom name="Filter" attributes="Type Density"/>
<model name="Camera" attributes="Size fps">

<role name="Lens" kind="Lens"/>
</model>
<model name="Lens" attributes="FocalLength

AutoFocus ApertureRange">
<role name="Filter" kind="Filter"/>

</model>
</folder>

</paradigm>Generated Paradigm

<project metaname="Camera-Meta">
<!-- some objects and attributes omitted for brevity -->
<model id="id-0065-00000001" kind="Camera">
<name>Pentax</name>
<attribute kind="Size"><value>35mm</value></attribute>
<attribute kind="fps"><value>2.5</value></attribute>
<model id="id-0065-00000002" kind="Lens" role="Lens">
<name>Lens</name>
<attribute kind="ApertureRange"><value>2.8-

22</value></attribute>
<!-- some objects and attributes omitted -->
<atom id="id-0066-00000002" kind="Filter" role="Filter">
<name>Filter</name>
<attribute kind="Type">
<value>Neutral density</value></attribute>

<attribute kind="Density"><value>4</value></attribute>
</atom>

</model>
</model>

</project>

Data (in XML format)GME MetamodelGME Metamodel

Figure 30. An example domain-specific modeling language created using the UML metamodeling
environment. The red draws attention to object type and its dispersion throughout the paradigm and
transform, while blue draws attention to the attribute type

Compare the structure of the previous figure with that of Figure 1 (p. 11). Note

that the generated paradigm (implemented as an XML file that configures GME) uses

domain concepts as elements and attribute names, and that those domain concepts are

highly visible in any data created in the domain. The data artifact shows that the domain-

specific concepts modeled in the GME metamodel are attached to instances in the data

(these instances are the domain models). The method that GME uses to store its domain

models should be explained further to avoid confusion.

101

The GME metamodel generates a paradigm which is an XML file (which will be

referred to as the edf file) that conforms to a schema named edf.dtd. This edf file is

used to configure GME at execution time, at which point GME becomes a domain-

specific modeling environment where the domain is specified by the edf file. Domain

models that are created using the DSME can be exported to an XML file (which will be

referred to as the data file) that conforms to a schema named mga.dtd. The data file and

the edf file have no relationship to each other in terms of well-formedness, but do share

common types and attributes since they are both related to the same metamodel. This

knowledge will be applied in future sections when the model of computation of the DEF

is mapped onto XSL.

XML Representation in GME

GME is a graphical modeling environment that heavily relies on the concept of a

multigraph to create models. GME uses XML format as one of its persistency models,

which requires modification to the representation of some concepts in a multigraph

architecture. The representation of a multigraph in XML structure (i.e., a tree) is possible

only through the use of value-based associations that associate unique elements of the

tree with each other across containment hierarchies. This is performed through the use of

the ID and IDREF keywords in the XML schema that describes all GME model databases

(see [100] for details).

The previous figure is an example of the formal mapping of the definitions in the

visual language onto XML, using the knowledge of how a basic GME domain model is

represented in XML format. The mapping for the representation of the domain models is

shown below:

102

<type kind="ClassName" ...
<attribute name="attributeName" ...
</attribute>

</type>
+attributeName

«type»
ClassName

<type kind="ClassName" ...
<attribute name="attributeName" ...
</attribute>

</type>
+attributeName

«type»
ClassName

Figure 31. Formal mapping from a GME metamodel definition and the XML representation of an instance
of that model created using GME.

Containment of objects is represented by actual containment in the XML

document, as shown in Figure 32. Note that FCO would substitute for any first class

object, but could never be instantiated, as it is abstract.

<model kind="A" ...
<attribute name="attributeName" ...
</attribute>
<FCO kind="B" ...

<attribute name="attributeName" ...
</attribute>

</FCO>
</model>

+attributeName

«model»
A

+attributeName

«FCO»
B

<model kind="A" ...
<attribute name="attributeName" ...
</attribute>
<FCO kind="B" ...

<attribute name="attributeName" ...
</attribute>

</FCO>
</model>

+attributeName

«model»
A

+attributeName

«FCO»
B

Figure 32. Formal mapping of hierarchy in a GME metamodel to an instance example of that hierarchy
represented in XML format

Representation of associations (e.g., connections, sets, and references) is mapped

out according to the example as given in Figure 33. Note that the atom:D does not

contain any information that it is a member of the connection:C association, but that

information is contained in the connection tag itself.

103

<model kind="P" ...
<attribute name="attributeName" ...
</attribute>
<atom kind="D" ...

<attribute name="attributeName" ...
</attribute>

</atom>
<connection kind="C" ...

<connpoint role="dst" ...
<connpoint role="src" ...

</connection>
</model>

+attributeName

«model»
P

+attributeName

«atom»
D

«connection»
C

src dst

<model kind="P" ...
<attribute name="attributeName" ...
</attribute>
<atom kind="D" ...

<attribute name="attributeName" ...
</attribute>

</atom>
<connection kind="C" ...

<connpoint role="dst" ...
<connpoint role="src" ...

</connection>
</model>

+attributeName

«model»
P

+attributeName

«atom»
D

«connection»
C

src dst

Figure 33. Formal mapping of association in a GME metamodel to an instance example in XML format

Other information is also encoded into the XML file, such as the paradigm name

(and a global identifier to distinguish between different paradigm versions), position of

the instantiated objects, icons that describe their appearance, and modifiers to specify

other visual attributes such as the color. Some, but not all, of this additional information

can be accessed for transformation using the language.

The Isomorphism

The XSL model of computation is conveniently defined from the perspective of

model migration in that it is simple to create an identity transform, or isomorphism, for

domain concepts that are not modified during domain evolution. The XSL model of

computation (as described in Chapter II) prescribes that each node in the input XML

document will be processed exactly one time, unless recursively called by a template.

The document nodes are matched to the first template whose selection criteria they

satisfy, and are passed to that template for processing.

104

XSL templates are sorted based on their level of complexity, where wildcard

matches are considered the least complex out of all possible matches. Therefore, unless a

particular object is specified to be changed, it will be processed by the isomorphic

transform, shown in Figure 34. This template copies the current node to the output graph,

and then attempts to match all children and attributes using the apply-templates

command. This template is placed in every XSL stylesheet created by the GME model

migrator tool. This presents a convenient method in which the isomorphism transform

may be defined, because the isomorphism transform is the same for all nodes, due to use

of the available wildcards in the XPath language (e.g., @*).

 <xsl:template match="@* | node()">
 <xsl:copy>
 <xsl:apply-templates select="@* | node()"/>
 </xsl:copy>
 </xsl:template>

Figure 34. The isomorphic transform used in XSL

Generated XSL

Given the formal definition of how instances of GME domain models are

represented in XML format, it is possible to set forth a mapping from the patterns

described using the model migration interface to patterns in XSL � or more accurately, in

XPath. Each of the previous graphics in the examples that gave the storage layout of a

particular domain model will be used to give the XPath expression that matches that

particular instance pattern. In some cases, the XPath expression has been modified for

readability.

For a generic object, the representation is as follows:

105

<xsl:template match="type[@kind='ClassName']">
<!-- template body -->

</xsl:template>+attributeName

«type»
ClassName

<xsl:template match="type[@kind='ClassName']">
<!-- template body -->

</xsl:template>+attributeName

«type»
ClassName

Figure 35. Formal mapping from a graphical pattern in a transform and its XSL representation

Note that the attributeName attribute is not used in the XPath statement at all.

This is because all ClassName objects will contain this attribute � otherwise, the objects

would not be well-formed (a precondition of MM). Thus selection based on the

containment of an attribute named attributeName is redundant. Because patterns are

built from proxies to the actual objects, it is the name and type of the actual object that is

used to create the templates, not that of the proxy object that appears in the diagram. The

rest of the examples in this sub-section are all given with the actual objects as members

of the pattern, rather than their proxies, to increase readability.

When containment is specified as part of the pattern the XSL selection process

becomes complicated due to the fact that an exact match must be found, else the object

should be copied. In the event of a complex containment match, it could happen that

objects of the same type and in similar contexts might be treated differently depending on

the circumstances (i.e., one might be directly copied, while the other is transformed). In

the general case it is necessary to distinguish the exact circumstances of all elements

relating to the current object being selected, called the focus in the transforms. As Figure

36 shows, the FCO:B is matched in all cases, but only transformed in the template if it has

a parent of model:A type. If the parent does not exist (or in more complicated matches, if

any portion of the pattern fails) then the object is copied to its output. Note that more

than one <xsl:when> can be contained inside the <xsl:choose> tag, meaning that a

106

multiple number of possible tests involving FCO:Bs can be tried before the isomorphism

is applied.

<xsl:template match="FCO[@kind='B']">
<xsl:variable name="B4_A"

select="parent::model[@kind='A']"/>
<xsl:variable name="B4_focus_B"

select="current()"/>
<xsl:choose>
<xsl:when test="current()[$B4_focus_B][$B4_A]">
<!-- template body -->

</xsl:when>
<xsl:otherwise>
<!-- perform isomorphic transform -->

</xsl:otherwise>
</xsl:choose>

</xsl:template>

+attributeName

«model»
A

+attributeName

«FCO»
B

<xsl:template match="FCO[@kind='B']">
<xsl:variable name="B4_A"

select="parent::model[@kind='A']"/>
<xsl:variable name="B4_focus_B"

select="current()"/>
<xsl:choose>
<xsl:when test="current()[$B4_focus_B][$B4_A]">
<!-- template body -->

</xsl:when>
<xsl:otherwise>
<!-- perform isomorphic transform -->

</xsl:otherwise>
</xsl:choose>

</xsl:template>

+attributeName

«model»
A

+attributeName

«FCO»
B

Figure 36. Mapping a containment pattern into XSL

When associations are part of the pattern then the variables and tests similar to the

case of containment is extended. The complicating factor here is that connections,

references, and sets, can be contained anywhere in the hierarchy of the root object, so the

entire document must be searched to find the associations of which an object is a

participant.

