

- 1 -

Institute for Software-Integrated Systems

Technical Report

TR#: ISIS-15-118

Title: Applying Decentralized Information Flow Labels to

Component-Based Software Systems Deployment

Authors: David Lindecker, Janos Sztipanovits

Copyright (C) ISIS/Vanderbilt University, 2015

Applying Decentralized Information Flow Labels to

Component-Based Software Systems Deployment

David Lindecker, Janos Sztipanovits

September 5, 2014

1 Introduction

Model-Based Engineering (MBE) emphasizes the use
of models at all phases of system development. This
approach has many advantages including reduced de-
velopment time and cost as well as improved cohesive-
ness between development phases (i.e. progressing
from one phase of development to another consists of
model refinements). Furthermore, MBE shows con-
siderable promise for addressing the immense com-
plexity of modern embedded and Cyber-Physical sys-
tems.
Until recently, the topic of security has not been

deeply considered for these systems. As these systems
continue to become more complex, however, the lack
of proven techniques for building in security becomes
a more pressing concern. Simultaneously, the context
of the increasing popularity of MBE and associated
tools presents an opportunity for incorporating secu-
rity concerns in an intuitive way.
One important aspect of security is controlling the

flow of information throughout the system. In [4],
Myers and Liskov introduce a model for decentralized
information flow control. We have integrated this
model into our embedded software modeling frame-
work in order to provide a validation basis for the
information flows in these systems. We have also cre-
ated a formal framework based on FORMULA [1, 2]
which allows us to perform automated analyses on
models.
This paper describes in detail our FORMULA

framework for decentralized information flow control
for component-based software systems. Section 2 de-
scribes the principal hierarchy, which describes the

relationships between the different entities important
to the flow of information. The details of the poli-
cies and labels are described in Section 3 which are
used to describe restrictions on the flow of informa-
tion. Section 4 describes our annotation of compo-
nent interaction models with information flow labels.
In Section 5 we describe the annotation of hardware
deployment models with information flow labels and
in Section 6 we conclude.

2 Principal Hierarchy

The distributed label model manages information
flow restrictions in a manner that considers the ex-
pectations of multiple interested entities, or princi-
pals. For our purposes, a principal is an abstract
concept consisting only of a name. We create the fol-
lowing type signature in FORMULA to denote this:

Principal ::= new (name:String).

It is useful to be able to specify that one principal
can perform actions with the authority of another.
In the distributed label model this is achieved with a
binary relation on principals, which we call ActsFor.
In FORMULA, we specify this binary relation in the
following way:

ActsFor ::= new (Principal, Principal).

The ActsFor relation induces an authority hierarchy
on the principals, and can be used to realize many
different delegation types. Consider the diagram in
Figure 1a, taken from [5]. In this diagram, the Acts-
For relation is used to specify that the principal carl
has two different roles: doctor and manager. As a

1

(a) Graph representation [5]

1 model M1 of PrincipalHierarchy

2 {

3 Principal("carl").

4 Principal("manager").

5 Principal("doctor").

6 Principal("amy").

7 Principal("bob").

8 Principal("group").

9 ActsFor(Principal("carl"),Principal("doctor")).

10 ActsFor(Principal("carl"),Principal("manager")).

11 ActsFor(Principal("manager"),Principal("bob")).

12 ActsFor(Principal("manager"),Principal("amy")).

13 ActsFor(Principal("bob"),Principal("group")).

14 ActsFor(Principal("amy"),Principal("group")).

15 }

(b) FORMULA encoding

Figure 1: A principal hierarchy

manager, Carl can perform actions on behalf of Bob
or Amy. Additionally, Bob and Amy (as well as Carl
by transitivity) have the authority to act as group.
Figure 1b shows the encoding of this diagram as a
FORMULA model, where the principals and rela-
tions have been translated to terms which adhere to
the type signatures we have described.

The ActsFor relation is considered to be transi-
tive and reflexive. Rather than requiring models to
include all of the terms necessary to realize these clo-
sures, we can compute them automatically with the
following logical rules:

ActsForT ::= (Principal, Principal).

