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Abstract: 
The Model Driven Architecture (MDA) maintains that systems can be abstractly speci-
fied, and specifically instantiated.  The abstract specification is created using formally 
defined models; thus in order to fulfill these ambitions, model transformations must 
be employed on some level.  The definition of these transforms—however—is not a 
trivial task.  In addition to the basic problems of the transformation syntax, and an 
intuitive interface, there is a more significant and difficult problem: the translation of 
the platform-independent models (PIMs) into platform-specific models (PSMs) such 
that they are “correct” in the language of the PSM.  This paper philosophically dis-
cusses the root causes of transformations, specifically the syntax and semantics 
changes that require MDA-like transformations between modeling languages.  It also 
examines the difference between the intent of the modeler, and that of the model—
an important distinction when creating transformations. 
 

Introduction 

Throughout the entire history of computing, there have been two seemingly contrary 
approaches to programming: the archetypal approach and the specific approach. The 
first example of this tension is the battle between programmers dedicated to ma-
chine code, and those in favor of high-level languages.  Machine code was fast to 
execute, and its examination yielded not how the machine should act but instead 
how the machine would act, as the program was in the machine�s native language.  
High-level language programmers, however, favored an approach that allowed the 
expression of the intent of a program in a language independent of that of the ma-
chine, and the subsequent transformation of that intent into the machine�s language.  
Once these transformations were proved to be correct the era of machine code writ-
ten by hand began to end, and the dawn of high-level languages began [1]. 

Of course, one person�s high-level language is another person�s low-level language.  
Today, FORTRAN and COBOL are considered to be tediously low-level for general GUI 
programming, but they were revolutionary in their time.  Likewise, a reconfigurable 
von Neumann architecture seemed a radical notion when all electronics were built to 
be application (and at times, even machine) specific.  The march of time in the his-
tory of computing has produced more languages each year, each one with its own 
benefits, each one championed (at least by its inventors) as the best one for the do-
main for which it was designed. 

Each of these languages abstracts the concepts of a semantic domain into a pro-
grammable ontology set and syntax, and provides a semantic translator that gives 
meaning to the �sentences� of the language�eventually turning an abstract program 
into specific execution on a machine [2].  This can happen either through the gen-



eration of a configuration file, or perhaps the generation of compilable code.  Re-
gardless of the target artifact�s form, each generated artifact is in the language of 
some semantic domain that has meaning which can be interpreted by a machine 
somehow. 

The creation of the semantic translator�traditionally called the compiler in textual 
programming�is the most tedious task in the development of the language.  This is 
more obvious when semantic translator creation is contrasted with modeling lan-
guage creation, where metamodeling languages allow the rapid design and genera-
tion of modeling languages.  This semantic translator faces the same requirements 
and hardships of the original FORTRAN compiler�namely that its generated output 
should be correct, in the sense that it means the same thing in the semantic domain 
as the language claims it did in language form. 

This paper examines the metrics by which correctness should be defined for trans-
formed models between two very similar languages.  Further, it also examines the 
applicability of modeler’s intent versus model’s intent when determining which 
should be applied in the semantic domain.  In order to do this, the paper examines 
the possibility of ambiguous PIM specifications, and how�if they exist�these specifi-
cations could be transformed into unambiguous platform specific models. 

Determination of Proper Intent 

Charles Simonyi announced in 1999 that �The Future Is Intentional� [5].  Intentional 
Programming (IP) [6][7] is an example of a growing trend to build software solutions 
by design rather than referring to the design.  All programming languages are used 
to encode of the intention of the programmer (hence the original name of programs, 
�codes�).  Sometimes the intention is obfuscated in difficult to understand syntax (in 
the case of languages like LISP) or in optimized behavior obtained by low-level in-
struction (e.g., pointer arithmetic in C).  Domain-specific modeling attempts to cir-
cumvent the details of implementation and focuses instead on the details of the de-
sign�depending on the semantic translator for optimization and guarantee of behav-
ior.  In other words, domain-specific modeling tries to merge the concepts of how a 
system should behave, and how it would behave. 