107

<xsl:template match="atom[@kind='D']">
<xsl:variable name="Becomes4_C"

select="//connection[@kind='C']"/>
<xsl:variable name="Becomes4_P"

select="parent::model[@kind='P']"/>
<xsl:variable name="Becomes4_focus_D"

select="current()"/>
<xsl:choose>
<xsl:when test="current()

[@id=//connection[connpoint[@role='src']
/@target=connpoint[@role='dst']/@target]/
connpoint[@role='src']/@target]
[$Becomes4_C][$Becomes4_focus_D]
[$Becomes4_P]">
<!-- template body -->
</xsl:when>
<xsl:otherwise>
<!-- perform isomorphic transform -->
</xsl:otherwise>
</xsl:choose>
</xsl:template>

+attributeName

«model»
P

+attributeName

«atom»
D

«connection»
C

src dst

<xsl:template match="atom[@kind='D']">
<xsl:variable name="Becomes4_C"

select="//connection[@kind='C']"/>
<xsl:variable name="Becomes4_P"

select="parent::model[@kind='P']"/>
<xsl:variable name="Becomes4_focus_D"

select="current()"/>
<xsl:choose>
<xsl:when test="current()

[@id=//connection[connpoint[@role='src']
/@target=connpoint[@role='dst']/@target]/
connpoint[@role='src']/@target]
[$Becomes4_C][$Becomes4_focus_D]
[$Becomes4_P]">
<!-- template body -->
</xsl:when>
<xsl:otherwise>
<!-- perform isomorphic transform -->
</xsl:otherwise>
</xsl:choose>
</xsl:template>

+attributeName

«model»
P

+attributeName

«atom»
D

«connection»
C

src dst

Figure 37. Mapping an association pattern (connection) into XSL

Figure 37 is an example pattern that uses an association as a portion of the

context. Note that the unique identifiers are used to guarantee that the dst and src

objects are in fact the same object, and that the connection is contained in the model:P.

The same basic methods are used when a reference or set is used as part of the pattern

rather than a connection, the only modifications being that the attribute names and

hierarchy of the set and reference are different.

Mappings

The mapping of a matched object occurs in the body of the template. The default

mapping, of course, is a direct copy into the output graph. When the template body is

entered, it is passed a set of nodes that conform to the pattern of the template that that

have satisfied all of the filters in any <xsl:when> tests. This set is then immediately

108

passed to a named template for further processing. Named templates are executed in an

XSL on command, and do not have any matching statements.

For each mapping in the model migration specification a named template is

generated in an XSL stylesheet. An example named template (and its corresponding

diagram) of the Becomes mapping is given in Figure 38. Note that each named template

is encoded with the change that it performs (in this case B becomes a D) and it is uniquely

named to avoid conflicts with multiple changes of the same type. Containers and shading

are added to the graphical specification and its generated XSL template to call attention

to which portions of the XSL are generated from which areas of the graphical

specification.

109

<xsl:template match="model[@kind='B']">
<xsl:variable name="Becomes_focus_B" select="current()"/>
<xsl:choose>
<xsl:when test="current()[$Becomes_focus_B]">
<xsl:call-template name="BBecomesD_2"/>
</xsl:when>
<xsl:otherwise>
<xsl:copy>
<xsl:apply-templates select="@*|node()"/>
</xsl:copy>
</xsl:otherwise>
</xsl:choose>
</xsl:template>

<xsl:template name="BBecomesD_2">
<xsl:element name="atom">
<xsl:apply-templates select="@*"/>
<xsl:attribute name="kind">D</xsl:attribute>
<xsl:comment>transformed using template 'BBecomesD_2'</xsl:comment>
<xsl:apply-templates select="node()"/>
</xsl:element>
</xsl:template>

Figure 38. Mapping transformation specified as a named template

An analogous method is used when performing CreateWithin (and consequently

CreateNew) except that the template would be called from within the template body of

the object in which the consequence was to be created. When using the Delete mapping

the template body is empty.

Sequencing

XSL stylesheets prescribe that nodes from the input document are processed in

document order [33]. This provides a deterministic behavior between executions of the

110

same input, but not a predictable behavior given any arbitrary input. As such, it would be

impractical to design a multi-pass algorithm in one stylesheet (that is, in one execution

step) when a multi-pass approach could be used.

There are several ways in which this may be done. One method would be to use

name-mangling to guarantee the uniqueness of mapping concepts and patterns (in the

event that a pattern and mapping are used in different Transforms). However, this

would still not work as identically matched patterns could not be distinguished by the

XSL processor.

Another method is to take advantage of the mode parameter of a template, and

have a different execution mode for each Transform in the overall transformation.

However practical this may seem from an execution standpoint, it is decidedly

impractical when considering debugging of algorithms, as a stylesheet of this nature

behaves like a spaghetti code program, rendering it impractical to debugging.

A third solution is to create a different stylesheet for each Transform in the

transformation, and pass an XML artifact to each stylesheet, keeping only the final XML

artifact. This is the implemented solution, due to its guaranteed predictability of

execution, and its easily composable nature. Also, by separating the execution into

different XSL stylesheets, it becomes easier to debug certain portions of the algorithm by

passing the XML document to that stylesheet only, and checking the output for errors.

Figure 39 shows the sequencing execution model. This implementation is not optimized

for performance at runtime, rather optimized for rapid generation of the XSL templates at

interpretation time of the domain evolution specification.

111

XML

XSL

XML

XSL

XML

XSL

XML

Rule0.xsl Rule1.xsl Rule2.xsl

int0.xml int1.xml

input.xml output.xmlXML

XSL

XML

XSL

XML

XSL

XML

Rule0.xsl Rule1.xsl Rule2.xsl

int0.xml int1.xml

input.xml output.xmlXML

XSL

XML

XSL

XML

XSL

XML

Rule0.xsl Rule1.xsl Rule2.xsl

int0.xml int1.xml

input.xml output.xml

Figure 39. Example transformation exemplifying the translation into a sequenced execution

Tests and Cases

Implementation of the Test and Case types of Transforms requires extremely

low-level direction of the flow of control using XSL file output. Since the execution of a

Test requires an attempt to execute all contained Cases (but not in any explicit order), and

since the control flow of those Cases is followed only if the Case pattern is matched, the

XSL transformation engine tests the current input XML file for possible control flow

continuation for the first Case. When that Case execution path is finished, the next Case

is tested against the current input file, which is the output XML file of the previous Case

execution path, rather than the input file used by that Case. An example diagram and

control-flow output is shown in Figure 40.

As with the general execution implementation (shown in the previous section) this

implementation method will have poor performance. Ideas for increasing the

performance of this (and the previous) implementation methods are given in the final

chapter.

112

XML

XSL

XML XSL XML XSL XML

Rule0.xsl

Test-C1.xsl Rule1.xslint0.xml int0.xml

input.xml
output.xmlXML

int1.xml

XSL

Rule2.xsl

XSL

Test-C2.xsl

XML

int2.xml

XML

XSL

XML XSL XML XSL XML

Rule0.xsl

Test-C1.xsl Rule1.xslint0.xml int0.xml

input.xml
output.xmlXML

int1.xml

XSL

Rule2.xsl

XSL

Test-C2.xsl

XML

int2.xml

Figure 40. Execution example for Transformation with Test and Cases

Paradigm Name

The purpose of including the ParadigmSheet objects as part of the transformation

process is for the migration of domain models from one paradigm to another. Frequently

these paradigms have the same name, but on many occasions the names are different. As

the XML file has the paradigm name encoded within it, this portion of the file must be

changed in order to load the output XML file into the new paradigm. By adding

references of the class diagrams to the OldParadigm and NewParadigm aspects of the

Transformation model, the name of the OldParadigm reference is replaced by the name

of the NewParadigm reference (note this is the name of the reference, not necessarily the

name of the class diagram to which it refers, which may require user input after the

creation of the reference). If the paradigm name does not change, then there is no need to

include the references to the class diagrams.

113

Implementation Details

Much of the domain evolution framework�s execution and model of computation

is abstracted from the meta-metamodels and graph-rewriting implementation used, and is

provided as a compiled library available to developers of domain evolution tools. This

compiled library contains the execution of the interpreter, which performs the translation

of the domain evolution specification by specifying visits to classes common to all tools

(such as Transforms and Ports) as well as abstract classes (such as PatternItems). In

order to take advantage of this abstract behavior, virtual methods and classes are used

throughout the abstract implementation to allow for specialization of behavior and meta-

metamodel definition independent of the algorithms for the model of computation of the

domain evolution framework. The abstract framework utilizes the visitor design pattern

[99] and � similar to the specialization of the language � is extendable through

inheritance. In addition to the visitor traversal specification (i.e., the form), there also is

the behavior of the visitor when it arrives at an appropriate node (i.e., the function).

Form and function are explained and examined below, for the MetaGME and the XSL

graph-rewriting engine.

Customized Node Classes � Form

The types of Patterns, Consequences, and the type of their container object (for

MetaGME, a ParadigmSheet) determine the specialized form of the domain evolution

tool. As previously mentioned, much of the semantics of the model of computation can

be expressed in terms of classes that exist for all meta-metamodels � e.g., the

AreSequenced and Transformation types. However each meta-metamodel will require

its own specialized architecture to account for its specific Pattern and Consequence

114

classes. The specialization is accomplished by deriving meta-metamodel-specific classes

from the abstract base class that defines the default behavior of a Pattern and

Consequence � called a LegalItem.

