
Platform Modeling and Model Transformations for
Analysis

Tivadar Szemethy
(Institute for Software-Integrated Systems, Vanderbilt University,

tivadar.szemethy@vanderbilt.edu)

Gabor Karsai
(Institute for Software-Integrated Systems, Vanderbilt University,

gabor.karsai@vanderbilt.edu)

Abstract: The model-based approach to the development of embedded systems relies on the
use of explicit models in the design process. If these models faithfully represent the
components of the system with respect to their properties as well as their interactions, then they
can be used to predict the dynamic behavior of the system under construction. In this paper we
argue for modeling the execution platform that facilitates the component interactions, and show
how models of the application and the knowledge of the platform can be used to translate
system configurations into another abstract formalism (timed automata, in our case) that allows
system verification through model checking.

Keywords: Model-Based Development, Model Transformations, Models of Computation,
Graph Transformations, Software Verification
Categories: D.2.2

1 Introduction

Model-based development of embedded systems [Karsai, 03a] facilitates design-time
analysis. Because the models are abstractions of the system that the designer is
building, analysis algorithms can be applied to these models and properties of the
system can be computed and thus the behavior of the system predicted. Typical
properties include schedulability, lack of deadlock, maximum usable data rates,
worst-case reaction times to events, end-to-end latency and others. In spite of the
apparent validity of the principle of model-based analysis, there are very few [Larsen,
97][Amnell, 02][Gu, 03] actual and practical design tools that fully implement this
principle.

In this paper, we are focusing on the model-integrated construction of
component-based embedded systems. In this context “model-integrated” means that
models play an integral role in the design, analysis and synthesis of the embedded
application, while “component-based” means that the system constructing from
components that interact with each other using a well-defined model of computation
[Lee, 97]. This model of computation is implemented and facilitated by an underlying
component infrastructure (e.g. real-time CORBA [RTCORBA]) that strictly enforces
the rules of component interaction. We argue that the analysis of the design should be

Journal of Universal Computer Science, vol. 10, no. 10 (2004), 1383-1407
submitted: 30/6/04, accepted: 15/10/04, appeared: 28/10/04 © J.UCS

explicitly based on the knowledge and precise understanding of this platform. By
“understanding” we mean having a formal, operational semantics of the platform,
which may also include performance metrics, like worst-case context switching
delays. If the operational semantics of the platform is known, one can create a formal
model of it, and this explicit platform model could serve as the conceptual foundation
for realizing the analysis approach for the component-based system.

In this paper we will show how a platform model could be defined, and how it
can be used to perform the analysis. Platform models can be explicit or implicit. As
we use a general-purpose analysis engine (which is based on the concept of timed
automata), the platform models are implicit and captured in the form of the model
transformations rules that map system models into analysis models.

2 Model-integrated development of component-based embedded
systems

In model-integrated development one uses domain-specific modeling languages to
capture salient properties of the system to be constructed. These models are then used
both in analysis of the design and in synthesis of the final application. The key
concept here is that the models of the system are explicit (i.e. a designer effectively
creates them), and they are also an abstraction of the system.

In component-based design the system is constructed from components that have
a well-defined behavior and interfaces through which they interact with each other.
This applies to component-based embedded systems as well. Components interact
with each other through precisely defined interaction patterns, called the model of
computation. In single-threaded software designs the main (sometimes the only)
method of component interaction is the procedure call, with the usual call-return
semantics. In embedded system designs, where concurrency is prevalent, more
complex interactions patterns are needed. The hardware typically gives direct support
for the call-return interactions via the subroutine call/return instructions, but very
rarely gives direct support for more complex concurrency patterns. These concurrency
patterns are implemented using some underlying computational framework or
infrastructure that we will call the platform.

The platform provides an abstraction layer above the raw hardware (which may
include multiple processors with communication services, etc.), and defines the
interaction patterns among components. We make the assumption here that all
component interactions happen via the platform, and no other component interactions
are allowed. Thus, component based systems are constructed as shown in Figure 1. In
the figure, broad arrows indicate the physical interactions (between the component
and the platform), while thin dashed arrows indicate the logical interactions (between
components). Obviously, the latter are implemented by the former. Note that this
platform-oriented view is compliance with the principles of platform-based design
[Sangiovanni-Vincentelli, 01].

1384 Szemethy T., Karsai G.: Platform Modeling and Model Transformations ...

Platform

HW CPU

Network

HW CPU

Comp.

Comp.

Comp. Comp.

Comp.

Comp. Comp.

Figure 1: Component-based system

In the embedded design process we often need to perform an analysis on the

design. This analysis can be used to answer important questions about the system: Is it
schedulable? Does it meet all the required deadlines? Will it deadlock? Is there a
danger for priority inversion? What are the maximum usable data rates for the
system? What is the maximum data latency between signal flow endpoints of the
design? What is the maximum latency between the arrival of an asynchronous event
and generating a response to that?

Obviously, the precise (and ultimately satisfying) answers to these questions
could be given only after analyzing the code of the entire system, but this is often not
feasible. The next best thing one can do is to analyze the model of the system and
draw conclusions about the final system based on the models. This approach assumes
that models are valid abstractions, and recognizes that a proof obtained is valid only if
the models are valid.

Note that there are (at least) two kinds of models needed: models for the
components and a model for the platform. Note that the component models are not
necessarily the same as the designer has created: the designer can work on a higher
level of abstraction, while lower-level models could be necessary for analysis. In
terms of the language of the Model-driven Architecture [MDA], while the designer
could work with Platform-Independent Models (PIM), for analysis one needs
Platform-Specific Models (PSM) for the components.

For the platform, one needs a model that unambiguously captures the platform’s
behavior and describes how the components interact with each other via the platform.