There are two driving forces behind model transformation: changes to the paradigm 
(the tuple of syntax, constraints, ontology, and semantic translator) and changes to 
the semantic domain.  These are explained below, and abbreviated in Table 1. 

Table 1 Paradigm (α) changes and semantic domain (Ω) changes, with actions to be taken 

If changes are made to the semantic domain Ω only, and the paradigm α is pre-
served, then the intent of the modeler should be preserved (i.e., the domain models 
will have the same meaning in the semantic domain, but after modifications to ac-
count for changes in the semantic domain).  An example of this is the evolution of a 
model database that uses English measurement units to one that uses SI measure-
ment units.  Although no portion of the paradigm changes, the values of all unit-

Case Action 
( α == α�) and ( Ω != Ω� ) The intention of the modeler should be preserved. 
( α != α� ) and ( Ω == Ω� ) The intention of the models should be preserved 
( α != α� ) and ( Ω != Ω� ) The intention of the modeler and the models should 

be taken into consideration, but will both be revised 



based attributes will not be correct in the semantic domain any longer, and should be 
modified. 

If the changes are made to the paradigm α only, and the semantic domain Ω is pre-
served, then the intent of the models should be preserved (i.e., the domain models 
will have a different meaning in the semantic domain after modifications to account 
for changes to the CBS domain).  An example of this is where the types of objects of 
a paradigm change, and they now have a different meaning in the semantic domain. 

If changes are made to the paradigm and to the semantic domain, then some com-
bination of these changes will be used.  At this point, the modeler creating the do-
main evolution specification is actually assuming the role of domain modeler and re-
vising the intent both of the modeler, and of the models, to reflect the new system. 

Intention Types: Model vs. Modeler 

As a kind of intentional programming, domain-specific modeling provides an interface 
that is most like the design of the final system, and transforms that design into the 
semantic domain through a translator or interpreter.  The abstractions of a well-
designed domain-specific language are convenient for expressing the existence of 
object instances in a particular domain.  The structure and behavior of domain ob-
jects�traditionally specified in the design, and then encoded into the semantic do-
main�can be immediately translated into the semantic domain if a semantic transla-
tor exists for the modeling domain.  In this way, the intention of the system is speci-
fied by its existence, rather than encoded into a domain-independent language. 

Modeling the system using a domain-specific language should be simple, due to the 
fact that the domain-specific language should provide domain concepts as language 
primitives, and that it should be designed to be correct by construction�meaning 
that if the system is modeled as it exists, then the generated output of the domain 
model (the name given to the model of the system) will be an accurate reflection of 
the system.  However there are two different types of intentions encoded into any 
given domain model: that of the modeler, and that of the model. 

The intent of the modeler should not be different from the intent of the model, when 
the domain model is examined in the context of its metamodel (i.e., the domain).  
However, once the domain model it is applied to another metamodel (in another 
form, of course) then these two intentions are not necessarily in accord�i.e., the 
formal model �puns� become evident. 

The modeler’s intent is the encoding of a system as it exists, using the syntax, ontol-
ogy, static semantics, and knowledge of the semantic translator of some (domain-
specific) language.  The modeler�s intent is not to write a program, but instead rep-
resent the system by construction.  The modeler uses the appropriate portions of the 
paradigm in which the domain-specific language is encoded to properly construct the 
domain model of the system. 

The model’s intent is the semantic representation of a system encoded with the in-
herent syntax, ontology, and static semantics of a (domain-specific) language.  This 
semantic representation is achieved by the semantic translator especially.  The intent 
of the models is to encode the system into the semantic domain (rather than the 
domain of the domain-specific language) and it uses the paradigm of the semantic 
domain rather than the paradigm in which it plays the part of semantic translator. 