ActsForT(x,y) :- ActsFor(x,y).

ActsForT(x,z) :- ActsForT(x,y), ActsFor(y,z).

ActsForTR ::= (Principal, Principal).

ActsForTR(x,x) :- x is Principal.

ActsForTR(x,y) :- ActsForT(x,y).

ActsForT is the transitive closure of ActsFor and
ActsForTR is the transitive and reflexive closure. We
compute the transitive closure by itself in order to fa-
cilitate our constraint that the hierarchy cannot con-
tain a loop:

conforms no ActsForT(x,x).

3 Labels and Policies

A policy specifies a particular principal’s expectations
about the flow restrictions placed on a piece of infor-
mation. It consists of an owner principal (the prin-
cipal for which expectations are specified) and a list
of allowed reader principals. The notation described
for a policy in [4] is

O : r1, r2, ...

where O is the owner principal and rn are the allowed
reader principals. A policy functions as a whitelist,
meaning that any principal not listed as a reader is
not allowed to read information restricted by the pol-
icy. We use the following type signatures to specify
this structure in FORMULA:

Policy ::= new (owner:Principal,

readers:any PrinList).

PrinList ::= {NULL} + PrinNode.

PrinNode ::= new (pr:Principal,

rest:any PrinList).

The list structure is specified with a recursive type
signature. The any keyword means that the subterm
does not need to be a top-level term in the model
(e.g. the term PrinNode(pr,rest) does not imply rest

must be present in the model, but it does imply pr).
The key to specifying the expectations of multi-

ple parties about the flow of information is the la-
bel, which is merely a list of policies, written as

2

{P1;P2; ...}. We encode this in FORMULA with the
same list structure we used for reader lists within
policies:

Label ::= PolicyList.

PolicyList ::= {NULL} + PolicyNode.

PolicyNode ::= new (pl:any Policy,

rest:any PolicyList).

We note that a label encoded as a FORMULA
term is much more verbose and difficult to read
than the standard notation. For example, the label
{A : B,C;D : E,F} would be expressed as

PolicyNode(Policy(Principal("A"),

PrinNode(Principal("B"),PrinNode(Principal("C"),

NULL))),PolicyNode(Policy(Principal("D"),

PrinNode(Principal("E"),PrinNode(Principal("F"),

NULL))),NULL))

This issue can be largely alleviated with automated
translation. Currently, we have implemented an au-
tomated translation from the standard notation to
the FORMULA term notation.
Additionally, it is difficult to access individual el-

ements of these recursive list structures in FOR-
MULA. Fortunately, FORMULA provides a feature
which helps with this:

LabelPolicy ::= sub (Label, Policy).

LabelSub ::= sub (Label, Policy,

PrinList, Principal).

The sub keyword indicates a special type of derived
term for which FORMULA will automatically cre-
ate the inferrence rules. In this case, we derive
LabelPolicy terms for each combination of a Label term
and a Policy term where the former is a top-level
term in the model and the latter is a subterm of
it. This pattern continues from left to right. For
LabelSub, we further infer terms with readers within
the reader list within the policies. We can use the
term LabelSub(lbl,pl,_,pr) to match a reader princi-
pal pr within a policy pl within a label lbl.
We honor all of the policies within a label by estab-

lishing an effective readers set for it, which consists
of each reader that is listed by all of the policies, or
rather the intersection of all of the reader sets. We
can derive this in FORMULA as follows:

EffectiveReader ::= (Label, Principal).

EffectiveReader(lbl,pr) :-

lbl is Label, pr is Principal,

no { pl | LabelPolicy(lbl,pl),

no LabelSub(lbl,pl,_,pr) }.

EffectiveReader(NULL,pr) :- pr is Principal.

Furthermore, we specify that a principal “can read”
data associated with a label if the principal acts for
a principal which is in the effective reader set:

CanRead ::= (Label, Principal).

CanRead(lbl,pr) :-

ActsForTR(pr,pr’), EffectiveReader(lbl,pr’).