Note that the overall system is a composition: PCCC n ||||...|||| 21 (i.e. the

components are composed with the platform). The objective of the analysis is to
compute and verify the properties of the composed system consisting of the
components and the platform (models).

1385Szemethy T., Karsai G.: Platform Modeling and Model Transformations ...

Note that the platform model is abstract (in the general sense), but it must be
made concrete for the configuration of specific applications. The abstract platform
model captures how components interact in general, without fixing any specific
component configuration. However, we are always interested in concrete, specific
systems, where components are “wired” in a specific way. Therefore the platform
model must always be concretized for the application one wants to analyze.

To summarize, the analysis of component-based embedded system designs
necessitates that platforms are modeled, in addition to components. Platforms define
the rules how the components interact with each other. For the analysis of specific
designs one needs to have the concrete model of the platform, which includes the
models for specific component interactions.

The requirement for concretizing the platform models led us to solve the problem
using a transformational approach. In the subsequent sections, we describe our
approach in general, and show some concrete examples how it works on a simple
platform.

3 SMOLES: A Simple Modeling Language for Embedded
Systems

In the remaining part of the paper we are going to use a simple modeling language
that was used to model component-based embedded system designs. We introduce the
language here informally.

SMOLES was designed as a simple modeling language that allows constructing
small, embedded systems from components. The components are assumed to be
concurrently executing objects that communicate and synchronize with each other.
Furthermore, objects can perform I/O operations in which they wait for the result,
while other objects can execute. Communication between components means passing
data from a source component to a destination component, which is then enabled to
run, in order to process the data. In addition to data triggering, periodic timers can
also trigger the components.

SMOLES follows an event-triggered execution model: computations are activated
when token(s) arrive at components. Tokens carry data that the component can
retrieve.

SMOLES is a modeling language that focuses on component composition and
coordination. As such, it has to work together with an underlying procedural
language, which is used to implement specific details of algorithms, data structures,
etc, used in the final application.

Specifically, the language consists of Components and Assemblies. Components
are the elementary building blocks, and contain:

• Input and output ports, which are used to receive/send data tokens
from/to other components

• Attributes, which are data members of the component objects
• Methods, which are operations that the component implements, written

in an underlying procedural language
• Triggers, which specify how the arrival of data on input port(s) will

trigger the invocation of methods or behaviors.

1386 Szemethy T., Karsai G.: Platform Modeling and Model Transformations ...

The components work as follows. Input ports feed into triggers that activate a
single method. The triggers specify whether all or at least one (any) input port(s) must
have a data token in order to fire: If multiple ports are fed into a single trigger, then
all of the ports have to have data available to activate the trigger. If multiple triggers
are connected to a method, then the method executes if any of these triggers becomes
active.

When the condition is satisfied, the activated method executes. Methods can also
be connected to output ports, on which they can send data tokens to downstream
components. The number of tokens produced by a single method execution could be
specified as a range of integers. One of the methods can be marked as initial, which
will be executed when the component is instantiated for the first time. Methods can
access the attributes as instance variables of their owner the component object, while
the input and output ports are accessed via API calls.

Assemblies contain components, and describe how they are interconnected. Like
components, assemblies can have their own input and output ports, and assemblies
can contain other assemblies. The wiring of ports of assemblies and components
shows the data flows among components in the system. A port can be connected to
precisely one other port. If data produced by one port should be sent to multiple other
ports, or if multiple data streams should be merged into a single port a Queue has to
be inserted. A queue is a multi-writer, multi-reader queue data structure that non-
deterministically merges input data streams into a single one, which then can be read
by multiple readers. An item is removed from a queue if all the readers have received
it. Component input ports in an assembly can also be connected to Timers. Timers
produce data tokens with a fixed period and trigger downstream components.
Assemblies can be organized into a containment hierarchy, and the various
components and assemblies in the hierarchy communicate with each other through the
data flows via ports. If there is a need for accessing a non-local data flows in a
specific assembly, one can place a queue reference object into the assembly that acts
as a pointer to the remotely declared queue object.

4 Formal Definition of the SMOLES Modeling Language

Following the informal introduction to the language, its formal definition follows
below. In the following definitions, we assume all sets to be finite, and N is the set of
non-negative integers.

4.1 Syntactical definitions

A SMOLES model consists of the following elements:

1) A set of Component definitions:
A Component C=(I, O, Tr, M, InTr, TriM, MOut, m0) is a tuple:

I is a set of input ports, which are data token entry points.
O is a set of output ports, which are data token exit points.
Tr is a set of triggers.
M is a set of method instances Mi. A method instance is Mi =(mi,bceti,wceti)
where mi is the executable code of the method, and bceti, wceti ∈ N correspond to

1387Szemethy T., Karsai G.: Platform Modeling and Model Transformations ...

the best- and worst-case execution times, respectively. Note that bceti≤wceti and
bceti>0
InTr ⊆ (I× Tr) is a set of Input→Trigger connections
TriM ⊆ (Tr× M) is a set of Trigger→Method connections
MOut is a set of annotated Method→Output connections:
MOut=(m,o,MinT,MaxT), where m∈M, o∈ O, and MinT, MaxT ∈ N. Integers
MinT,MaxT correspond to the minimum and maximum number of tokens emitted
on o during execution of M. Note that MinT≤MaxT.
m0: a trigger-less initial method. m0∈M and ¬∃ t ∈Tr | (t,m0)∈TriM.

For Components we also use the following definitions: Inputs(C):=I, Outputs(C):=O,
Ports(C):=I ∪ O.