These wordy descriptions can be differentiated in the following terse statement: the 
intent of the modeler is to represent the reality of system existence, and the intent 
of the model is to represent the meaning of domain model existence.  As long as the 
system and the domain model are encoded in the same paradigm there is no differ-
ence between them.  Outside the context of the original paradigm, however, trans-
formations according to one (or the other) of the intentions should be made to guar-
antee correctness by construction. 

Modeling definitions 

The domain of modeling could very easily be summed up as the formal development 
of software.  Metamodels are used to describe types of models, and models are cre-
ated according to metamodels (meaning that they satisfy the syntax and constraints 
set forth by those metamodels).  Metamodels are the basis on which model instances 
are determined to be syntactically correct, and as such play an important role in the 
model transformation process. 

Metamodeling is the formal definition of the modeling concepts that may be used to 
define systems within a domain.  Modeling concepts are not only the actual domain 
concepts (e.g., processes in a signal processing domain, or assembly lines in a fac-
tory domain) but also standard modeling abstractions�patterns that provide a proto-
typical solution to a modeling problem�directly supported by the tools. Many such 
modeling abstractions exist in engineering but are often focused on a particular solu-
tion space or sub-domain. A precept of metamodeling is the existence of a core set 
of fundamental modeling abstractions that (as a set of archetypes) is adequate to 
express the design concepts, notions, and artifacts used across all semantic do-
mains.  This set is generally accepted in the UML [3] community to be made up of 
types, associations, generalizations, and constraints. 

Using these four basic archetypal modeling concepts, metamodels are created.   
Members of the set of metamodeling archetypes (that is, the ontology of the meta-
metamodel) are instantiated in a metamodel to create an instance of an archetypal 
formalism.  For example, the archetypal formalism of containment can be instanti-
ated to immediately define a relationship between two types.  Metamodeling pro-
vides a rapid way in which to specify the abstract syntax of a domain-specific model-
ing language.  The domain-specific modeling language is in turn used to specify the 
structure and behavior of domain applications [4]. 

In the scenario of model transformations, it is required to consider each modeling 
language as being domain-specific.  Without the notion of a domain in which these 
models are correct by construction, then no translation could be made that is seman-
tically correct.  Even metamodels have their own domain, which is the domain of 
domain-specific language specification, and platform-independent models have their 
own domain, which is the specification of abstract concepts. 

Formal modeling: unambiguous? 

One claim of formal modeling is that it removes the possibility of an ambiguous 
specification.  Especially when compared to English language specifications, formal 
models are more concise, and (when specified using the appropriate domain model-
ing language) unambiguous.  However, it is incorrect to presume that an unambigu-
ous specification in the domain modeling language can be immediately transformed 



into an unambiguous specification in any other domain modeling language for two 
reasons: (1) the other domain modeling language may not be rich enough, and (2) a 
kind of platform-independent �pun�, which is a specification that can be interpreted 
only one way in the PSM language, but multiple ways when transforming to the PIM. 

We can immediately dismiss the first reason, because we must acknowledge that if a 
translation from a rich language into a less-descriptive language is undertaken, that 
it is done with the knowledge of the designer of the transformation.  That designer 
then either knows that the translation is not �exact�, or is performing a partial trans-
lation (e.g., transforming Simulink models into a PowerPoint document for presenta-
tion purposes only�not simulation). 

The second reason is more subtle.  Although the English language is abominable 
when it comes to unambiguous specification, it can create humorous examples, one 
of which is the following pun:  �Time flies like an arrow, but fruit flies like a banana.�  
This is a double pun, on [fruit] flies (as in a piece of fruit flying across the room, ver-
sus more than one �fruit fly� insect) and like (as in a simile, versus an expression of 
approval or attraction).  This pun does not make sense in a language such as French, 
where the noun for housefly does not coincide with the verb for flying, and the word 
for approval is not similar to the word for similarity. 

