
Model Migration through Visual Modeling
Jonathan Sprinkle

Vanderbilt University
jonathan.sprinkle@alumni.vanderbilt.edu

Gabor Karsai
Vanderbilt University

gabor@vuse.vanderbilt.edu

Abstract: The true value of domain-specific modeling is found not in a domain-specific modeling language
(DSML) but rather in the models that are created using that DSML. Changes to a physical system can be mod-
eled, and the resulting executable model then is a working version of the physical system. Unfortunately, if the
model of the domain—or metamodel—is changed, all models that were defined using that metamodel may re-
quire maintenance to have semantics that correctly represent the existing system. This paper introduces a visual
modeling environment that allows for the evolution of modeling environments using XSL stylesheets as the
execution language.

1. Introduction

Domain-specific modeling languages (DSMLs) have a unique advantage over general-
purpose programming languages: the ability to encode domain semantics into the language
[9]. Thus, the load on the programmer (i.e., the domain-specific modeler) is lessened because
program information unrelated to the specification of the system can be generated. One dis-
tinct disadvantage of this approach, however, is that modifications to the DSML modify the
language in which the domain models (that is, models created in the DSML) were originally
intended to exist—meaning that the domain models may not be valid “programs” in the new
DSML. Another possibility is that the domain models are valid in the new DSML, but that
the domain semantics encoded in the DSML have changed, thus requiring that the domain
models be modified to work “correctly” in the new DSML.

These issues are encountered whenever a DSML is modified and there exists a collection of
domain models defined for that DSML. The evolution of the domain models to the new
DSML (referred to in this paper as model migration) is highly dependent on the particular
changes made to the DSML, and as such requires not a single solution for all model migra-
tion problems, but rather a language designed for the domain of all model migration prob-
lems.

This paper presents one such language, which is designed to migrate models created using the
MetaGME metamodeling language [1]. The actual migration is performed by XSL
stylesheets that are generated by the presented visual language, and may be executed by any
XSL engine.

2. Background

2.1. Domain-Specific Modeling
A domain-specific language is used by a domain expert instead of low-level code to create
systems in the domain. The domain-specific language decreases construction time and pro-
vides a specialized interface for managing the domain concepts. This approach can be used
to apply a sort of “golden rule” to drive the development of a domain-specific language: the
size of the change in requirements should be proportional to the size of the change in the im-
plementation.

A technique called metamodeling can be used to easily—yet precisely—describe the syntax
and static semantics (the well-formedness rules) of a modeling language. The artifact of the
metamodeling process—called the metamodel—is generally retained in an object database

for later manipulation, and can be evolved to create a new version of the DSML. Domain
models are instances of system types, and are used to represent the structural or behavioral
aspects of an existing system.

Before metamodeling became a widely used method for creating DSMLs [2][3]
[4][5][7][8][10], most such languages were not apt to evolve quickly. Early DSMLs were
usually not fully implemented and deployed until vetted by domain experts, because of the
complexity associated with updating the DSML. Metamodeling provided the ability to rap-
idly develop and change the domain-specific language. However, this ability to rapidly cre-
ate and deploy modeling languages came at a cost: changes to the language also made obso-
lete any domain models (i.e., models created using the DSML) created before its update.

2.2. Domain Evolution
Despite best practices in design, accepted standards and interfaces, domains can—and do—
change in their essential definition over the passage of time. That is, eventually the entire
family of systems changes in some way, and the entities and principles of the domain that
were present in the original design may change or may be removed for reasons outside the
control of the language. The evolution of the family of systems is called domain evolution.
In this case, the DSML—as it is a model of the domain—must be updated to reflect these
changes. The system requires maintenance on the metamodel level, resulting in an evolution
of the domain-specific modeling language [6].

The valuable portion of a DSML is not the modeling language itself, which can be generated,
but the body of models that is built up by the modeler [13]. When domain evolution is
required the model databases created with the old DSML may no longer be an accurate
description of the system they once helped implement, due to the changes required in the
semantic translator and/or semantic domain.