It is useful to be able to identify when one label
constitutes a declassification of another label, in par-
ticular with respect to an individual owning princi-
pal’s policy. A declassification is defined as adding a
reader to a policy or removing a policy from a label
and is considered an invalid information flow unless
performed by a principal which can act for the own-
ing principal of the respective policy:

DeclassificationOf ::= (Label, Label, Principal).

DeclassificationOf(lbl,lbl’,owner) :-

lbl is Label, lbl’ is Label, owner is Principal,

LabelPolicy(lbl,pl), LabelPolicy(lbl’,pl’),

pl.owner = owner, pl’.owner = owner,

LabelSub(lbl,pl,_,reader),

no LabelSub(lbl’,pl’,_,reader).

DeclassificationOf(lbl,lbl’,owner) :-

lbl is Label, lbl’ is Label, owner is Principal,

LabelPolicy(lbl’,pl’), pl’.owner = owner,

no { pl | LabelPolicy(lbl,pl),

pl.owner = owner }.

4 Component Interaction

In this section we expand on the label model that
we have encoded in FORMULA in order to reason
about information flow in component-based software
systems. In [4], the authors define a concept called a
slot, which is an object that can hold a value and is
tagged with a label. The value of a slot is dynamic,
the label is static. When a value flows from slot A
to slot B, we need to ensure that the label of slot B
does not constitute an invalid declassification of the
label of slot A.
We consider an abstract component interaction

model, consisting of components, each with owned
input and output ports, and information flow links

3

(a) Visualization

1 model M2 of Components

2 {

3 a is Principal("A"). b is Principal("B"). c is Principal("C").

4 p1_lbl is PolicyNode(Policy(a, PrinNode(b, PrinNode(c, NULL))),NULL).

5 p2_lbl is PolicyNode(Policy(a, PrinNode(b, NULL)),

6 PolicyNode(Policy(b, PrinNode(c, NULL)),NULL)).

7 p3_lbl is PolicyNode(Policy(a, PrinNode(b, NULL)),NULL).

8 p4_lbl is PolicyNode(Policy(a, NULL),NULL).

9 p1 is Port("P1", p1_lbl). p2 is Port("P2", p2_lbl).

10 p3 is Port("P3", p3_lbl). p4 is Port("P4", p4_lbl).

11 c1 is Component("C1", a, PortNode(p3,NULL), PortNode(p1,NULL)).

12 c2 is Component("C2", b, PortNode(p2,NULL), PortNode(p4,NULL)).

13 Link(p1,p2). Link(p4,p3).

14 }

(b) FORMULA model

Figure 2: A labeled component diagram

between these ports. We extend this model to sup-
port the decentralized label framework in the follow-
ing ways: i) we unify the port and slot concepts such
that each port is tagged with a label, and ii) we spec-
ify an owning principal for each component. The
FORMULA type signatures for this are given here:

Component ::= fun (id:String -> owner:Principal,

inputs:any PortList, outputs:any PortList).

PortList ::= {NULL} + PortNode.

PortNode ::= new (port:Port, rest:any PortList).

Port ::= fun (id:String -> lbl:Label).

Link ::= new (src:Port, dst:Port).

A simple example is shown both visually and as a
FORMULA model in Figure 2, which contains two
components, C1 and C2, owned by principals A and
B respectively. C1 has an output port, P1, and an

input port, P3. Similarly, C2 has an output port, P4,
and an input port, P2. There are information flow
links from port P1 to port P2 and from port P4 to
port P3. In the visualization of this model, the labels
that each port has been tagged with have been placed
to the side of the corresponding ports.
Primarily, we are concerned with ensuring that the

information flow links are valid. We differentiate be-
tween two cases: i) external links between compo-
nents, and ii) internal links within components. We
identify these cases with the following:

IntLink ::= (Port, Port, Component).

IntLink(src,dst,cmp) :-

ComponentInput(cmp,src),

ComponentOutput(cmp,dst),

Link(src,dst).

ExtLink ::= (Port, Port).