+IsPattern() : bool
+IsConsequence() : bool
+Delete() : bool
+CreateNew() : bool

LegalItem

+IsAbstract()
+GetReferredClass() : FCO

ProxyBase
+IsAbstract() : bool

FCO

Figure 41. When building the class hierarchy for the interpreter, FCO and ProxyBase (types in the UML
meta-metamodel) derive from abstract class LegalItem. This allows visitor classes to visit LegalItem
nodes and perform transforms specific to this meta-metamodel through polymorphism in the LegalItem
type

The LegalItem class is an abstraction for the use of the interpreter. It allows for

inheritance of the meta-metamodel specific types from one class, and then provides for

determination of whether objects of that type are Patterns or Consequences in the

evolution specification. Figure 41 shows the GME meta-metamodel nodes and how they

inherit from classes in the interpreter hierarchy.

Note that the FCO and ProxyBase types can provide their own instantiations of the

methods of LegalItem as the methods are virtual, enabling polymorphic behavior. Also

note that customized methods exist for the FCO and ProxyBASE types to determine

whether or not they are abstract, as well as the ProxyBase�s ability to determine of which

115

FCO it is a reference. Omitted are the method names that exist for FCO and ProxyBase to

gain access to the context of the object in its metamodel (e.g., containment associations

of which it is the source or destination). The visitor classes that are specialized for a

meta-metamodel often use these methods, as discussed in the next section.

Customized Visitor Classes � Function

Despite the specialization of the language for a particular meta-metamodel, the

form of the domain evolution language is largely unchanged after specialization occurs.

This allows for much of the algorithm for traversing domain evolution specifications to

be encoded in a paradigm independent manner � that is, much of the traversal logic is

independent of what types of LegalItems exist for a particular meta-metamodel.

However, the behavior at traversed nodes of the graph is dependent on polymorphism to

generate the correct graph-rewriting specification. Figure 42 shows a portion of the class

hierarchy that exists for the GME and XSL specialization of the domain evolution

framework, along with examples of other classes that could be created for use with other

meta-metamodels and graph-rewriting engines.

116

DefaultVisitor

GME_Visitor

XSL_GME_Visitor

UML_Visitor

PROGRES_GME_Visitor XSL_UML_Visitor PROGRES_UML_Visitor

XSL_GME_LegalItem_Visitor

XSL_GME_Transform_Visitor

XSL_GME_CanMap_Visitor

XSL_GME_AreSequenced_Visitor

Figure 42. Class hierarchy for the traversal of nodes in the interpreter, utilizing the Visitor design pattern.
Ghosted classes denote where other meta-metamodels may be incorporated in other designs, while the
darkened classes show the specialization of the visitor � initially to the GME meta-metamodel, and then to
the XSL graph-rewriting specification. Several classes are omitted for brevity

The domain evolution framework interpreter provides one abstract visitor class

that is used in the visitor traversal algorithm. The Transform and Transformation

classes contain lists of (or associations to) the meta-metamodel specific types used in the

domain evolution specification. Use of inheritance of these specific types from the

Pattern and Consequence types allows for the use of polymorphism among visitor

classes to efficiently produce the semantic translation of the specification into the graph-

117

rewriting language. The dynamic_cast C++ keyword is used to eliminate problems

with double dispatching.

In addition to creating the hierarchy of visitors, the implementation for individual

visit methods must be performed. The rationale behind overloaded signatures for the

visit methods is to provide a customized implementation for that signature type. The

implementation of these methods will produce the XSL transformation � which requires

analysis of the makeup of the data storage scheme described previously.

118

CHAPTER V

CASE STUDY

Two examples are presented in this chapter that will aid in the understanding of

the language and in its ability to migrate domain models. The first of these is primarily

presented as an academic exercise of an archetypal modeling evolution problem. The

second is an actual usage of the model migration paradigm to migrate models used by an

industry partner.

Evolution through Specialization of Domain Concept

A canonical example of the requirement for domain evolution is found in the

specialization of a domain concept into two or more derived concepts. For example,

consider the two metamodels shown in Figure 43. In the domain of signal processing,

there are individual signal processors that may be joined together through their Ports via

Connection associations. However, the domain language evolved by requiring that there

be exactly two different types of Port, Input and Output, and furthermore, that Input

and Output ports may be connected only in accordance to certain static semantics,

namely the following.

• Any Port may not be the source of a connection where the destination of the

connection is itself (previously existing constraint)

• An Input may not be the source of any connection in which the destination of

that connection is an Output

119

• An Input may be the source of a connection in which the destination is an

Input provided that the parent ProcessSignal of the destination is contained

by the parent ProcessSignal of the source

• An Output may be the destination of a connection in which the source is an

Output provided that the parent ProcessSignal of the source is contained by

the parent ProcessSignal of the destination (i.e., the connection serves as a

pass-through that crosses hierarchy boundaries)

Figure 43. The original metamodel (left) and the evolved metamodel (right)

Simply said, Input and Output ports may be used to pass along the input or

output signals of parent or child processes, but should never connect the same type if the

ProcessSignals exist on the same level of hierarchy.

120

Algorithm

In this case, we wish to maintain the exact semantics of the domain models when

they have been evolved, so we assume that the original modeler intended that the Port

objects behave as if they were the Input or Output ports in the evolved paradigm. Given

the existing constraints, and the evolved constraints, it is possible to write an algorithm to

convert any input domain model into its equivalent evolved domain model, while

maintaining the intention of the original modeler. The algorithm is as follows:

1. Transform all Ports that will become Input ports connected to other Input ports
2. Transform all Ports that will become Output ports connected to other Output

ports
3. Transform all remaining Ports that will become Input ports
4. Transform all remaining Ports that will become Output ports

This algorithm is fairly simple, but must be divided into at least two portions,

based on the fact that any port may be either an Input or an Output if it is the source of a

connection, due to the ability of ports to pass along signals from ProcessSignal models

on another level of hierarchy. Since this sort of control flow exists, the algorithm is

divided into four sequenced Transforms, as shown in Figure 44.

121

Figure 44. The sequence of Transforms to evolve the domain models

The domain evolution language provides interfaces to generate any type of graph-

rewriting language that is convenient to the end user. In this case, the domain models are

all stored in an XML format, which tailors nicely to the generation of XSL stylesheets to

perform the evolution. Each Transform in the sequence above will generate an XSL

document, which will be called in sequential order on the output artifact of the previous

Transform output, until the final document � suitable for use in the new paradigm � is

produced.

Transforms and Output XSL

Only two Transform contents need be shown, since the other two will be the dual

(i.e., for Outputs instead of Inputs). The first of these is the contents of the

HierarchyInputs Transform, which is shown in Figure 45. This represents the

algorithm step number 1. Notice that the parent of the source Port is the grandparent of

the destination Port. The output XSL is given in Figure 46 and Figure 47.

122

Figure 45. Contents of the HierarchyInputs Transform

<xsl:template name="PortBecomesInput_62081432">
 <xsl:element name="atom">
 <xsl:apply-templates select="@*"/>
 <xsl:attribute name="kind">Input</xsl:attribute>
 <xsl:attribute name="role">Input</xsl:attribute>
 <xsl:comment>
 transformed using template 'PortBecomesInput_62081432'
 </xsl:comment>
 <xsl:apply-templates select="node()"/>
 </xsl:element>
</xsl:template>
<xsl:template name="PortBecomesInput_62081992">
 <xsl:element name="atom">
 <xsl:apply-templates select="@*"/>
 <xsl:attribute name="kind">Input</xsl:attribute>
 <xsl:attribute name="role">Input</xsl:attribute>
 <xsl:comment>
 transformed using template 'PortBecomesInput_62081992'
 </xsl:comment>
 <xsl:apply-templates select="node()"/>
 </xsl:element>
</xsl:template>

Figure 46. XSL Output for the HierarchyInputs Transform (named templates)

Each pattern object is given its own context in relation to the objects being

transformed through the Becomes association, and this context is shown in the

xsl:variable that is created for each member of the pattern context. When each node is

parsed in the input file, it is passed through the set of filters to determine whether it is

123

matched. If so, it is passed on to become an Input; if not, it is copied as-is. Calls are

made to the named templates (seen in Figure 46) if a match is found (matching attempts

shown in Figure 47).

<xsl:template match="atom[@kind='Port']">
 <xsl:variable name="Becomes6_focus_Port6"
 select="current()"/>
 <xsl:variable name="Becomes6_ProcessSignal6"
 select="current()/parent::model[@kind='ProcessSignal']"/>
 <xsl:variable name="Becomes6_Port6"
 select="current()/parent::model[@kind='ProcessSignal']
 /child::model[@kind='ProcessSignal']
 /child::atom[@kind='Port']"/>
 <xsl:variable name="Becomes6_Port62"
 select="current()/parent::model[@kind='ProcessSignal']
 /parent::model[@kind='ProcessSignal']
 /child::atom[@kind='Port']"/>
 <xsl:variable name="Becomes6_ProcessSignal62"
 select="current()/parent::model[@kind='ProcessSignal']
 /parent::model[@kind='ProcessSignal']"/>
 <xsl:variable name="Becomes62_ProcessSignal62"
 select="current()/parent::model[@kind='ProcessSignal']"/>
 <xsl:variable name="Becomes62_ProcessSignal620"
 select="current()/parent::model[@kind='ProcessSignal']
 /child::model[@kind='ProcessSignal']"/>
 <xsl:variable name="Becomes62_focus_Port62"
 select="current()"/>
 <xsl:choose>
 <xsl:when test="current()
 [@id=//connection[child::connpoint[@role='dst']
 /@target=$Becomes6_Port6/@id]
 /child::connpoint[@role='src']/@target]
 [$Becomes6_focus_Port6][$Becomes6_ProcessSignal6]
 [$Becomes62_ProcessSignal620][$Becomes6_Port6]">
 <xsl:call-template name="PortBecomesInput_62081992"/>
 </xsl:when>
 <xsl:when test="current()
 [@id=//connection[child::connpoint[@role='src']
 /@target=$Becomes6_Port62/@id]
 /child::connpoint[@role='dst']/@target]
 [$Becomes62_focus_Port62][$Becomes62_ProcessSignal62]
 [$Becomes6_ProcessSignal62][$Becomes6_Port62]">
 <xsl:call-template name="PortBecomesInput_62081432"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:copy>
 <xsl:apply-templates select="@*|node()"/>
 </xsl:copy>
 </xsl:otherwise>
 </xsl:choose>
</xsl:template>

Figure 47. XSL Output for the HierarchyInputs Transform (main stylesheet matched templates)

124

Figure 48. Contents of the DoInputs Transform

The other Transform contents that bear noting are those of the DoInputs

Transform, shown in Figure 48. In this portion of the algorithm (step 3) the destination

of the Connection and the containment context of the Port are irrelevant: only the type

of the destination matters. Therefore, no further context is required for the Transform

pattern, in essence, the connection type is a wildcard. The XSL output for the DoInputs

Transform is much simpler, but omitted for brevity.