2) A set of Assembly definitions
An Assembly A = (I, O, As, Co, Cl, Q, Df, Tt) is a tuple:

I is a set of input ports, which are data token entry points.
O is a set of output ports, which are data token exit points.
As is a set of Assemblies contained in A.
Co is a set of Components contained in A.
Cl is a set of Cli instances, where Cli = (timeri,pi) , where timeri is a timer type,
and pi∈ N, pi>0 is its period.
Q is a set of Queues

Df ⊆ ((I ∪ Q ∪ U
ni ..1=

Outputs(Asi) ∪ U
mj ..1=

Outputs(Coj)) ×

(O ∪ Q ∪ U
ni ..1=

Inputs(Asi) ∪ U
mj ..1=

Inputs(Coj)) (with m=|Co|,n=|As|)

 is a set of Dataflow connections within the Assembly between ports and Queues.
∀ (o,i)∈Df : o∉Q⇒ (¬∃ j : (o,j)∈Df ∧ i≠j). That is, a port can be connected
to precisely one port and only Queues can be connected to multiple destinations.

Tt ⊆ ((Cl× (O ∪ Q ∪ U
ni ..1=

Inputs(Asi) ∪ U
mj ..1=

Inputs(Coj)), (with m=|Co|,

n=|As|) is a set of TimeTrigger connections connecting Timers to Ports and
Queues.
∀ (t,i)∈Tt: ¬∃ j: (t,j)∈Tt ∧ i≠j: a Timer can be connected to precisely one
destination.

For Assemblies, we also define (n=|Co|, m=|As|):

Inputs(A):=I ∪ U
ni ..1=

Inputs(Asi) ∪ U
mj ..1=

Inputs(Coj)

Outputs(A):=I ∪ U
ni ..1=

Outputs(Asi) ∪ U
mj ..1=

Outputs(Coj)

Ports(A):= Inputs(A) ∪ Outputs(A)

1388 Szemethy T., Karsai G.: Platform Modeling and Model Transformations ...

Functions Assemblies(A), Components(A), Queues(A), Dataflows(A) and
TimeTriggers(A) are defined in an analogous, recursive manner.

4.2 Semantics

Below, we define the execution semantics of the SMOLES language on a non-
preemptively scheduled, uniprocessor platform. Data tokens are (for the scope of this
discussion) atomic units of data used in component interactions in SMOLES. The set
of all possible data tokens is denoted as Dt. On this platform, time is measured in
integer units.
First we define the state of some objects:

State of a port (Input or Output) is an ordered set: St ⊆ (N ×Dt) where Dt is the set
of Datatokens and the integer is a consecutive sequence number: n=|St| , i∈ N such
as:

if (n=0) ⇒ St = Ø,
else if (n=1) ⇒ St = {(1,d)}, d∈Dt

else ∀ (i,e),(j,f)∈St ⇒ 1≤i,j≤n, i≠j, e,f∈Dt
The state of an actual port p is denoted as St(p).

State of a Component is the collection of the states of its ports, such that there is one
state associated with each port:
St(C) ⊆ (Ports(C)×St) such as: r∈Ports(C) ⇔ (r,St(r))∈St(C)

State of a Timer instance is its value: St(Cli)∈N

State of an Assembly is defined similarly to a component’s state, extended with the
state of the timers:
St(A) ⊆ ((Ports(A) ∪ Timers(A))× (St ∪ N) such that
r∈(Ports(A) ∪ Timers(A)) ⇔ (r,St(r))∈St(A)

The firing of a Component is one execution of precisely one of the methods of the
component, which has its trigger condition satisfied. During execution, the first data
token is removed from all input ports connected to the activating trigger, and to each
output port a non-deterministic k number of tokens is sent, where MinT ≤ k ≤ MaxT.
As a side-effect the execution takes bcet≤c≤wcet time units, as specified by the
method instance.
For an assembly A = (IA, OA, As, Co, Cl, Q, Df, Tt) and component
Cf=(I, O, Tr, M, InTr, TriM, MOout, m0), where Cf∈Components(A), and
Mi=(mi,bceti,wceti) ∈M is a method instance, the behavior is as follows.

A firing cycle is an action St(A) ⎯→⎯ fire St(A)’ that executes as follows.
1. If there is a trigger connected to Method Mi is with data tokens available on

all its input ports:
∃ t, s.t. (t,Mi)∈TriM and ∀ pn where (pn,t)∈InTr, (1, dn)∈St(p),
then

1389Szemethy T., Karsai G.: Platform Modeling and Model Transformations ...

a) the data token is removed from the connected ports:
 (pn is the same as above: for ∀ pn where (pn,t)∈InTr, (1, dn)∈St(p))
 St(pn)’:= Ø ∪ ((∀ j: 2≤j≤|St(pn)|,(j,dj) ∈St(pn)) ⇒ (j-1, dj)∈St(pn))’,
 |St(pn)’|=|St(pn)|-1), and
b) the unconnected input ports don’t change:
 (∀ pm where ¬∃ t |(pm,t)∈InTr): St(pm)’:=St(pm).

2. Next
a) DataTokens are written to the connected output ports:
 (∀ o∈O ,(Mi,o,MinT,MaxT)∈MOut and dk∈Dt):

 St(o)’:= St(o) ∪ U
ki ..0=

{(n+k),dk), where n=|St(o)|, MinT ≤ k ≤ MaxT, and

b) the unconnected ouput ports remain unchanged:
 (∀ o∈O ,(Mi,o,MinT,MaxT)∉ MOut):
 St(o)’:=St(o)

3. The updated Component state is the union of the updated Port states:
St(Cf)’ ⊆ (Ports(Cf)×St) such as: r∈Ports(Cf) ⇔ (r,St(r)’)∈St(Cf)’

4. All timers of the system advanced:
∀ (cl,u)∈Timers(A): St(cl)’:=St(cl) + c where c ⊆ N and bcet≤c≤wcet

5. Non-member Assembly ports remain unchanged:
(∀ p∈Ports(A) where p∉Cf): St(p)’:=St(p)

As the Components fire, they read tokens from their input ports and produce

tokens on their output ports. For the next firing round, these data tokens need to
be delivered to their destinations (which are input ports of components). Thus, in
order to define the state update for Assemblies, we need to introduce the notion
of connected output ports: the set of output ports (or timers) which feed forward
into a given input port through a direct data path. A direct data path is a
contiguous sequence of dataflow connections (with the exception that the first
segment can be a TimeTrigger connection if the source is a timer), connecting
port and Queue objects, as the data path is routed through the component-
assembly hierarchy.