2.3. Model Migration
The evolution of models created using formal methods is simpler than the evolution of low-
level software due to the restricted nature of most formal methods used to create languages.
DSMLs are defined using metamodels; in essence, a metamodel acts as a schema for a do-
main-specific modeling language. The evolution of a DSML can be performed by creating
an algorithm that is composed of elements from the language metamodel. The execution of
this algorithm on existing domain models to transform them into domain models that are cor-
rect in the evolved domain is called model migration. In short, model migration is a way to
carry out domain evolution for a DSML.

Domain evolution, as its name suggests, is typically evolutionary rather than revolutionary in
its modifications. Model migration should reflect this by focusing on the differences between
the two DSMLs rather than their similarities. In other words, the model migration domain
should follow the “golden rule” in the following way: that small changes made to a meta-
model should require only a small specification to migrate any domain models. That is, the
size of the model migration specification should be related to the size of the change to the
metamodel, and not the size of the metamodels themselves.

3. A Domain Evolution Framework (DEF)

A meta-metamodel can be used to create a metamodel that describes any modeling language.
That being said, not all meta-metamodels provide a convenient representation of the same
abstractions, and some meta-metamodels—while very convenient for describing some ab-
stractions—are tedious or counter-intuitive for others. This requires the concession (or, per-

haps conjecture) that there is not now, nor will there ever be, one ubiquitous meta-
metamodel. The consequence of this conjecture is that a domain evolution tool is required for
each meta-metamodel. Although the complete set of domain evolution tools (one for each
meta-metamodel) does not contain any identical tools, many of the tools will contain similar
properties.

A domain evolution framework (DEF) is a generic representation of the fundamental proper-
ties and algorithms that are contained in each and every domain evolution tool. As a generic
representation it provides some parameters for instantiation, and those parameters are the
meta-metamodel and transformation engine used to instantiate a particular domain evolution
tool. When that domain evolution tool is used to evolve domain models from one metamodel
to another, then a domain evolution specification has been created as an artifact. The domain
evolution specification must be specified in at least two dimensions: namely, the patterns in
domain model D that are to be recognized and how those patterns should appear in the trans-
formed model, D’.

Domain Evolution
Framework (DEF)

DEF
template<GME, XSL>

GME Domain Evolution Tool

M1 ! M2 Domain Evolution Specification

GME Meta
model1

Rules
R1 R2

R4 R3

Sequence
R1 R2

R4 R3

DEF
template<GME, XSL>

GME Domain Evolution Tool

GME Meta
model2

XSL
Script

Domain Evolution
Framework (DEF)
Domain Evolution
Framework (DEF)

DEFDEF

M1 ! M2 Domain Evolution Specification

Rules
R1

(evolution tool layer)
(evolution specification layer)

(evolution framework layer)
(evolution tool layer)

template<meta-metamodel,
 graph-rewriting language>

Figure 1. Layers of the domain evolution tool for MetaGME and XSL. Note that the final domain evolution speci-
fication is one particular evolution of domain models from GME Metamodel 1 (M1) to GME Metamodel 2 (M2)

Figure 1 shows the three layers for a particular instantiation of a domain evolution tool for the
GME meta-metamodel and XSL graph transformations. The layers range from most generic
at the top (the framework) to least generic (the specification that generates an XSL script).
The evolution framework layer, at the top, contains the common information found in all do-
main evolution tools, and provides an interface to be customized by meta-metamodel and
graph-rewriting language. In this sense, the evolution framework layer is quite similar to a
template class definition in C++. The evolution tool layer, in the center, has tools that are
specific instances of the DEF. Shown in the figure is an example tool that parameterizes the

DEF using the GME meta-metamodel and the XSL graph-rewriting language. The domain
evolution tool is an environment usable by a modeler who is performing model migration.