Domain Models � Before and After

Consider the set of models in Figure 49. The upper portion of the figure shows

the high level of the models, and the lower portion is the contents of ProcessSignal1,

which contains another level of ProcessSignal. Note that the contents of

ProcessSignal1 satisfy the hierarchy portion of the algorithm, where Input and Output

ports may be connected to others of the same type. Also, note that the name �Port� on

the objects is an instance name, not a type name (type in this domain is denoted by icon).

125

Figure 49. An original domain model in the SignalFlow domain

126

Figure 50. The evolved domain model in the evolved SignalFlow domain

After processing the models in Figure 49 with the domain evolution algorithm

created in the earlier part of the section, the output models are ready for use in the

evolved domain. Figure 50 shows the evolved domain models. Once again, it is

important to note that the icon with blue filling and white arrow represents Input type,

and white with red arrow and border represents Output type (contains a border). The

example evolved perfectly, and satisfies all of the syntactic and semantic constraints of

the evolved domain.

Evolution through Removal of Type

Recall that domain evolution requires modifications to the domain models when

changes occur to any portion of the paradigm tuple (syntax, static semantics, ontology,

127

and semantic translator). The previous example was a change in all four portions of the

tuple, because the ontology set increased. This example is a change in syntax due the

decrease in the size of the ontology set. Whereas the previous example was required

because of changes to the domain (Ports were being eliminated) this example is driven by

changes to the language only � that is, the abstraction of the system is changing, but the

system itself is not. This is an example of model migration being required by a change to

the modeling environment for the sake of convenience, rather than an evolution of the

domain concepts.

The Embedded Systems Modeling Language (ESML), a domain-specific

graphical modeling language developed for modeling Real-Time Mission Computing

Embedded Avionics applications. The following description of the ESML language is

taken from [102].

The ESML is specifically intended for modeling component-based avionics

applications designed for the Bold-Stroke [103] component deployment and distribution

middleware infrastructure. The infrastructure implements an event-driven model of

computation. In this model of computation supplier components notify other component

of the availability of data through events. Consumer components interested in the data of

the suppliers get notified when they subscribe to these events. An event-channel service

as implemented by the infrastructure facilitates event filtering, propagation and

notification. The real-time nature of event service allows managing and preserving

component and task priorities. Details of this infrastructure can be seen in [104].

Because of the complexity of the models created by hand in Bold-Stroke this

domain-specific modeling environment proved to streamline the creation of models.

128

However, some techniques used to abstract the domain concepts into the modeling

language were difficult to use, and presented usage issues both by the end user as well as

by the developer (Vanderbilt University). Thus a change to the language was proposed in

order to further enhance the usability of the modeling environment.

The existing paradigm, which will be referred to as ESML, used the notion of

unary association to model Bold-Stroke objects. This unary association (a Reference

type named ComponentProxy in the GME metamodel) refers to another component type

in the Bold-Stroke document. The new paradigm, which will be referred to as ESML�,

uses a GME run-time feature called types-and-instances to model this relationship by

creating an instance (at runtime) of the object that was previously referred. In GME an

instance is required to have the same structure as its type, but the instance is allowed to

modify its attribute values (and associations in which the instance takes part) to vary

instance-by-instance. For more information on types-and-instance GME, please refer to

the GME user manual [100].

129

Figure 51. Excerpts from the existing ESML metamodel and the evolved ESML� metamodel

Figure 51 shows the important excerpts from the original and evolved ESML

metamodels. The original metamodel contained a ComponentProxy class that refers to

the ComponentType class (a kind of the abstract class ComponentBase). In the evolved

ESML paradigm, any ComponentProxy object should become instead a ComponentType

object that is a GME-instance of the ComponentType object to which the

ComponentProxy object originally referred. In addition, a connection that exists between

an existing EventType and the PublishPort of the existing ComponentType should be

duplicated for a new EventType instance and the newly instantiated ComponentType.

Finally, a connection of type Distribute should be created that links the

ComponentType archetype to the ComponentType instance.

130

Part of the reason for including this wordy definition is to underscore the

inadequacy of the English language definition of model migration algorithms. However,

the description is a fairly accurate portrayal of the diagram shown in Figure 52. The left-

hand side of the figure is filled with patterns from the existing metamodel (shown in blue

on the diagram) and the right-hand side is filled with consequences of that matched

pattern (shown in red).

Figure 52. Rule to migrate the ComponentProxy to ComponentType

This figure utilizes nearly every concept in the model migration language for

GME. It also exemplifies the difference in the model of computation of the domain

evolution framework versus that of the graph-rewriting language used (XSL).

131

Specifically, the InteractionModel on the left side of the diagram serves as a part of the

pattern match, as well as the parent for several objects created in the aftermath of

matching the pattern. Since XSL prescribes that the input graph is not modified, this

would clearly be an illegal statement in XSL. However, the mapping of the model of

computation onto XSL takes care of this through low-level implementation details, as

explained in the previous chapter.

132

CHAPTER VI

CONCLUSIONS AND FUTURE WORK

The domain of domain evolution has long been approached through the

application of low-level domain-independent languages to manage the very specific

recreation of domain model databases such that those databases are correct in the evolved

domain. This dissertation has presented a domain evolution framework that provides a

domain-specific solution to the modeler that is specialized on two axes � the meta-

metamodel, and the graph-rewriting language.

The domain evolution framework exists independent of these two axes, and has

its own model of computation and semantic interpretation of the domain model evolution

algorithms. As a domain-specific solution, it provides the ability to specify the migration

of domain models using patterns of domain concepts that are mapped to patterns of

evolved domain concepts through mappings that are domain evolution concepts. By

definition the domain evolution framework operates based on the difference between two

metamodels, meaning that it satisfies the golden rule of maintenance; only now we are

dealing with the maintenance of domains rather than the maintenance of executable code.

In addition, the common functionality and user interface of any domain evolution tool are

abstracted into this common framework, thus allowing code reuse and model reuse for

the domain of domain evolution.

Once specialized on these the meta-metamodel and graph-rewriting axes the

domain evolution tool exists as a standalone modeling environment that a metamodeling

expert can use to migrate the domain models of any evolved metamodel created with this

133

meta-metamodel: in essence, low-level domain model migration scripts can be replaced

with scripts that are generated from graphical, intuitive, metamodel-specific domain

model migration specifications.

Comments on Usage

Users of the model migration language for GME generally agreed that its

intuitiveness allowed them to migrate their models in terms of concepts they readily

understood. In specific, many users have required special attention during the beginning

phases of language use, but once they do some examples, they are comfortable with the

language.

Remarks on Limitations

The modeling language is customized for the domain of the specification of the

migration of domain models due to evolution of the modeling language. However small

this application area may be, the language may still be used to operate on problems that

may be better classified as another type of transform, for example, tool integration. It

should be noted that although this language may be used to solve these problems, it may

not be practical to do so when compared with another domain-specific language geared

toward that particular problem.

The limitation of this language is not in the problem that it can solve, but in the

ability of the modeler to conceive the algorithm that will translate models between two

domains. Examples such as those presented in this dissertation are consistent with the

expected usage of the language, where evolutionary changes have occurred, but

134

revolutionary changes, such as translation of a UML class diagram to Microsoft

PowerPoint picture, could be performed if the modeler could conceive of the algorithm.

This particular language is therefore somewhat limited in its application scope, as

it is so domain-specific. However, the concepts used to develop the types of transforms

used in this framework, as well as the theories behind the semantic model migration and

translation algorithms developed with the model and modeler intents in mind, can be used

throughout the model transformation (or graph-rewriting) domain.

As far as GME is concerned, the language is limited in that it can operate only on

models that are stored in the XML persistency format. It would be an interesting project

to implement a migration engine to operated on the MGA binary files that GME stores by

default, but the work involved in undertaking this problem vs. the reward renders the

possibility minute � especially considering that all GME projects can be saved in XML

format, and that previous GME paradigms can be used to open the old binary files.

One important limitation is the inability of the language to check for correctness

of the transformed domain models. The DET for GME/XSL does not perform any

checks to ensure the correctness of the migrated models, for syntactic, static semantic, or

dynamic semantic reasons. Future work in this area could lead to alerts given to the user

when consequence objects are created that violate the evolved metamodel. Due to the

onus placed on the user to create valid transforms, however, these alerts would function

more as a measure to prevent inadvertent errors than an addition tool used to design the

model migration specification.

135

Continuing Research

The modeling language is intuitive when examined after creation, but many of the

concepts of the domain which are taken from procedural or functional programming (e.g.,

Tests, Rules, Ports, etc.) have semantics that may not be intuitively obvious to a new

user of the language. The development of more precise static semantics of the language

will enable the creation of constraints that will allow users to be more confident of the

models they create at design time, and illegal construction can be pointed out before

interpretation time.

Other Meta-Metamodels and Graph-Rewriting Engines

Also, the extension of the framework to other meta-metamodels and graph-

rewriting languages is ongoing. An example other meta-metamodel is the UDM

metamodel, which has a restricted subset of the GME metamodeling types. This tool will

likely not use XSL as its graph-rewriting language, as the intermediate XML files will be

required to utilize a schema to which they will not comply once transformations have

begun to take place (this is because the schema for these XML files are DTDs rather than

configuration files for the modeling environment, see [32]).