For component input port i within Assembly A: o∈Connected(i) iff

1) i is a component input: ∃ Cx
∈Components(A) such that i∈Inputs(Cx),

2) o is a component output port or a Timer: ∃ Cy
∈Components(A) such

that o∈Outputs(Cy) or o∈Timers(A), and
3) there exists a direct data path: ∃ P=<(p1,q1),(p2,q2)…(pn,qn)> such that:

a) P originates in o and ends in i:
(p1=o, qn=i),

b) the first element is either a Dataflow or a TimeTrigger, and the
rest are Dataflows:
 (p1,q1)∈(Dataflows(A) ∪ TimeTriggers(A)) and

1390 Szemethy T., Karsai G.: Platform Modeling and Model Transformations ...

 ∀ j: 2≤j≤n (pj,qj) ∈Dataflows(A), and
 c) the path is connected:
 pj+1=qj

The kernel step of an Assembly consists of two phases
1. Delay until there are data tokens to be propagated between ports (can be

zero)
2. The actual data token propagation, when data tokens from component output

ports are propagated to the connected component input ports, and data tokens
are generated for expired Timers.

For an Assembly A = (I, O, As, Co, Cl, Q, Df, Tt):
A Kernel step is an action St(A)→ St(A)’ consisting of:

1) Delay phase:
a) if there are data tokens to be propagated between output and input ports,
or there is an expired timer:
if ∃ (i,o) where i∈Inputs(A), o∈ Connected(i) and

St(o) ≠Ø or ∃ (c,p)∈Timers(A) where St(c)>p:
d:=0 (no delay)

else
delay 1 unit after the first timer c to expire:
(c,p)∈Timers(A) and ∀ (t,r)∈Timers(A): (t-St(t)) ≥ p-St(c)
d:=p-St(c)+1

endif
b) expired timers are reset:
 (∀ (u,q)∈Timers(A) where St(u)+ d > q): St(u)’:= 0
c) all other timers advance by d
 (∀ (u,q)∈Timers(A) where St(u) + d ≤ q): St(u)’:= St(u) + d

2) Propagation phase:
a) data tokens from connected output ports are propagated to input ports:

(∀ (i,o) where i∈Inputs(A) and o∈Connected(i), o∈Outputs(A) and
St(o) ≠Ø):

 St(i)’:=St(i) ∪ U
kj ..1=

{(n+j),dj)}, where n=|St(i)|, dj∈Dt,

k=|St(o)|, (j,dj)∈St(o)
b) empty and unconnected output ports do not propagate:

(∀ i∈Inputs(A) where ¬∃o such that o∈Connected(i), o∈Outputs(A),
St(o) ≠Ø):

 St(i)’:= St(i)
c) expired timers (that are already reset) insert a data token into the
connected input ports:

(∀ i∈Inputs(A) where ∃ (c,p)∈Timers(A) such that (c,p)∈Connected(i)
and St(c)’=0):

St(i)’:=St(i) ∪ {(n+1,d)} where d∈Dt and n=|St(i)|

1391Szemethy T., Karsai G.: Platform Modeling and Model Transformations ...

d) all output tokens were propagated, so all output ports are empty
 (∀ o∈Outputs(A): St(o)’:= Ø)

If data tokens are propagated between input and output ports, the action takes no time.

Execution for an Assembly: an execution is a finite or infinite sequence of
alternating Kernel and Firing steps:

<St(A)→St(A)’|St(A)’ ⎯→⎯ fire St(A)’’|St(A)’’→St(A)’’’|St(A)’’’ ⎯→⎯ fire St(A)’’’’|..>

where the initial conditions are:
(∀ p∈Ports(A): St(p)= Ø), (∀ (c,r)∈Timers(A): St(c)= 0)

The sequence is initiated with a Kernel action that waits for the first timer to

expire. If there are multiple components available for firing, one of them is selected
non-deterministically.

The sequence ends if there is no such Kernel action that can enable a Component
to run, i.e. when the expiration of any of the Timers (and the corresponding
generation of data tokens) is insufficient to enable a component to fire. In most
practical systems the firing sequence repeats infinitely.

To reduce complexity, three important, simplifying assumptions were made in the
above definitions:

1) The token holding capacity of input/output ports is unbounded. This
assumption can be eliminated by modifying the definition of
firing/kernel steps to generate/propagate a limited number of data
tokens. This extension is fairly straightforward and fits well into the
above definition scheme.

2) The token propagation takes zero time. This assumption can be
eliminated by trivially modifying the “Delay” part of Kernel step. For
faithful modeling, the delay introduced should be a function of (A,St(A)),
as it depends on both the state and configuration.

3) The semantic definition of queues is implicit through the Connected()
function: the result also contains the ports connected through queues,
and the necessary propagations are performed. To define different queue
semantics, the function and the Kernel action needs to be modified.