ExtLink(src,dst) :-

4

Link(src,dst), no IntLink(src,dst,_).

For external links, we require that the destination’s
label is at least as restrictive as the source’s label, or
rather that the destination’s label is not a declassifi-
cation of the source’s label:

conforms no { ExtLink(src,dst),

DeclassificationOf(dst.lbl,src.lbl,_) }.

For internal links, we allow the exception where the
destination’s label is declassified with respect to a
policy owned by a principal that the owner of the
respective component acts for:

conforms no { IntLink(src,dst,cmp),

DeclassificationOf(dst.lbl,src.lbl,pr),

no ActsForTR(cmp.owner,pr) }.

Consider the model in Figure 2, which contains two
external links. Both links are valid as the destination
label is more restrictive than the source. Intuitively,
the link from P1 to P2 removes a reader from the
policy owned by A and adds a new policy. The link
from P4 to P3 only removes a reader from the policy
owned by A. These relabelings represent increased
restrictiveness and are therefore valid. We could fur-
ther imagine internal links from P2 to P4 and from
P3 to P1. The link from P2 to P4 removes the policy
owned by B. This would be an error for an external
link, but since B owns the component, it is valid. The
same is true of the link from P3 to P1 since readers
are added to the policy owned by A, which is also the
owner of the component.

5 Hardware Deployment

In addition to ensuring that logical component inter-
action models adhere to certain restrictions on infor-
mation flow, we would like to ensure that when we
deploy these systems to distributed hardware nodes,
the information flow restrictions are not invalidated
by the properties of the communication channels used
for realizing component interaction. The deployment
model consists of processing nodes and channels, as
well as mappings from the component model’s com-
ponents to nodes and links to channels. The secu-
rity properties of communication channels are rep-
resented by tagging them with a label in the same

was as component ports. This label should be de-
termined by the designer to indicate which principals
could potentially eavesdrop on the information as it is
communicated across the channel. The FORMULA
type signatures are as follows:

Channel ::= fun (id:String -> lbl:any Label).

Node ::= fun (id:String ->

chans:any ChanList).

ChanList ::= {NULL} + ChanNode.

ChanNode ::= new (chan:Channel,

rest:any ChanList).

CompMap ::= fun (src:Component -> dst:Node).

LinkMap ::= fun (src:Link -> dst:Channel).

NodeChannel ::= sub (Node, Channel).

We include some restrictions on meaningless link
mappings. Naturally, we want to prevent mapping a
link between components executing on the same node
to a channel as these components can communicate
within the node using some sort of interprocess com-
munication:

BadLinkMap :-

LinkMap(Link(p1,p2),_),

CompOutput(c1,p1), CompInput(c2,p2),

CompMap(c1,n), CompMap(c2,n).

Additionally, we want to ensure that when a link
is mapped to a channel, the nodes which the corre-
sponding components are mapped to have access to
the channel:

BadLinkMap :-

LinkMap(Link(_,pt),ch), CompInput(cmp,pt),

no { n | CompMap(cmp,n), NodeChannel(n,ch).

BadLinkMap :-

LinkMap(Link(pt,_),ch), CompOutput(cmp,pt),

no { n | CompMap(cmp,n), NodeChannel(n,ch).

Finally, we need to ensure that when we map a
link to a channel, the information flow restrictions
placed on the source of the link are not invalidated by
the channel’s security properties. Since information
read while crossing a channel is considered to exit
the system, we only need to check that the effective
reader set of the channel’s label is a subset of the
effective reader set of the link source:

ChannelLeak :-

LinkMap(Link(src,_),ch),

EffectiveReader(chan.lbl,pr),

5

no EffectiveReader(src.lbl,ch).