The addition of the GReAT engine as a possible output language would benefit

users familiar with the GReAT language. Since this language allows for the traversal and

modification of UDM objects � and UDM objects can be created from GME objects

using UDM techniques � this is a reasonable way in which to migrate models. Benefits

to the generation of this language include graphical debuggers, as well as (possibly) faster

execution of the graph transformations.

136

Framework Enhancements

The domain evolution framework is acceptable as it is currently implemented, but

there are several enhancements that can be made, or are currently being made, to increase

the usability of the language and make it easier for the creation of model migration

algorithms.

Guard Conditions for Sequence Traversal

One ongoing implementation enhancement is the addition of guard conditions to

Sequence associations. This would allow for a control flow �shorthand� that would

prevent the need of a Test/Case pair to modify the flow of execution in simple situations.

Sequence type associations would then be permitted to associate with the same

AreSequenced object on each end (this is to allow for iterative processing of an

AreSequenced object). Determination of the Sequence association to traverse in the case

of more than one association would be done through this guard condition, specified in

OCL [5], which expresses the conditions required for allowing the traversal. The guard

may evaluate only to �true� or �false�, and may not have side effects. The guard is also

allowed to directly reference objects found in the AreSequenced object only (i.e., it is

possible to reference the parent or child of an object, but only if that object is found in the

AreSequenced diagram). If no guard condition evaluates to �true�, then execution of the

engine will terminate on this path of control. If multiple guard conditions are true, then

the execution will not be deterministic4. In order to maintain existing models, if the

4 Although a rewriting engine may choose to implement non-deterministic behavior in a consistent way, the
model of computation for the language prescribes the order of traversal is not to be guaranteed.

137

object is the source of only one Sequenced association, then the guard is not necessary,

but if present, must be true for the traversal to proceed.

Port Parameters for Creating Algorithm Libraries

An additional framework enhancement currently being implemented is the

addition of parameterized Transforms that allow for the creation of libraries of

algorithms. In this scenario, all types of Transforms are capable of passing parameters

to each other. These Parameters are the signatures of items that are being transformed

by the specification. The purpose of passing parameters between Transform objects is to

allow the graph-rewriting engine (used to traverse the input graph and produce the output

graph) to take advantage of locality during execution. In a functional language the

functions that do the operations are passed values on which to operate. In a similar

fashion, the graph-rewriting specification is �passed� parameters upon which to match �

in order to decrease the amount of time that it takes a pattern matcher to locate a

particular pattern.

The parameters are passed using an intermediary abstract interface called a Port

(of either type Input or Output). The reason for this interface is to provide templatized

rules that can operate on generic Input and Output parameters, and those parameters are

provided through the Port layer when assembled in the Transformation layout.

Recommendations for Future Work

The application of this technology to solving the problems set forth by the OMG

in their MDA framework [17] is possible. This architecture requires the development of

model translators, which operate on models in one domain (the platform-independent

138

modeling domain, PIM) to another domain (the platform-specific modeling domain,

PSM). These transformations are specified using an OMG specification language, but

revisions are constantly being made to this specification, and a great deal of skepticism as

to its feasibility exists.

This dissertation made mention at several points as to the possible improvement

of performance of the graph-rewriting specification. The current set of model databases

requiring modification can be transformed by the migration script in less time than it

takes to model the model migration specification. Thus, it is not a priority at this time to

increase the performance. However, this is an interesting research topic, which could be

approached either through refactoring of the XSL stylesheets, or exploration of

alternative ways to generate the XSL stylesheets once they have been tested and are no

longer in need of debugging.

Another interesting problem would be the specification of a self-referencing

semantic translator that would produce as its output the semantic translator for the model

migration language. This is an interesting academic exercise, and although it has not

been attempted, the problem should be solvable given that the source and destination

metamodels are well defined. A subset of this research would be the expression of the

abstract algorithms and types of the domain evolution framework using a particular

instance of the domain evolution tool. However, this may prove to be futile, as the

language would then be restricted to the destination graph-rewriting tool, and the source

would be restricted to that particular meta-metamodel.

Recommendations for future work in the GME-XSL migration environment

revolve around the idiosyncrasies of the XML storage format. Additional input from the

139

user could possibly manage the evolution of different versions of the XML model

databases (since the paradigm information is encoded in these) to ensure that versions not

specified by the migration algorithm are not used. This would require changes to the

modeling paradigm to encode (along with the class diagrams) the global unique identifier

(GUID) of the paradigm with the migration algorithm. Once again, this is a small payoff

when compared to the relatively large amount of work, but could be useful if multiple

versions of the paradigm are deployed, and end-to-end migration scripts could be daisy-

chained to perform the migration.

140

APPENDIX A

MODELING

Throughout engineering disciplines, one of the crucial portions of the design

process is the creation of a system model. In mechanical, structural, and electrical

engineering, this often takes the form of a diagram or layout, where the dynamic or static

properties of the system are governed by mathematical equations. In these situations, the

design is presented, and the mathematical models are used to prove soundness or

correctness of the desired properties of the design. Once the models have fulfilled their

purpose, then the construction of the system takes place, governed by the design.

The creation and design of software has long been considered as much art as

science. Software developers use a variety of methods (clean room, waterfall, USDP, et

al.) to produce the final application, but the design of the system is largely abstract.

Often, the original design is modified or abandoned throughout the course of

development and maintenance, resulting in an existing system that differs from the

documentation (the equivalent of the diagram or layout for a structural system) that

describes it. This discrepancy between the documentation and the actual system is

common in software systems, and results in difficult maintenance of the deployed system.

A solution to this divergence is to integrate the model of the system with the

existence of the system, sometimes referred to as Model-Integrated Computing (MIC).

The idea in MIC is to create the executable system directly from the model of the system.

The executable model of the system is the lowest level of the four-layer modeling

141

approach (Level 1 in Figure 53), and the model of the system is in Level 2, and

sometimes referred to as a domain model.

Meta-Metamodels (Meta)

Metamodels
(Paradigm/Domain)

Domain Models
(Instance)

Computer Based
System (Execution models)

describe

describe

describe

Meta-Metamodels (Meta)

Metamodels
(Paradigm/Domain)

Domain Models
(Instance)

Computer Based
System (Execution models)

describe

describe

describe

Level
4

Level
3

Level
2

Level
1

Level
4

Level
3

Level
2

Level
1

Figure 53. The four-layer metamodeling approach [83]

In order to accurately model the system, a detailed language should exist that can

capably and completely describe the behavior of the CBS. This language is called the

paradigm, and is defined in Level 3, the metamodel level. Using the paradigm defined in

Level 3, domain models are defined in Level 2, according to the paradigm language.

The highest level, Level 4, is known as the meta-metamodel layer. The meta-

metamodel is used to define a paradigm for metamodeling. In other words, the meta-

metamodel models what a metamodel is. It is similar to the definition for the word

�definition� in a dictionary.

The benefit of the four-layer modeling approach is its ability to use a

metamodeling environment (Level 3) to rapidly develop domain-specific environments

142

(Level 2) that are capable of producing a CBS (Level 1). The meta-metamodel (Level 4)

is the atomic definition of the language that allows metamodels to produce a DSME.

The Parts of a DSME

A DSME exists in two parts: syntax, and semantics [87]. The metamodeling

environment provides a way to rapidly design the syntax of a DSME, and its static

semantics, which makes up the paradigm. This means that given a paradigm for a

domain, it is possible to represent CBSs in that domain using the language of that

paradigm. Once these models are created, then they are translated into the CBS

execution models through a component of the DSME called the interpreter [3].

The interpreter of a DSME captures the dynamic semantics of the environment in

the form of a semantic mapping [86]. The interpreter brings meaning to the models by

providing the behavior of the CBS according to each model in the CBS. An interpreter

may be seen as a compiler for the language of the paradigm, where the output is not

necessarily machine code, but is the required �executable model� that the CBS requires.

This output takes the form of computer code, markup language, perhaps even other

models. The idea is that the interpreter is the link between the model of the system, and

the actual system.

The static semantics of a DSME is generally found in the paradigm in the form of

constraints. Constraints assure well-formedness of the models, such that any model may

be checked for �correctness� at any time. Constraints do not provide meaning to the

models, but instead help to prevent models that are syntactically correct, but semantically

ambiguous or incorrect.

143

Figure 54. The necessary components of a DSME

The dynamic semantics examines domain models created with this DSME and

produces useful domain artifacts that represent (in some form or another) the meaning of

the domain models. The dynamic semantics of a DSME is integrally dependent upon the

language definition, as it is defined in terms of the language syntax; so any change to the

language will require a corresponding change to the interpreter.

Language

Constraints

(static semantics)

Interpreter
(dynamic

semantics)

+
DSME

144

Computer language DSME

C/C++

Text file
code

Machine
code

Programmer

Syntax checker/
compiler/
optimizer

Paradigm/DSME

Domain models

Executable
models

Modeler

Static semantic
checker and
interpreter

Figure 55. Comparison of the parts of a DSME to those of a traditional programming language

As shown in Figure 54, the combination of the interpreter and paradigm (language

and constraints) yields the complete DSME.

The ontology of a DSME may also be described in terms of a textual language

such as C/C++. Figure 55 shows the parts of a DSME in context with its corresponding

textual language component. Note that the programmer interacts with the languages on

the same level, and that some automation transforms the programmer-created

components into useful domain artifacts (machine code, or some kind of executable

model).

Modeling

The definition of a model varies significantly between fields and researchers in

those fields. To an architect, a model is a scale version of a structure or building, used to

look for design flaws and possible problems not visible to the mind�s eye. To a

145

mechanical engineer, a model is a mathematical description of some physical system (i.e.,

a three-bar mechanism, or a heat transfer system) and describes the system to the degree

that the solution requires. To a computer scientist, a model is often a class diagram or

flowchart, used to describe the structure of a system, or its optimal behavior.