5 Transforming component models into TA

In order to perform automated model verification, we need to transform the design
models into a format accepted by verification tools, such as timed automata
(TA)[Alur, 94]. The TA model is another abstraction of the system, where the
assumed (real-time) properties of the components and the desired (real-time)
properties of the system are captured. Note that we assume that the timing properties
of components are known (and captured in the models), the system composition is
known, and the analysis will be used to determine if the desired properties hold for
the system. Other system properties (such as the execution of a component method)

1392 Szemethy T., Karsai G.: Platform Modeling and Model Transformations ...

are abstracted into attributes like best- and worst-case execution times on the given
platform. The most significant abstractions were as follows:

• The data content of data-flow tokens was not considered, and only the
number of tokens was represented. Therefore, e.g. data-dependent
execution times were not considered.

• Each processing step (method invocation) was represented with its worst
and best case execution time (bcet, wcet), and a generalized data token
production/consumption scheme was used: methods consume data
tokens when they are started, and produce data tokens when they finish.

The transformation applied to the model of the application results in a network of

concurrent, strictly synchronized timed automata. There is one automaton for each
component, and one automaton for the platform model that coordinates component
interactions (referred to as the ‘Kernel’). The component TA models are reusable (on
the same platform), and the Kernel is unique for each system as it contains direct
references to the components of the actual system. The actual runtime semantics
including the behaviors for process scheduling, resource handling, concurrency and
communication etc. are encoded in the Kernel TA. The Kernel TA model is
constructed similarly to the component models: the same quantities (e.g. time) are
considered, and expressed in a similar manner. Modeling certain properties (delays,
the runtime system’s own resource requirements) becomes straightforward, since we
use the same apparatus to express those as we used in the component modeling. This
way, the Kernel becomes a “super-component”, lending itself to the same verification
techniques as those applied to the component model.

The details of platform semantics are encoded in the translation algorithm, i.e.
they are implicit. For each platform to be modeled, a different translation algorithm
has to be devised. In general, the translation algorithm starts from a TA “skeleton”
containing default states (e.g. Start, Idle, etc). Then component and platform-specific
states are added to the skeleton, for example, to represent each method invocation.
Finally, state transitions are generated, implementing the fine details of the platform:
the formulation of transition guards, synchronizers and reset functions takes care of
establishing the platform-specific behavior for the resulting network of timed
automata.

5.1 Timed Automata in the UPPAAL verification tool

In our examples, the TA are generated for the popular UPPAAL model-verification
tool. The concepts mentioned earlier are mapped onto UPPAAL [Larsen, 97]
automata structures as follows. For each component and the Kernel a TA template is
created. The Kernel controls execution through synchronization channels, and global
integer variables represent the number of tokens on each buffer. Clock variables are
used to represent time, and transition guards using clock values implement delays like
data transmission and method execution delay.

1393Szemethy T., Karsai G.: Platform Modeling and Model Transformations ...

5.2 Implementation of the translation

As mentioned earlier, the platform semantics are encoded into the transformation
rules, as each platform requires a different set of rules. We were looking for a
language to express these rules of transformation from the system’s design language
to timed automata.

Both the source and destination domains of the translation use annotated graphs
to describe and visualize the models and the automata. Therefore, using a graph
transformation (GT) language [Rozenberg, 97] seemed to be a natural choice. Pattern-
matching GT languages are formal, high level languages, and they are a good fit for
formal model verification: the algorithms described in them lend themselves to formal
verification.

In the examples we have worked on, we used the Graph Rewriting and
Transformations (GreAT) graph transformation framework [Karsai, 03b][Karsai,
03c], which is a part of the GME modeling toolset [Ledeczi, 01]. It offers a visual
language integrated with GME’s modeling facilities, and allows the description of
graph-rewriting rule-sets based on graph pattern matching.

Using GME, one can build a domain-specific modeling environment by providing
a UML meta-model describing the modeling language. GReAT provides a set of tools
for graphically defining transformation programs that operate on models (that follow
the composition constraints specified by their meta-models). The GReAT interpreter
is used to apply graph-rewriting rules (constituting a model transformation program)
on the GME models. The result is a newly created model graph that can be converted
(trivially) into an XML file, or any other data file. The output model graph must also
have a UML meta-model that describes its composition.

6 Verifications performed via TA model checker

Having the system model converted into a TA network enables using a model checker
to verify timing and other properties of the system. Note that the specific verification
queries one can pose depend on both the platform’s model of computation as well as
the model checker’s capabilities. This means that queries have to be formulated by
taking these into consideration.

In general, the following topics are subject of further research: how to express the
desired properties and requirements in the high-level modeling apparatus, and how to
propagate these expressions through the different abstractions of the system. One
practical difficulty is that model checkers typically verify logical expressions, while
the designer often wants to deduce quantitative properties (e.g. fastest data rate,
smallest memory heap etc). Below, we highlight some typical properties the designer
might be interested in and illustrate the way we expressed them in our experiments.

Checking for latency. A typical verification question is as follows: “Is the delay

between invocations of a certain method larger than n time units?” To answer this
question, we have to extend the generated TA by adding a dedicated clock variable
and reset it at each invocation. Then, a model checker query can be formulated such
as (in CTL [Clarke, 01]) “E◊ (myClock > 5)� meaning “can the clock value ever
exceed 5?”

1394 Szemethy T., Karsai G.: Platform Modeling and Model Transformations ...

Checking for resource usage and conflicts. In our examples, we annotated each
system activity (method) with its wcet and bcet. In addition to CPU time usage, one
can annotate them with other resource requirements, and the Kernel can implement
the accounting for that resource. Dynamic memory allocation is a good example: each
component TA increments/decrements the size of the dynamic memory pool upon
entering/leaving states corresponding to method invocations. Using a model checker,
the designer can verify the system’s memory requirements.