6 Conclusion

In this paper we have documented our FORMULA-
based framework for modeling and analyzing infor-
mation flows in a component-based system. This
work builds on an established information flow model,
presented in [4], by including abstractions for compo-
nent interaction models and their hardware deploy-
ment as well by providing a FORMULA-based im-
plementation which supports automation of several
analysis tasks.
Within our framework, we have assumed that in-

formation flows within a component can be reduced
to links directly from input ports to output ports,
however, we do not consider here the topic of identi-
fying which links are required. If the system designer
has control over the implementation of components,
he can analyze this implementation to determine the
information flows. It may also make sense to verify
separately that each component’s implementation ad-
heres to the information flow restrictions of its inter-
face, then verify that the interconnections are sound.
However, we would like to be able to address sce-

narios where the designer does not have control of
some or even any of the component implementations.
We can perform a “worst-case” information flow anal-
ysis by simply inferring links from all input ports
to all output ports on these blackbox components
and checking that these links are valid, but this is
likely too restrictive to be useful in many cases. An-
other possibility is to implement a trusted platform
for these components to execute on which enforces
that components obey the information flow restric-
tions imposed by their interfaces. This is similar to
what is done for the Jif language in [5].
In this paper, we have described a framework which

would ideally serve as the backend for a develop-
ment environment. We have previously used FOR-
MULA as a backend for formalizing the structural
and behavioral semantics of modeling languages, as
described in [6, 7, 8]. For these previous works, we
established a translation from the Generic Modeling
Environment (GME) [3] to FORMULA. In this case,

we will also likely want to automate importing ele-
ments from FORMULA into GME, because we plan
to use FORMULA’s SMT solver integration features
to synthesize correct hardware deployments.
Another topic for further work on this framework

is the issue of integrity, which the authors in [4] also
mention as a possible extension. The idea is that
labels would also include policies which list allowed
writer principals. The application context could be
where certain principals have the ability to intercept
and alter communications on some channels and we
want to ensure at certain points within the system
that information has not been tampered with by a
particular principal.

References

[1] Ethan Jackson and Janos Sztipanovits. Formal-
izing the structural semantics of domain-specific
modeling languages. Software & Systems Model-
ing, 8(4):451–478, 2009.

[2] Ethan K Jackson, Wolfram Schulte, and Niko-
laj Bjørner. Detecting specification errors in
declarative languages with constraints. In
Model Driven Engineering Languages and Sys-
tems, pages 399–414. Springer, 2012.

[3] Ákos Lédeczi, Arpad Bakay, Miklos Maroti, Pe-
ter Volgyesi, Greg Nordstrom, Jonathan Sprinkle,
and Gábor Karsai. Composing domain-specific
design environments. Computer, 34(11):44–51,
2001.

[4] Andrew C Myers and Barbara Liskov. A decen-
tralized model for information flow control, vol-
ume 31. ACM, 1997.

[5] Andrew C Myers and Barbara Liskov. Protect-
ing privacy using the decentralized label model.
ACM Transactions on Software Engineering and
Methodology (TOSEM), 9(4):410–442, 2000.

[6] Gabor Simko, Tihamer Levendovszky, Sandeep
Neema, Ethan Jackson, Ted Bapty, Joseph
Porter, and Janos Sztipanovits. Foundation for

6

model integration: Semantic backplane. In Pro-
ceedings of the ASME 2012 International Design
Engineering Technical Conferences & Comput-
ers and Information in Engineering Conference
IDETC/CIE, pages 12–15, 2012.

[7] Gabor Simko, David Lindecker, Tihamer Lev-
endovszky, Ethan K Jackson, Sandeep Neema,
and Janos Sztipanovits. A framework for un-
ambiguous and extensible specification of dsmls
for cyber-physical systems. In IEEE 20th Inter-
national Conference and Workshops on the En-
gineering of Computer Based Systems (ECBS),
pages 30–39, 2013.

[8] Gabor Simko, David Lindecker, Tihamer Leven-
dovszky, Sandeep Neema, and Janos Sztipanovits.
Specification of cyber-physical components with
formal semantics – integration and composition.
In ACM/IEEE 16th International Conference on
Model Driven Engineering Languages and Sys-
tems (MODELS), 2013.

7

	Introduction
	Principal Hierarchy
	Labels and Policies
	Component Interaction
	Hardware Deployment
	Conclusion