For the purposes of this research, a model can be any of these. All of these types

of models (and indeed, all models in general) fall under the broad category of an

abstraction of a system or entity. Modeling uses models to build up the system (in the

abstract world) and examine the system from different aspects according to the purpose

of the system (e.g., an architect examines her building from several different angles to

ensure proper aesthetics, while a mechanical engineer examines her model for structural

integrity, dynamic stability, and energy consumption).

One important feature of modeling CBSs is that an interpreter can transform

domain models into executable models that actually run the CBS. Consider the case of

an architect. There is no direct application for an architect to build computer-based

models of a structural design (that is, an architect�s model built from balsa wood has no

button to press that will automatically produce a building). However, building a

computer-based model of a three dimensional structure allows for analysis of structural

and heating/cooling concerns. Even more significant, the system model may be analyzed

by a program that can produce custom-scale blueprints from the three dimensional model.

Modeling Languages

Modeling may be simply described as a representation of the entities important in

a system. From domain to domain, customized representations could be required in order

to fully describe the system. A modeling language is that representation.

146

To understand how a modeling language exists, first recall the definition of a

textual language such as Java. In order to define a class ClassA using Java, you use

classes, types (int, float, boolean, or classes), inheritance keywords, and libraries of

previously created objects. All of these objects used in the definition of A are found in

Java�s list of atomic types (we will call this collection JavaLang). When ClassA is

instantiated into instance_a, then the following statements are true,

• instance_a exists.

• instance_a has a class definition (metamodel) named ClassA.

• ClassA has a metamodel named JavaLang.

• instance_a has a meta-metamodel named JavaLang.

In this example, instance a is the instance, ClassA is the metamodel, and

JavaLang is the meta-metamodel.

Similar to this textual language, a modeling language is defined in terms of basic

concepts that are found in the metamodel. For the UML, these basic concepts are Type,

Association, Inheritance, and Constraint [5]. All objects defined for UML tools are

defined in terms of these basic concepts. All of the concepts in UML are defined in

UML�s metamodel, the Meta-Object Facility (MOF) [88]. For a more in-depth

comparison of textual and modeling languages, see [89][86].

Once the modeling language is created instance models can be created using the

modeling language.

147

Metamodeling

An interesting implication of modeling domains is that domain modeling is itself

a domain [81]. Modeling languages are defined in terms of a meta-metamodel. The

definition of a modeling language is not necessarily counter-intuitive, but it is not a trivial

process either. However, by modeling a paradigm, then organization concepts such as

inheritance, containment, etc., may be used to simplify the creation of the modeling

language.

Through a process called metamodeling it is possible to model a modeling

language [81]. Visual representation of the metamodeling process allows for the benefits

of a visual language such as UML, plus the benefits of modeling the process (e.g., using

MIPS to produce artifacts).

The metamodeling domain is designed to produce domain-specific languages. In

each case, the generated language is customized for a particular domain. By modeling

these languages, and creating a library of defined languages, it is possible to evolve a

modeling language, in addition to using previously defined languages in the definition of

a new language (e.g., using the UML domain to specify a Java class hierarchy domain).

148

APPENDIX B

MORPHOLOGICAL NOTATION

The formal specification of morphological operators and functions is instrumental

in their terse and unambiguous definition. As with many mathematical definitions, the

nomenclature and symbols used are not always intuitive to a reader unfamiliar with that

branch of mathematics. This appendix serves as a quick introduction to morphological

notation as well as a limited reference for the definitions of operators and symbols used

throughout the text. For an in-depth review of these and other basic notations refer to

[105] (from which these definitions were taken).

Abstract relationships are sometimes applied to objects that are, to the visual

sense, unrelated. An example is two persons, identified as human, who may not be

touching each other, but are obviously related if not by family, then at least by their

common membership in the human race. These two persons may be grouped into any

number of mathematical containers, for instance a tuple, pair, or set. A set is an

unordered container of objects. A tuple is an ordered set, and a pair is a tuple with

exactly two elements. A relation is a set of tuples, all belonging to the same Cartesian

product.

Operations on the members of sets are called functions. Specifically, a function is

a relation that associates a unique element in its range for every element in its domain.

That is, each element in its domain maps to a unique element in its range (for more

information on mapping, see Appendix C). More generally, this function is known as a

total function, because each element of the range set is in the range of the function.

149

However, there are other types of functions that have a different domain and range than

the sets in which they are defined to operate. A full listing of these function

classifications, and the notation used to describe them, is given in Table 4.

Table 4. Classification of functions [105]

Function
Type

Description Notation

Partial Domain of f is a subset of A f: A © B

Total Domain of f is equal to A f: A ª B
Surjective or
onto

Range of f is equal to B f: A − B

Injective or
one-to-one

Function whose inverse is also a function
(1) Partial version
(2) Total version

f: A « B
f: A ¬ B

Bijective Both surjective and injective (i.e., onto and one-to-
one)

f: A ¯ B

Finite
Mappings

Function that is a finite set f: A ° B

150

APPENDIX C

MAPPING CONCEPTS

As Harel says in [86], �the degree of formality of a language is independent of its

appearance.� What the degree of formality is dependent on, is how well-defined the

semantic mapping of the language is. Given a syntax L, and a semantic domain, S, the

semantic mapping, M, is defined as,

M : L ª S

The mapping, M, operates on the syntax to produce the semantics. The way in

which M is specified is to identify syntax patterns that translate to the appropriate

semantic pattern. The form of the semantic pattern is in whatever form deemed

appropriate for the semantics (e.g., numbers, letters, sentences, fragments, etc.).

Mappings may be specified for an entire domain (as above), or as function operators on

individual syntax fragments of a domain, such as below:

f : l ª s(l)

Where s(l) is the semantic definition of l according to S. The entire set of

functions for a domain, D, makes up the entire mapping of D as shown here:

MD : { l ª s(l) | l ∈ L, s(l) ∈ S}

As explained in [14] a mapping is a well known concept in mathematics under the

names of function, transformation, operator, and morphism (among others). Some

examples will enable a better understanding of the map concept, and how it relates to

domain-specific modeling in particular. Consider the following mapping:

151

Jonathan

Mary

Samwise

French Toast

Bacon

Taters

Fish & Chips

f = Favorite Breakfast

Person Food

Figure 56. Mapping of a person to favorite breakfast (adapted from [59])

Figure 56 is an example of a mapping named �Favorite Breakfast�. In this

mapping, the input or �source� objects are people, and the output or �destination� objects

are foods. There are some important rules for a mapping, which are related here,

• From each entity in the source domain, there is exactly one arrow leaving the

domain

• To any entity in the destination domain, there may be from zero to one or

more arrows arriving.

The immediate consequence of these rules are exactly those of the mathematical

definition of a well-defined function: that for each value x, there is exactly one value f(x).

Also, that for any value, f(g), there may be 1 or more values of x that produce f(g).

Another concept that is familiar from mathematics is the identity function. That

is, that for an x, f(x) = x. The category map for this function is provided in Figure 57.

152

Jonathan

Mary

Samwise
Samwise

Mary

Jonathan
f = Identity Map = IPerson

Person Person

Figure 57. The identity map (adapted from [59])

The identity function serves a useful purpose for the replacement method of

graph-rewriting. When used effectively, the identity map may be used to map ideas that

are equivalent in the source and destination domains. Then, other individual maps are

used to operate on different patterns of the source domain to produce the appropriate

destination domain patterns, so that the destination domain semantics are satisfied. The

mathematical formalism for this methodology is given below:

MGR-Replace : l ª f(l) f(l) ∈ Transform

l ª Isrc(l) f(l) ∉ Transform

Where Transform is the graph transformation as described. In this manner, the

transform function is selected when the appropriate syntax is matched, else, this syntax

pattern is merely copied using the identity transformation of the source domain.

For a more in-depth discussion of the nuances of category and mapping theory,

please refer to [14].

153

 REFERENCES

[1] J. Sztipanovits, G. Karsai, �Model-Integrated Computing�, IEEE Computer, pp.
110-112, April 1997.

[2] T. Biggerstaff. �Control Localization in Domain Specific Translation� Proc. 7th
International Conference on Software Reuse: Methods, Techniques, and Tools,
LNCS 2319, pp. 153-165, Springer, Berlin, 2002.

[3] J. Sztipanovits, et al., �MULTIGRAPH: An Architecture for Model-Integrated
Computing�, Proc. IEEE International Conference on Engineering of Complex
Computer Systems, pp. 361-368, 1995.

[4] J. W. Backus, �The Syntax and Semantics of the Proposed International Algebraic
Language of the Zürich ACM-GRAMM conference�, ICIP Paris, 1959.

[5] OMG Unified Modeling Language Specification, ver. 1.4, Object Management
Group, et al., September 2001.

[6] Object Management Group, Object Constraint Language Specification, OMG
Document formal/01-9-77. September 2001.

[7] Simonyi, C. �The Future Is Intentional�, IEEE Computer, Vol. 32, No. 5, pp. 56-
57, May 1999.

[8] W. Aitken, et al. �Transformation in Intentional Programming�. Proceedings of
the Fifth International Conference on Software Reuse, pp. 114-123, June 2-5,
1998.

[9] Röder, L. �Transformation and Visualization of Abstractions using the Intentional
Programming System�, Bauhaus−University, Weimar, Germany.

[10] S. Johnson, �A Portable Compiler: Theory and Practice�, Proceedings of the 5th
ACM Symposium on Principles of Programming Languages, pp. 97-104, January
1978.

[11] M. Ganapathi, C. Fischer, �Affix Grammar Driven Code Generation�, ACM
Transactions on Programming Languages and Systems, Vol. 7, No. 4, pp. 560-
599, October 1985.

[12] M. Ganapathi, C. Fischer, J. Hennessy, �Retargetable Compiler Code Generation�,
ACM Computing Surveys, Vol. 14, No. 4, pp. 573-592, December 1982.