Bounding the number of tokens on dataflow links. In our examples we use a

dataflow oriented runtime platform. Many system properties (such as deadlock) can
be verified by formulating queries on the number of “tokens” on the dataflow links
(or queues). If the number of tokens grows without bounds (e.g. it exceeds a large
enough constant), the system produces more tokens than it consumes. Another
example might be as follows: if the number of tokens on a link driven by a periodic
timer ever exceeds one, then the destination component is not able to process the
timer token on time and the system could have missed a timer tick.

Checking schedulability. Although the definition of schedulability is general,

non-schedulability can manifest itself on different platforms and systems in different
ways. Fortunately, the question can usually be formulated within the model checker
as a straightforward Boolean condition that verifies that all tasks meet their deadlines.

7 Transforming component models into TA: Illustrative
examples

We illustrate the discussed method on two simple models: both models are created in
the SMOLES (Simple Modeling Language for Embedded Systems) language
environment, and translated into UPPAAL timed automata. The runtime platform
modeled by the transformation is a non-preemptive token-passing dataflow-oriented
execution environment, referred to as DFK (DataFlow Kernel) in the following
discussion. The first, very simple system will help understand the key ideas behind
the transformation, and the second one demonstrates a simple real-life system
implemented and built using the SMOLES and DFK framework.

7.1 Implementation of SMOLES: Modeling, generators, and execution
platform

SMOLES was implemented in the GME modeling environment. It is based on token-
passing dataflow semantics, and multiple generators were developed to generate code
implementing SMOLES models for various platforms (C++ and Java-based DFK).
The generated code provides the data (and control) flow mechanisms and structures,
and implements the components specified in the SMOLES model. The examples
provided here were synthesized for the DFK platform, which is implemented in C++,
using OO concepts.

C++ code generation from SMOLES models is done by deriving the component
(actor) objects from the predefined DFK abstract objects; then extending them with

1395Szemethy T., Karsai G.: Platform Modeling and Model Transformations ...

the user-specified code for the methods in the model, and generating the list of
required dataflow connection objects.

On the visual SMOLES models input ports are on the left, output ports are on the
right, oversized arrows represent triggers and notebook icons stand for user-supplied
methods that execute procedural code. User functions without connections are
initializers (run on the first execution only). Simple lines with arrows represent
dataflow links.

On UPPAAL timed automata diagram, circles represent states (locations),
possibly annotated by their time invariant condition. Arrows stand for transitions,
with the guard statements written above the arrows and the assignment/update
statements below the arrows. In expressions ? and ! stand for the synchronization
channel operations in the usual CSP manner: read and write, respectively.

7.2 Example 1: A simple SMOLES system

Figure 2: A simple SMOLES system in GME

This is one of the simplest working systems: it consists of a periodic Timer and a

Component containing a single method Display. The Clock generates data tokens
periodically and those are delivered to the Component’s Input port. This triggers the
execution of the Display method (with user-specified code). The figure shows the
component interaction diagram (Clock, and Processing components) and the internals
of the Processing component. Here, the Display method is connected to the Input port
through the NewData trigger.

For this model, the resulting UPPAAL automata are simple enough to present
them in detail. The global variable declarations are shown below.

1396 Szemethy T., Karsai G.: Platform Modeling and Model Transformations ...

The number of processes is one, because in this environment the Clock is not a
separate entity: it is implemented internally in the Kernel. The following figure shows
the generated TA for the Processing component:

Figure 3: Generated UPPAAL TA for the 'Processing' component

The lifecycle of the component is as follows: It stays in state Start for at least

InitBCET a most InitWCET time, then, it proceeds to Idle, synchronized with the
Kernel’s scheduler. In Idle, it waits until there’s data on port Input (Input > 0), and
the scheduler has released the component (run!). Then, it executes Display method,
reading a data token from the input port (Input--). The parameter variable Input is a
reference to the global ClockOut_processingInput integer, representing the number of
data tokens on the inter-component dataflow links.

The next figure shows the TA generated for the Kernel:

const nProcs 1; // number of processes in the system
const IdleTick 10; // Kernel idle sleep duration
const DefaultChanSize 3; // dataflow buffer size

const ClockPeriod 10; // Clock period
const processingPID 0; // PID ‘processing’ process

// no. of tokens on the inter-component dataflow link
int[0, DefaultChanSize] ClockOut_processingInput:=0;

int[-1, nProcs-1] running:=-1; // active process
int[0,nProcs] nInitializedProcs:=0; //

clock WallClock; // global time
clock ClockClk; // timer clock period
chan processingRun; // sync for context switch

1397Szemethy T., Karsai G.: Platform Modeling and Model Transformations ...

Figure 4: Generated UPPAAL TA for the 'Simplest' kernel

To understand the automaton, we have to recall that ClockOut_processingInput is

the same as Input in the previous component, and processingRun is the same as run
for the component.

After finishing initialization, the Kernel TA proceeds to state schedule, where it
chooses from three possible transitions:

• If there is data on the dataflow link (ClockOut_processingInput > 0), then it
will schedule the component to run

• If the clock’s period has expired, and there’s available buffer capacity for the
token (ClockClk >= ClockPeriod and ClockOut_processingInput <
DefChanSize), then one token will be placed on the buffer, and the ClockClk
reset

• Otherwise it goes to idle where it spends exactly IdleTick amount of time

If the conditions for both of the first two choices are satisfied, then the scheduler

chooses one non-deterministically. This is a crucial point for the accuracy of the
platform model, as it faithfully models an important property of the actual runtime
system. The designer (driven by a false intuition) might assume that the Clock has
higher priority (since it is internal to the Kernel) than the Component. On this actual
platform this is not true, and using verification technique such errors could be
identified.