4. The MetaGME/XSL domain evolution tool

The DEF is a collection of the common architecture components, user interfaces, program-
ming interfaces of any tool that could be used to perform domain evolution. Any specific
instance of the framework described has four distinct parts: (1)(2) the two DSML definitions
(as defined by a common meta-metamodel), (3) transform rules and their sequencing, and (4)
the item types that can be matched along with the types of mappings that can be performed
between matched items. Figure 2 shows an overview of this framework, with the four com-
ponents identified.

(3) (4)

(1)

(2)

Transformation

NewClassDiagram

OldClassDiagram

Transform

+Delete : bool
PatternItem

+CreateNew : bool
ConsequenceItem

Mapping

Figure 2. Simplified overview of the DEF. Comparison of this figure with Figure 1 shows the interfaces required
for a domain evolution specification to be created with the framework

4.1. Transform types
In general a model migration algorithm is made up of sequenced Transforms. Transforms
are used to describe the specific differences between metamodels, but not all Transforms
carry the same semantics. In addition to their ability to describe the differences between
metamodels, Transforms should also be capable of specifying where they should execute in
control flow – their sequence. Transforms are not necessarily required to be sequenced.

There are three possible types of Transforms, explained below.

• Rule – has side effects, and is sequenced. It may also contain a sequenced object (either
another Rule or a Test) in order to allow hierarchically structured Transforms.

• Test – is sequenced, but does not have side effects. It is used to make decisions in the
sequence of Transforms by executing the Cases and other Tests it contains. Although it
does not have side effects, the Cases it contains may.

• Case – is not sequenced, but has side effects. It is a special kind of Rule that behaves the
same, but without the ability to be sequenced or contain any Transforms. Its purpose is
to perform its mapping (if any) and return a boolean result if its pattern is matched. The
value of the result is used for decision making in the execution of the model migration al-
gorithm.

4.2. Legal Items
The replacement of syntax patterns from the old domain with patterns in the new domain is
the basis of domain evolution. The types of objects that can be used to create these patterns
are termed legal items.

Legal items are identified as patterns, matched, and upon successful match transformed
through mappings into objects in the new DSML (consequences, as opposed to patterns).
The types for mapping associations form a fundamental set of operations, in similar fashion
to the fundamental set of string replacement operations (i.e., insert, concatenate, delete, re-
place). The determination of the fundamental set of replacement operators for models is a
significant problem in its own right. Textual replacement has only one “association” – posi-
tion – while object replacement in a graph can have as many associations as are permitted for
that type of object by the metamodel. This paper limits that set of operators to CreateNew,
CreateWithin, Becomes, and Delete (analogous to insert, concatenate, replace and delete
for textual manipulation).

• CreateNew – an attribute of a ConsequenceItem. If the LHS is matched then any object
with this attribute set to true will be created. There must be a CreateWithin association
in which this ConsequenceItem is either the source or destination.

• CreateWithin – a binary association between a parent LegalItem (destination) and
child LegalItem (source). The parent and child may be either a pattern or consequence,
but at least one of them must be a consequence object. An object taking part in this asso-
ciation may not take part in a Becomes association, and may not have its Delete attribute
set to true if it is a PatternItem.

• Becomes – a binary association between a source PatternItem and a destination
ConsequenceItem. The source may not have its Delete attribute set to true, and the des-
tination object may not have its CreateNew attribute set to true.

• Delete – an enumerated attribute of a PatternItem. If this attribute is set to
ObjectOnly, and the PatternItem is part of a match then that item will be deleted (i.e.,
will not be copied directly into the output model) and any children of the object will be
preserved by default and placed in the parent of the deleted object. If this attribute is set
to ObjectAndChildren then all children will be recursively deleted.

The assumption that allows for this limited set of mappings relies on the definition of addi-
tional associations in a metamodel, and is outside the scope of this paper, but explained fur-
ther in [11].

4.3. Model of Computation
Because the DEF must be “translatable” into any full-featured graph-rewriting language it is
necessary for the framework to have its own defined model of computation (MoC). It is be-
yond the scope of this paper to fully define the MoC of the framework, so these short descrip-
tors are given.