[13] Mars Polar Lander website. http://mars.jpl.nasa.gov/msp98/news/mco990930.html

154

[14] F. W. Lawvere, S. Schanuel, Conceptual Mathematics: A First Introduction to
Categories, Cambridge University Press, Cambridge, UK, 1997.

[15] D. West, Introduction to Graph Theory, 2nd edition. pp. 289-90. Prentice Hall,
Upper Saddle River, NJ. 2001.

[16] D. H. Akehurst, �Model Translation: A UML-based specification technique and
active implementation approach�. Ph. D. Thesis. University of Kent at
Canterbury, United Kingdom, December 2000.

[17] J. Bézivin, N. Ploquin, �Tooling the MDA framework: a new software
maintenance and evolution scheme proposal�, OOPSLA, 2001: Workshop on
Engineering Complex Object-Oriented Systems for Evolution, Tampa Bay, FL,
2001.

[18] A. Agrawal, T. Levendovszky, J. Sprinkle, F. Shi, G. Karsai, �Generative
Programming via Graph Transformations in the Model-Driven Architecture�,
OOPSLA - Workshop on Generative Techniques in the Context of Model Driven
Architecture, Seattle, WA, November 2002.

[19] F. Keienburg, A. Rausch, �Using XML/XMI for Tool Supported Evolution of
UML Models�, 34th Annual Hawaii International Conference on System Sciences
(HICSS-34), Vol. 9, p. 9064, Maui, HI, January 3-6, 2001.

[20] A. Schürr, �PROGRES for Beginners�, Lehrstul für Informatik III, University of
Aachen.

[21] D. Blostein, A. Schürr, �Computing with Graphs and Graph-Rewriting�, Software
– Practice and Experience, 6th Proceedings in Informatics, pp. 1-21, 1997.

[22] A. Schürr, �Specification of Graph Translators with Triple Graph Grammars�.
University of Aachen, AIB 94-12.

[23] M. Nagl, �Set Theoretic Approaches to Graph Grammars�, Proc. 3rd International
Workshop on Graph-Grammars and Their Application to Computer Science,
Springer-Verlag LNCS 291, pp. 41-54, 1987.

[24] A. Schürr, �Adding Graph Transformation Concepts to UML�s Constraint
Language OCL�, Electronic Notes in Theoretical Computer Science, Amsterdam,
2000.

[25] P. Braun, F. Marschall, �BOTL: The Bidirectional Object Oriented Transformation
Language�. TUM-I0307, Institute for Informatics, Technical University of
Munich.

[26] G. Engels, R. Heckel, �From Trees to Graphs: Defining the Semantics of Diagram
Languages with Graph Transformation�, ICALP Satellite Workshops, Proceedings
in Informatics, pp. 373-382, 2000.

155

[27] A. Schürr, �Programmed Graph Replacement Systems�. In Handbook of Graph
Grammars and Computing by Graph Transformation, Vol. I: Foundations, pp.
479-546. World Scientific, Singapore, 1997.

[28] A. Agrawal, G. Karsai, F. Shi, �Interpreter Writing Using Graph Transformations�,
ISIS Technical Report, TR#ISIS-03-401, 2003.

[29] T. Levendovszky, G. Karsai, A. Ledeczi, M. Maroti, et al., �Model Reuse with
Metamodel-Based Transformations�, 7th International Conference on Software
Reuse: Methods, Techniques, and Tools, Lecture Notes in Computer Science 2319,
pp. 166-178, Austin, TX, April 2002.

[30] A. Agrawal, T. Levendovszky, J. Sprinkle, F. Shi, G. Karsai, �Generative
Programming via Graph Transformations in the Model-Driven Architecture�,
OOPSLA - Workshop on Generative Techniques in the Context of Model Driven
Architecture, Seattle, WA, November 2002.

[31] G. Karsai, A. Agrawal, F. Shi, J. Sprinkle, �On the use of Graph Transformations
in the Formal Specification of Computer-Based Systems�, IEEE TC-ECBS and
IFIP10.1 Joint Workshop on Formal Specifications of Computer-Based Systems,
pp. 19-27, Huntsville, Alabama, April 2003.

[32] A. Bakay, �The UDM Framework,�
http://www.isis.vanderbilt.edu/Projects/mobies/

[33] The Extensible Stylesheet Language, http://www.w3.org/Style/XSL/.

[34] �Turing Machine Markup Language�, http://www.xml.com/pub/r/1036

[35] B. Lerner, �A Model for Compound Type Changes Encountered in Schema
Evolution�, ACM Transactions on Database Systems, Vol. 25, No. 1, pp. 83-127,
March 2000.

[36] N. C. Shu, B. C. Housel, V. Y. Lum, �CONVERT: A High Level Translation
Definition Language for Data Conversion�, Communications of the ACM, Vol. 18,
No. 10, pp. 557-567, October 1975.

[37] B. Shneiderman, G. Thomas, �An Architecture for Automatic Relational Database
System Conversion�, ACM Transactions on Database Systems, Vol. 7, No. 2, pp.
235-257, June 1982.

[38] S. B. Navathe, �Schema Analysis for Database Restructuring�, ACM Transactions
on Database Systems, Vol. 5, No. 2, pp. 157-184, June 1980.

[39] Y. Chen, �Integrating Heterogenous OO Schemas�, Journal of Information
Science and Engineering, Vol. 16, No. 3, pp. 555-591, July 2000.

156

[40] J. Banerjee, et al., �Semantics and Implementation of Schema Evolution in Object-
Oriented Databases�, Proceedings of the ACM-SIGMOD Conference on
Management of Data, San Francisco, CA, May 1987.

[41] H. Kim, H. Korth, �Schema versions and DAG rearrangement views in Object-
Oriented Databases�, Technical Report, TR-88-05, University of Texas at Austin,
Austin, TX, 1988.

[42] D. J. Penney and J. Stein, �Class modification in the GemStone object-oriented
DBMS�, Proceedings on Object-Oriented Programming Systems, Languages and
Applications (OOPSLA), pp. 111-117, Orlando, FL, October 1987.

[43] A. H. Skarra, S. B. Zdonik, �The Management of Changing Types in an Object-
Oriented Database�, Proceedings of OOPSLA ’86, pp. 483-495, Portland, OR,
September 1986.

[44] S. M. Clamen, �Schema Evolution and Integration�, Distributed Parallel
Databases, Vol. 2, No. 1, pp. 101-126, January 1994.

[45] S. Bratsberg, �Unified Class Evolution by Object-Oriented Views�, Proceedings of
the 11th International Conference on the Entity-RelationshipApproach, pp. 423-
439, October 1992, Karlsruhe, Germany.

[46] S. Monk, I. Sommerville, �A Model for Versioning Classes in Object-Oriented
Databases�, Proceedings of the Tenth British National Conference on Databases,
Aberdeen, Scotland, 1992.

[47] M. Tresch, M. H. Scholl, �Meta Object Management System and Its Application to
Database Evolution�, Proceedings of the 11th International Conference on the
Entity-RelationshipApproach, pp. 299-321, October 1992, Karlsruhe, Germany.

[48] S. E. Lautemann, �A Propagation Mechanism for Populated Schema Versions�,
Proceedings of the International Conference on Data Engineering, pp. 67-78,
Birmingham, UK, April 1997.

[49] S. E. Lautemann, �Schema Versions in Object-Oriented Database Systems�,
Proceedings of the 5th International Conference on Database Systems for
Advanced Applications, Melbourne, Australia, April 1997.

[50] Y. G. Ra, E. A. Rundensteiner, �A Transparent Object-Oriented Schema Change
Approach Using View Evolution�, Technical Report, University of Michigan, Ann
Arbor, MI, 1994.

[51] P. Breche, �Advanced Primitives for Changing Schemas of Object Databases�,
Proceedings of the 1996 Conference on CaiSE, Heraklion, Crete, May 1996.

157

[52] P. Breche, F. Ferrandina, M. Kuklok, �Simulation of Schema Change Using
Views�, Proceedings of the 6th International Conference on Database and Expert
Systems Applications, London, UK, September 1995.

[53] F. Ferrandina, S.-E. Lautemann, �An Integrated Approach to Schema Evolution for
Object Databases�, Proceedings of the Third International Conference on Object-
Oriented Information Systems, pp. 280-294, December 1996.

[54] R. J. Peters, M. T. Öszu, �An Axiomatic Model of Dynamic Schema Evolution in
Objectbase Systems�, ACM Transactions on Database Systems, Vol. 22, No. 1, pp.
75-114, March 1997.

[55] D. Garlan, et al., �TransformGen: Automating the Maintenance of Structure-
Oriented Environments�, ACM Transactions on Programming Language Systems,
Vol. 16, No. 3, pp. 727-774, May 1994.

[56] N. Habermann, D. Notkin, �Gandalf: Software Development Environments�, IEEE
Transactions on Software Engineering, Vol. 12, No. 12, pp. 1117-1127, December
1986.

[57] N. Habermann, D. Garlan, D. Notkin, �Generation of Integrated Task-Specific
Software Environments�, CMU Computer Science: A 25th Anniversary
Commemorative, R. F. Rashid, Ed. pp. 69-97. ACM Press anthology series. ACM
Press, New York, NY. 1991.

[58] B. Lerner, N. Habermann, �Beyond Schema Evolution to Database
Reorganization�, Proceedings of the Joint ACM European Conference on Object-
Oriented Programming: Systems, Languages, and Applications (OOSPLA/ECOOP
�90), pp. 67-76, Ottawa, Canada, October 1990.

[59] C. Liu, P. Chrysanthis, S. Chang, �Schema Evolution Through Changes to ER
Diagrams�, Journal of Information Science and Engineering, Vol.9 No.4, pp.657-
683, December 1993.