1398 Szemethy T., Karsai G.: Platform Modeling and Model Transformations ...

7.3 Example 2: Visual feedback camera positioning system

Our next example is a simple 3-component system: a pan and tilt capable camera
tracks a moving object.

Figure 5: Components of the camera positioning system

The Camera component is a wrapper for the camera API: it is capable of moving

the camera head (Positioning), and signal the completion of the positioning
(FinishedPos). It can also take SnapShots, even while Positioning is in progress. The
Controller inputs a picture, and outputs positioning data (coordinates). The Camera
translates the coordinates into step commands (for the pan and tilt step motors),
whose timing is important and driven by the periodic PosClock.

Figure 6: Component models of the camera positioning system

The following figures show the generated UPPAAL TA for the components.

1399Szemethy T., Karsai G.: Platform Modeling and Model Transformations ...

Figure 8: Generated UPPAAL TA for the Camera component

On the Camera TA it’s worth observing how the two alternative triggers for

Positioning method are translated into two alternative translations from Idle to
Positioning: the guard is formulated using the respective port name and the input
token is read from there.

Figure 9: Generated UPPAAL TA for the Controller component

The relation of his TA to the corresponding component above is straightforward.

The figure below shows why it is important to perform the translation by computer
even for such small and simple systems:

1400 Szemethy T., Karsai G.: Platform Modeling and Model Transformations ...

Figure 10: Generated TA for the Kernel in the camera positioning system

The Kernel’s automaton is quite complex, especially the transition guard

conditions for the scheduler. One observation: the Kernel makes scheduling decisions
on the component level: it will schedule a component to run in any “input available,
output possible” situation, regardless of the components’ internal trigger
configuration (i.e. even if none of the methods inside could run). This is in
compliance with the dataflow platform implementation being modeled. The runtime
environment cannot see inside the components, and allows very simple component
trigger conditions that are faithfully modeled in the above TA.

8 Performing the transformation from SMOLES to UPPAAL
using GReAT

As mentioned earlier, we perform the transition using a visual graph transformation
(GT) language: GReAT. It is integrated with the GME toolset, and allows creation of
sequenced translation rules that operate based on pattern matching. The GT rules are
expressed using elements of the two meta-models: the meta-model of SMOLES, and a
TA meta-model corresponding to the abstract syntax of the UPPAAL language. An
auxiliary tool was developed to convert the resulting models (in UPPAAL meta-
model format) into UPPAAL’s native XML format. This tool also generates an
appealing visual layout for the resulting UPPAAL models.

1401Szemethy T., Karsai G.: Platform Modeling and Model Transformations ...

Below, we give a short overview of the translation algorithm, and explain a few
selected rule-blocks in detail. The translation rule-set consists of the following steps:
1) Start with locating the top-level Assembly and create the corresponding NTA
2) Handle Templates: Match all the Components within the Assembly, and create

UPPAAL templates
a) Create the Template skeleton with the default states (Start, Idle)
b) Add Method states, triggers and output transitions based on the component

3) Handle Processes: Enumerate al SMOLES components and create UPPAAL
global declarations: PIDs, Timer clocks, synchronization channels

4) Handle Channels: Find all timer-triggering and dataflow connections, create
UPPAAL counterparts

5) Handle Kernel: create and populate the kernel TA
a) Create skeleton (start, schedule, idle), compile parameter list
b) Create and connect states corresponding to Timers
c) Create component invocation states and transition, generate scheduling

guards
6) Finalize: generate process instantiation code for the components and Kernel

For an illustrative example of a translation rule, let us consider the formulation of

guard conditions in TA templates according to trigger conditions as shown on Figure
11. This is called enumTriggers, and it is part of the Handle Templates step from the
algorithm above.

Figure 11: GReAT rule block: enumTriggers

The rule block gets a SMOLES Method and two TA locations as input (shown on

the left): the location corresponding to the method’s invocation and the default idle
location. The TA and the locations were created by the preceding rules.

1402 Szemethy T., Karsai G.: Platform Modeling and Model Transformations ...

Figure 12: GReAT rule 'triggeredBy'

The first rule of the chain matches the method, and finds a matching

Trigger→Method connection within the component (at the top of Figure 12). The two
Locations are also matched, and a new Transition (i2m) is created within the TA
template. The newly created object is indicated with a small “tick” mark in the lower
right corner of the icon. After the rule has successfully matched and the target objects
have been created, procedural attribute mapping code is executed that can modify the
created objects. Here, the attributes of the newly created Transition are set by the code
captured in the “attribute mapping” box (i2m, with code shown in the exploded view)
that initializes the “guard” attribute to true. This rule will match on each
Trigger→Method condition (where the method is given) and will create a transition
for each. The rule propagates all matching Trigger and corresponding i2m transitions
connections to the following rule(s).

1403Szemethy T., Karsai G.: Platform Modeling and Model Transformations ...

Figure 13: GReAT rule 'collectInputs'

Figure 13 will match the Method (Activity), the Trigger matched by the previous

rule, and the i2m connection just created, and it will find all Input ports in the
SMOLES component, which are connected to the Trigger. The guard and update
statements of the transition are updated: a condition is added to the guard specifying
that more than zero tokens have to be available on the port matched by Input, and the
update will express the consumption of a token. This rule propagates the Method and
the connection.

Figure 14: GReAT rule 'delEmptyTransitions'

The following, terminal rule (Figure 14) features a GreAT guard code block: this

rule is executed only if the graph elements match and the guard condition evaluates
true. Note that this “guard” is evaluated when the transformation is executed and it is
coincidental that the transformed models also have a concept called “guard”. In this

1404 Szemethy T., Karsai G.: Platform Modeling and Model Transformations ...

case, the GreAT guard condition looks at the value of the “guard” attribute of the i2m
object (which is the transition’s UPPAAL guard). If that value is true, then the
collectInputs rule failed to match any Input ports to the trigger (so the transition’s
guard remained unchanged from rule triggeredBy) therefore this transition doesn’t
represent a valid method invocation. In this case it is deleted from the target graph.
The delete operation is indicated by the small “x” in the icon’s lower left corner.