While this example may seem to have nothing to do with formal modeling, let us 
consider as an example the Simulink/Stateflow visual description language [9].  This 
language is used to create Statecharts [10], and these Statechart models may be 
simulated to examine their behavior.  Statecharts specify that nondeterministic sys-
tems can exist through multiply-enabled transitions from an active state, and that 
the execution of a nondeterministic transition is not guaranteed by the Statechart 
semantics.  However, the simulator provided by Simulink/Stateflow can (and does) 
guarantee the execution semantics of multiply-enabled transitions from an active 
state�specifically that the first clockwise enabled state from the 12 o�clock position 
of the current active state is chosen for execution. 

Now, when creating a Simulink/Stateflow diagram using the visual language provided 
by Mathworks, two �meanings� are attached to every transition/state combination.  
First, that this transition governs whether the active is active; second, that the 
clockwise relation of this state to all other states in which it plays an associative role 
governs the �tiebreaker� status of the state.  In other words, there is the explicit 
placement of the state and the implicit meaning of that state�s placement. 

If models built in Simulink/Stateflow are translated into another language, say, Car-
negie Mellon�s SMV [11] (a model verification tool), these implicit semantics must be 
considered when performing the transformation.  The �pun� here is that the Simu-
link/Stateflow language uses the same �words� (here, states in a statechart) to mean 
two different things at the same time�whereas transformation to another language 
with a different way to guarantee execution may require additional specifications 
(i.e., more �words�) to achieve the same meaning that was present in the Simu-
link/Stateflow models. 

This example may seem contrived, but it is a hard problem that automotive compa-
nies (who have used Simulink/Stateflow to check correctness of hardware designs) 
are anxious to solve [12].  Until there is a solution, �real-world� users cannot be sure 
that any models they create can be verified by external solvers.  After all, if the 



models do not mean exactly the same thing in the verification language, then there 
is no guarantee that the results of the verification can be trusted. 

Examples 

Let us now examine two particular cases in which this difference between the intent 
of the model and of the modeler is shown. 

Synchronous versus asynchronous I/O 

Data inside computer registers either becomes overwritten, or written out to some 
other memory storage location (e.g., cache).  In order to transfer this data, a chip 
designer may choose between two major types of input/output timing mechanisms: 
synchronous, and asynchronous (see [8] for more details).  Briefly, synchronous I/O 
is governed by a clock, whereas asynchronous I/O is governed by handshake proto-
cols.  A consequence of this difference is that the actual time to execute synchronous 
and asynchronous transfers is different, and the machine will be in different states at 
different times. 

Now, consider a chip designed, and implemented, using synchronous I/O protocols.  
The synchronous designs are typically used for register to register transfers, where a 
global clock is available, and transfer times are considered to be small.  However, 
the model of the synchronous design may be useful when creating an asynchronous 
design for use in register to cache, or cache to memory data transfer. 

When transforming the synchronous design model to be an asynchronous design, it 
is the semantics of the model of computation that governs how the structural model 
should be interpreted.  The model transformer should not require that the asynchro-
nous design behave exactly as the synchronous design�in fact, the whole purpose of 
choosing an asynchronous design was to modify the behavior to be appropriate for 
the new domain.  When the design was created by the modeler, it was created to 
transfer data between memory locations, and it does this regardless of the model of 
computation chosen to implement the data transfer. 

This is an example of the modeler’s intent prevailing over the model’s intent.  In this 
case, the existence of the system in reality took precedence over the semantic 
meaning of the domain model of the system. 

Language syntax differences 

The domain-specific nature of many languages can be tedious and confusing to pro-
grammers unfamiliar with the domain.  For instance, many legacy configuration files 
are optimized for minimal storage, and occasionally purposefully obfuscated or en-
crypted to prevent unauthorized end-user access.  In many cases, the ordering of 
values is critical in the semantic interpretation of those values. 