[60] K. Claypool, E. Rundensteiner, G. Heineman, �ROVER: Flexible Yet Consistent
Evolution of Relationships�, Data & Knowledge Engineering, Volume 39, No. 1,
pp. 27-50, October 2001.

[61] N. Pittas, A. C. Jones, W. A. Gray, �Evolution Support in Large-Scale
Interoperable Systems: a Metadata Driven Approach�, Proceedings of the
Australiasian Database Conference, pp. 161-168, Gold Coast, Queensland,
Australia, January 2001.

[62] H.-L. Yang, �Reformulating Semantic Integrity Constraints Precisely�, Journal of
Information Science and Engineering, Vol. 11, No. 4, pp. 513-540, December
1995.

[63] Meta Integration Technology, Inc. http://www.metaintegration.net/

158

[64] Rational Rose. http://www.rational.org/

[65] Oracle. http://www.oracle.com/

[66] Upgrading Netscape Directory Server 4.x.
http://developer.netscape.com/docs/manuals/directory/41/in/upgrade.htm#1115984

[67] W. Wulf, R. Johnsson, C. Weinstock, S. Hobbs, C. Geschke, The Design of an
Optimizing Compiler, American Elsevier, New York, 1975.

[68] S. Johnson, �A Portable Compiler: Theory and Practice�, Proceedings of the 5th
ACM Symposium on Principles of Programming Languages, pp. 97-104, January
1978.

[69] M. Ganapathi, C. Fischer, J. Hennessy, �Retargetable Compiler Code Generation�,
ACM Computing Surveys, Vol. 14, No. 4, pp. 573-592, December 1982.

[70] U. Aßmann, �Graph Rewrite Systems for Program Optimization�, ACM
Transactions on Programming Languages and Systems, Vol. 22, No. 4, pp. 583-
637, July 2000.

[71] CDIF Framework for Modeling and Extensibility, Extract of Interim Standard
EIA/IS-107, Electronics Industries Association, CDIF Technical Committee,
January 1994.

[72] J. Gray, B. Ryan, �Applying the CDIF Standard in the Construction of CASE
Design Tools�, Australian Software Engineering Conference, p. 88, Sydney,
Australia, September 1997.

[73] C. Hylands, E. A. Lee, J. Liu, X. Liu, S. Neuendorffer, H. Zheng, �HyVisual: A
Hybrid System Visual Modeler�, Technical Memorandum UCB/ERL M03/1,
University of California, Berkeley, January 28, 2003.

[74] Y. Hur, I. Lee, �Distributed Simulation of Multi-Agent Hybrid Systems�, IEEE
International Symposium on Object-Oriented Real-time distributed Computing,
April 29-May 1, 2002.

[75] B. I. Silva, K. Richeson, B. H. Krogh, A. Chutinan. �Modeling and verification of
hybrid dynamical system using CheckMate�, ADPM 2000, September 2000.

[76] HSIF: Hybrid Systems Interchange Format, Vanderbilt University.
http://micc.isis.vanderbilt.edu:8080/HSIF

[77] R. Lemesle, �Transformation Rules Based on Meta-modeling�, Proceedings of the
Second International Enterprise Distributed Object Computing Workshop, San
Diego, November 1998.

159

[78] D. Milićev, �Automatic Model Transformations Using Extended UML Object
Diagrams in Modeling Environments�, IEEE Transactions on Software
Engineering, pp. 413-431, April 2002.

[79] D. Milićev, �Domain Mapping Using Extended UML Object Diagrams�, IEEE
Software Engineering, pp. 90-97, March/April 2002.

[80] C. Thomason IV, M.S. Thesis, Vanderbilt University, Nashville, TN. May 2000.

[81] G. Nordstrom, J. Sztipanovits, G. Karsai, A. Ledeczi, �Metamodeling - Rapid
Design and Evolution of Domain-Specific Modeling Environments�, Proceedings
of the IEEE ECBS'99 Conference, pp. 68-74, Nashville, Tennessee, April, 1999.

[82] G. Nordstrom, J. Sztipanovits, G. Karsai, �Metalevel Extension of the MultiGraph
Architecture�, Proceedings of the IEEE ECBS'98 Conference, pp. 61-68,
Jerusalem, Israel, April 1998.

[83] J. Sprinkle, G. Karsai, A. Ledeczi, G. Nordstrom, �The New Metamodeling
Generation�, Proceedings of the IEEE ECBS ’01 Conference, Washington, D.C.,
2001.

[84] The Domain Modeling Environment (DoME).
http://www.htc.honeywell.com/dome/index.htm

[85] MetaEdit+, Domain specific modeling tool. http://www.metacase.com/

[86] D. Harel, B. Rumpe, �Modeling Languages: Syntax, Semantics, and All That
Stuff. Part I: The Basic Stuff�, Technical Report MCS00-16, Mathematics &
Computer Science, Weizmann Institute Of Science, Rehovot, Israel.

[87] G. Karsai, G. Nordstrom, A. Ledeczi, J. Sztipanovits, �Specifying Graphical
Modeling Systems Using Constraint-based Metamodels�, Proceeding of the IEEE
Symposium on Computer Aided Control System Design, Anchorage, AK, 2000.

[88] Meta Object Facility (MOF) Specification, ver. 1.4, Object Management Group, et
al., April 2002.

[89] D. Batory, D. McAllester, L. Coglianese, W. Tracz, �Domain Modeling in
Engineering Computer-Based Systems�, Proceedings of the 1995 International
Symposium and Workshop on Systems Engineering of Computer Based Systems,
pp. 19-26, 1995.

[90] J. Parsons, Y. Wand, �Emancipating Instances from the Tyranny of Classes in
Information Modeling�, ACM Transactions on Database Systems, Vol. 25, No. 2,
pp. 228-268, June 2000.

[91] D. Harel, �StateCharts: A Visual Formalism for Complex Systems�, Science of
Computer Programming, Vol. 8, pp. 231-274, 1987.

160

[92] D. Harel, A. Naamad, �The STATEMATE Semantics of Statecharts�, ACM
Transactions on Software Engineering Methods, Vol. 5, No. 4, 1996.

[93] The Worldwide Web Consortium, The Extensible Stylesheet Language (XSL),
http://www.w3.org/Style/XSL/.

[94] M. Kay, XSLT – Programmers Reference, Wrox Press Ltd., 2nd Edition, 2002.

[95] The Worldwide Web Consortium, XML Path Language (XPath),
http://www.w3.org/TR/xpath

[96] G. Engels, R. Heckel, From Trees to Graphs: Defining the Semantics of Diagram
Languages with Graph Transformation, ICALP Satellite Workshops, Proceedings
in Informatics, pp. 373-382, 2000.

[97] A. Schürr, Specification of Graph Translators with Triple Graph Grammars, in: G.
Tinhofer, ed., Proc. WG'94 20th Int. Workshop on Graph-Theoretic Concepts in
Computer Science, Herrsching, Germany, LNCS 903, Springer, Berlin, pp. 151-
163, 1994.

[98] A. Schürr, Programmed Graph Replacement Systems, in: Handbook of Graph
Grammars and Computing by Graph Transformation, Vol. I: Foundations, World
Scientific, Singapore, pp. 479-546, 1997.

[99] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley, 1994.

[100] Institute for Software Integrated Systems, The Generic Modeling Environment
(GME) http://www.isis.vanderbilt.edu/projects/gme.

[101] A. Ledeczi, et al., �Composing Domain-Specific Design Environments�, IEEE
Computer, Vol., 34, No.11, pp. 44-51, 2001.

[102] S. Neema, A. Bakay, G. Karsai, �Embedded Systems Modeling Language�,
Institute of Software Integrated Systems, Vanderbilt University.

[103] http://www.rl.af.mil/tech/programs/MoBIES/Boeing.html

[104] http://www.omg.org/news/meetings/realtime2001/abstracts/BoeingAbstract.pdf

[105] N. Nissanke, Introductory Logic and Sets for Computer Scientists, Addison
Wesley Longman, Harlow, England, 1999.

ELECTRICAL ENGINEERING

METAMODEL BASED MODEL MIGRATION

JONATHAN SPRINKLE

Dissertation under the direction of Dr. Gabor Karsai

Model-integrated computing (MIC) is a methodology for the development of

computer-based systems (CBSs). MIC predicates that models are developed according to

a particular metamodel (that is, a language representation of the CBS�s actual domain).

MIC is the integration of models with a way to extract a �meaning� from those models.

Using metamodeling, it is possible to model the domain of the CBS and generate a

domain-specific modeling environment (DSME) whose ontology is the types of

components in the CBS. With this DSME, models of the CBS are constructed and

expressed with the ontology of the domain, and then interpreted to produce an executable

model.

The true value of domain-specific modeling is found not in the DSME, but the

models that are created in that DSME. Changes to the physical system can be modeled,

and the resulting executable model then is a working version of the CBS. Unfortunately,

if the model of the domain � or metamodel � is changed, all models that were defined

using that metamodel may require maintenance to have the semantics that represent the

CBS correctly. Without ensuring the correctness of the domain models after a change to

the domain, the true value of the DSME will be lost. The only way to use instance

models based on the original metamodel is to migrate them for use in the modified

metamodel.

This problem is known as the Model Migration (MM) problem. Current state of

the art for Model Migration heavily depends on low-level implementation, and treats the

domain models like data files rather than domain-specific models. There are benefits to

performing model migration using domain-specific concepts such as mapping objects

from one domain to another, and leveraging the existing metamodel structure for

designing these mappings. This dissertation extends the state of the art by implementing

such a metamodel based model migration language, which is a modeling language in its

own right.

Furthermore, a model migration language is dependent on two components: the

meta-metamodel, and the graph-rewriting language used to perform the actual translation

of the domain models. These parameterizations can be abstracted to reveal a framework

that any meta-metamodel and graph-rewriting language would use to perform model

migration. This dissertation gives form and function to such a framework, and describes

how it can be specialized to yield a particular instance of a framework: a domain

evolution tool.

Approved__ Date______________