Figure 15 shows how rule triggeredBy is applied when the Camera component is
being translated:

Figure 15: GReAT rule application example

At top left the SMOLES component can be seen. Below is the corresponding

UPPAAL TA being built: the previous rules created the states and other elements, but
not all the transitions are specified. The arrows show one possible match and indicate
the transition generated. In this case there are 3 possible matches since method
Positioning has two triggers connected. As the resulting (RHS) graph shows, this rule
generates three new transitions. At this point they all have the same attribute set
(shown bottom left). The next rule (collectInputs) will customize them according to
the input ports connected.

1405Szemethy T., Karsai G.: Platform Modeling and Model Transformations ...

9 Results and Conclusions

In this paper we argued for the modeling of the execution platform of embedded
systems, showed how (the knowledge of) platform models could be used to transform
embedded system application models into models that could be subjected to formal
verification through model checking, and provided details about implementing the
translation algorithm itself. We have used the approach to verify some properties of
small systems, but we believe further testing and work is necessary.

There are at least two important research directions we need to consider in the
future. One is about making the platform models explicit. In the current system
platform models are implicit in the translation algorithm, and for every new platform
(semantics) a new algorithm has to be developed. Obviously there is a need for
making the platform models explicit such that the translation could be retargeted to
different platforms easily.
The other research direction of interest relates to scaling. Even simple problems
produced sizeable TA-s, which indicates that the straightforward translation might not
be the best approach for systems with hundreds or thousands of components. We
believe this problem should be attacked from two sides: (1) by building more
scaleable verification tools, and (2) by using clever techniques in the translation
process to reduce the complexity of the resulting models. However, both of these
directions necessitate further research.

Acknowledgement

The NSF ITR on "Foundations of Hybrid and Embedded Software Systems" has
supported, in part, the activities described in this paper. The effort was also sponsored
by DARPA, Air Force Research Laboratory, USAF, under agreement number
F30602-00-1-0580.The US Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright thereon. The
views and conclusions contained therein are those of authors and should not be
interpreted as necessarily representing the official policies and endorsements, either
expressed or implied, of the DARPA, the AFRL or the US Government.

References

[Karsai, 03a] Model-integrated development of embedded software, Karsai, G.; Sztipanovits,
J.; Ledeczi, A.; Bapty, T.; Proceedings of the IEEE, Volume: 91, Issue: 1 , Jan. 2003 Pages:145
– 164

[Larsen, 97] Uppaal in a Nutshell. Kim G. Larsen, Paul Pettersson and Wang Yi. In Springer
International Journal of Software Tools for Technology Transfer 1(1+2), 1997.

[Amnell, 02] Tobias Amnell, Elena Fersman, Leonid Mokrushin, Paul Pettersson, and Wang
Yi. Times - A Tool for Modelling and Implementation of Embedded Systems. In proceedings
of 8th International Conference, TACAS 2002, part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2002 (Grenoble, France, April 8-12, 2002), pages
460-464, Springer-Verlag, 2002. Lecture Notes in Computer Science, Vol.2280.

1406 Szemethy T., Karsai G.: Platform Modeling and Model Transformations ...

[Gu, 03] Zonghua Gu, Shige Wang, Sharath Kodase, and Kang G. Shin, An end-to-end tool
chain for multi-view modeling and analysis of avionics mission computing software
Proceedings of the 24th IEEE International Real-Time Systems Symposium (RTSS'03)

[Sangiovanni-Vincentelli, 01] Sangiovanni-Vincentelli, A.; Martin, G.: Platform-based design
and software design methodology for embedded systems, Design & Test of Computers, IEEE ,
Volume: 18 , Issue: 6 , Nov.-Dec. 2001 Pages:23 - 33

[Lee, 97] E. A. Lee and A. Sangiovanni-Vincentelli, ""A Denotational Framework for
Comparing Models of Computation," ERL Memorandum UCB/ERL M97/11, University of
California, Berkeley, CA 94720, January 30, 1997.

[MDA] Model-Driven Architecture, available online at www.omg.org/mda .

[RTCORBA] Real-time CORBA specification documents, available online from
http://realtime.omg.org/rfp/real-time_realtime_corba_1_0.html

[Alur, 94] R. Alur and D. Dill: “Automata for modeling Real-Time Systems.” Theoretical
Computer Science, 126(2):183-236, April 1994

[Rozenberg, 97] G. Rozenberg, “Handbook of Graph Grammars and Computing by Graph
Transformation”, World Scientific Publishing Co. Pte. Ltd., 1997.

[Karsai, 03b] Karsai, G., Agarwal, A., Shi, F., Sprinkle, J: On the Use of Graph Transformation
in the Formal Specification of Model Interpreters,. Journal of Universal Computer Science,
Volume 9, Issue 11, 2003.

[Karsai, 03c] Agrawal, G. Karsai, F. Shi: “Graph Transformations on Domain-Specific
Models”, Technical Report, available online at http://www.isis.vanderbilt.edu

[Ledeczi, 01] Ledeczi A., Bakay A., Maroti M., Volgyesi P., Nordstrom G., Sprinkle J., Karsai
G.: “Composing Domain-Specific Design Environments”, Computer, pp. 44-51, November,
2001.

[Clarke, 01] E.Clarke et. al: Model Checking, MIT Press 2001.

1407Szemethy T., Karsai G.: Platform Modeling and Model Transformations ...