• To specify the execution dependency of rules, they may be sequenced
• Rules that are not sequenced are not guaranteed to be executed in a particular order
• One initial sequence may be specified, to guarantee that this sequence happens before any

other rules
• Control flow can be specified using the Test objects

4.4. Visualization of the Language
The rules that make up the overall model migration algorithm are containers for patterns that
describe the replacement/creation/deletion of objects such that the models can be migrated.
An example is shown in Figure 3. The ProcessSignal, Port, and Connection objects are used
to establish a context for transformation. Given that the pattern is found in a source model,
the appropriate transformation (in this case, changing the type of the Port objects to Input) is
carried out. The next section explains some of the details of this transformation.

Figure 3. An example visual pattern that describes the transformation of Port objects to objects of type Input.

5. Mapping the visual language into XSL stylesheets

A basic study of the XML persistence format to store GME domain models allows for the
determination of the format for generated XSL stylesheets. It is possible to set forth a map-
ping from the patterns described using the model migration interface to patterns in XSL—or
more accurately, in XPath—that will uniquely identify the domain models to be migrated,
and map them into appropriate new concepts in the new DSML.

Objects not specified to be mapped are copied isomorphically into the output document using
an isomorphic transform (omitted in this document, for brevity). For an in-depth discussion
of mapping translations, this transform, and the XSL model of computation, refer to [11][12].

5.1. Pattern matching and mappings
For each mapping in the model migration specification a named template is generated in an
XSL stylesheet. An example named template (and its corresponding diagram) of the
Becomes mapping is given in Figure 4. Note that each named template is encoded with the
change that it performs (in this case B becomes a D) and it is uniquely named to avoid con-
flicts with multiple changes of the same type. If containment or association context is re-
quired for a particular match, the additional criteria is inserted into the “test” portion of the
XSL template. Containers and dotted lines are added to the graphical specification and its
generated XSL template to call attention to which portions of the XSL are generated from
which areas of the graphical specification.

An analogous method is used when performing CreateWithin (and consequently Creat-
eNew) except that the template would be called from within the template body of the object in
which the consequence was to be created. When using the Delete mapping the template
body is empty.

5.2. Execution model and sequencing
The DEF MoC is synthesized through the creation of a different stylesheet for each
Transform in the transformation, and passing an XML artifact to each stylesheet, keeping
only the final XML artifact. This solution has guaranteed predictability of execution, and an

easily composable nature. Figure 5 shows the sequencing execution model. Tests and Cases
are implemented in an analogous manner, see [11].

<xsl:template match="model[@kind='B']">
<xsl:variable name="Becomes_focus_B" select="current()"/>
<xsl:choose>
<xsl:when test="current()[$Becomes_focus_B]">
<xsl:call-template name="BBecomesD_2"/>
</xsl:when>
<xsl:otherwise>
<xsl:copy>
<xsl:apply-templates select="@*|node()"/>
</xsl:copy>
</xsl:otherwise>
</xsl:choose>
</xsl:template>

<xsl:template name="BBecomesD_2">
<xsl:element name="atom">
<xsl:apply-templates select="@*"/>
<xsl:attribute name="kind">D</xsl:attribute>
<xsl:comment>transformed using template 'BBecomesD_2'</xsl:comment>
<xsl:apply-templates select="node()"/>
</xsl:element>
</xsl:template>

Figure 4. Mapping transformation specified as a named template

XML

XSL

XML

XSL

XML

XSL

XML

Rule0.xsl Rule1.xsl Rule2.xsl

int0.xml int1.xml

input.xml output.xmlXML

XSL

XML

XSL

XML

XSL

XML

Rule0.xsl Rule1.xsl Rule2.xsl

int0.xml int1.xml

input.xml output.xmlXML

XSL

XML

XSL

XML

XSL

XML

Rule0.xsl Rule1.xsl Rule2.xsl

int0.xml int1.xml

input.xml output.xml

Figure 5. Example transformation exemplifying the translation into a sequenced execution

6. Conclusions

While there are other visual programming languages available that can be used to achieve the
same ends that the presented language does (see [11]), none are specific to the problem of
model migration, and none use elements from the formal metamodels of the domains in order
to specify how the models are to be migrated.