If a modeling paradigm uses ontological types to differentiate between certain do-
main concepts, then the domain modeler can instantiate those types to specify the 
existence of those domain concepts.  Assume that such a domain model is correct by 
construction.  Now, if the domain model is translated into another modeling para-
digm, there are two possibilities, (1) that the new modeling paradigm uses the same 
ontology and attaches the same semantics to those ontological entities, or (2) that 
there is another way in which those semantics are encoded into the new paradigm. 



For instance, all of the objects of a certain type may be required to be defined in a 
common repository for instantiation.  Or, objects of a certain type may require addi-
tional attributes or may need to be sorted to be correctly interpreted by the new 
paradigms semantic translator. 

This is an example of the model’s intent prevailing over the modeler’s intent.  The 
modeler created the system as it existed�ostensibly with no knowledge of the new 
paradigm.  However, the new paradigm requires more input from the modeler�not 
just different input.  That input is provided through the meaning that is captured in 
the original domain models, and the translation can be performed using the semantic 
encodings of the original modeling paradigm. 

This is similar to�yet different than�the previous example.  Both examples involve 
a modification of the domain model to be correct in the new paradigm. 

Classification of examples from the MDA Guide 

Several examples from the MDA Guide [13] are given and classified in Table 2, with-
out details of their context (details are available in the guide). 

Table 2.  Examples from the MDA Guide [13] are classified as to the type of intent that they should pre-
serve.  An example preserving only the intent of the modeler was not contained in the document. 

Notice that none of these examples are classified as the intent of the modeler.  While 
this may call into question the viability of the model/modeler intent argument, con-
sider (a) that there are only a handful of examples in the text, frankly of limited 
breadth, and (b) that it is usually the case that changes to the semantic domain of-
ten prompt designers to also make changes to the paradigm.  More often than not, 
some varying degree of combination of the model/modeler�s intent must be consid-
ered.  The lack of previous description of this model/modeler distinction is a testi-
mony to the rareness of a �pure� modeler�s intent, but the aim of this paper is to 
bring it to the attention of the community, so that in those rare cases it is not over-
looked (for example, the costly Mars Polar Lander debacle by the Jet Propulsion 
Laboratory [14]). 

Conclusions 

Acceptance of these two types of catalysts requires a re-examination of the methods 
currently used to create model transformations.  The painstaking process of creating 

Example number, and page Classification 
Section 3.4, Ex. 1, p. 3-2 Combination of Modeler and Model�s in-

tent (the modeling paradigm changes, 
and interpretation is required to deter-
mine whether the transformed models 
will have the same semantics as intended 
by the modeler) 

Section 3.4.1, Ex. 1, p. 3-3 Model�s intent (the paradigm changes, 
but no changes are made to the meaning 
of the model in the semantic domain) 

Section 3.4.1, Ex. 2, p. 3-3 Model�s intent (the paradigm changes, 
but no changes are made to the meaning 
of the model in the semantic domain) 



a model transformation between two paradigms should be undertaken only when the 
exact source and destination semantics are understood, and there is a clear and suf-
ficiently proved algorithm to affect that transformation. 

The methods used to create model transformations are certainly adequate; the in-
tention of this paper is not to revoke the ability of such transforms to be specified.  
What this paper should do, however, is reinforce the notion that these transforma-
tions must be driven by semantics, where syntax transforms are the output of a se-
mantic-driven approach.  And since semantics plays such a large role in the trans-
formation process, the designers of the transform should consider which semantics 
should be disregarded, and which semantics should be preserved, but are perhaps 
obfuscated through a �pun� in the original language. 

More research is required to examine further the interrelation between model and 
modeler in the domain model encoding of a modeling paradigm.  One thing is clear, 
however: that the intent of the model and that of the modeler are not identical when 
compared outside the domain in which they were originally created, and should be 
considered whenever the domain model is transformed. 
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