This research has been a benefit to the process of the evolution of domain specific modeling
languages by providing a language developed expressly for the purpose of migrating domain
models. It was developed based on a domain evolution framework that is independent of
metamodeling language and graph transformation implementation, so it has an interface that
is designed for model migration rather than XSL stylesheets. The language allows the user to
visually program the evolution algorithm, and utilizes the types found in the metamodels of
the two domains as language primitives.

Most importantly the language satisfies the “golden rule” by providing a way to evolve do-
main-specific modeling languages by specifying a model migration algorithm that is propor-
tional to the size of the evolution rather than the size of the metamodel.

This research was performed under the sponsorship of the Defense Advanced Research Pro-
jects Agency, Information Exploitation Office, Model-Based Integration of Embedded Sys-
tems project, under contract number #F30602-00-1-0580, and also the NSF ITR on "Founda-
tions of Hybrid and Embedded Software Systems".

7. References

[1] A. Ledeczi, A. Bakay, M. Maroti, P. Volgyesi, G. Nordstrom, J. Sprinkle, G. Karsai, “Compos-
ing Domain-Specific Design Environments”, IEEE Computer, pp. 44-51, November, 2001.

[2] J. Sztipanovits, et al., “MULTIGRAPH: An Architecture for Model-Integrated Computing”,
Proc. IEEE International Conference on Engineering of Complex Computer Systems, pp. 361-
368, 1995.

[3] OMG Unified Modeling Language Specification, ver. 1.4, Object Management Group, et al.,
September 2001.

[4] R. Lemesle, “Transformation Rules Based on Meta-modeling”, Proceedings of the Second Inter-
national Enterprise Distributed Object Computing Workshop, San Diego, November 1998.

[5] G. Nordstrom, J. Sztipanovits, G. Karsai, A. Ledeczi, “Metamodeling - Rapid Design and Evolu-
tion of Domain-Specific Modeling Environments”, Proceedings of the IEEE ECBS'99 Confer-
ence, pp. 68-74, Nashville, Tennessee, April, 1999.

[6] G. Nordstrom, J. Sztipanovits, G. Karsai, “Metalevel Extension of the MultiGraph Architecture”,
Proceedings of the IEEE ECBS'98 Conference, pp. 61-68, Jerusalem, Israel, April 1998.

[7] The Domain Modeling Environment (DoME). http://www.htc.honeywell.com/dome/index.htm
[8] MetaEdit+, Domain specific modeling tool. http://www.metacase.com/
[9] D. Harel, B. Rumpe, “Modeling Languages: Syntax, Semantics, and All That Stuff. Part I: The

Basic Stuff”, Technical Report MCS00-16, Mathematics & Computer Science, Weizmann Insti-
tute Of Science, Rehovot, Israel.

[10] G. Karsai, G. Nordstrom, A. Ledeczi, J. Sztipanovits, “Specifying Graphical Modeling Systems
Using Constraint-based Metamodels”, Proceeding of the IEEE Symposium on Computer Aided
Control System Design, Anchorage, AK, 2000.

[11] J. Sprinkle, “Metamodel Driven Model Migration”, Ph.D. Dissertation, pp. 104-106, Vanderbilt
University, August, 2003.

[12] M. Kay, XSLT – Programmers Reference, Wrox Press Ltd., 2nd Edition, 2002.
[13] G. Karsai, A. Agrawal, F. Shi, J. Sprinkle, “On the use of Graph Transformations in the Formal

Specification of Computer-Based Systems”, IEEE TC-ECBS and IFIP10.1 Joint Workshop on
Formal Specifications of Computer-Based Systems, pp. 19-27, Huntsville, Alabama, April 9,
2003.

