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Abstract: The model-based approach to the development of embedded systems relies on the 
use of explicit models in the design process. If these models faithfully represent the 
components of the system with respect to their properties as well as their interactions, then they 
can be used to predict the dynamic behavior of the system under construction. In this paper we 
argue for modeling the execution platform that facilitates the component interactions, and show 
how models of the application and the knowledge of the platform can be used to translate 
system configurations into another abstract formalism (timed automata, in our case) that allows 
system verification through model checking.  
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1 Introduction 

Model-based development of embedded systems [Karsai, 03a] facilitates design-time 
analysis.  Because the models are abstractions of the system that the designer is 
building, analysis algorithms can be applied to these models and properties of the 
system can be computed and thus the behavior of the system predicted. Typical 
properties include schedulability, lack of deadlock, maximum usable data rates, 
worst-case reaction times to events, end-to-end latency and others. In spite of the 
apparent validity of the principle of model-based analysis, there are very few [Larsen, 
97][Amnell, 02][Gu, 03] actual and practical design tools that fully implement this 
principle.  

In this paper, we are focusing on the model-integrated construction of 
component-based embedded systems. In this context “model-integrated” means that 
models play an integral role in the design, analysis and synthesis of the embedded 
application, while “component-based” means that the system constructing from 
components that interact with each other using a well-defined model of computation 
[Lee, 97]. This model of computation is implemented and facilitated by an underlying 
component infrastructure (e.g. real-time CORBA [RTCORBA]) that strictly enforces 
the rules of component interaction. We argue that the analysis of the design should be 

Journal of Universal Computer Science, vol. 10, no. 10 (2004), 1383-1407
submitted: 30/6/04, accepted: 15/10/04, appeared: 28/10/04 © J.UCS



explicitly based on the knowledge and precise understanding of this platform. By 
“understanding” we mean having a formal, operational semantics of the platform, 
which may also include performance metrics, like worst-case context switching 
delays. If the operational semantics of the platform is known, one can create a formal 
model of it, and this explicit platform model could serve as the conceptual foundation 
for realizing the analysis approach for the component-based system.  

In this paper we will show how a platform model could be defined, and how it 
can be used to perform the analysis. Platform models can be explicit or implicit. As 
we use a general-purpose analysis engine (which is based on the concept of timed 
automata), the platform models are implicit and captured in the form of the model 
transformations rules that map system models into analysis models.  

2 Model-integrated development of component-based embedded 
systems 

In model-integrated development one uses domain-specific modeling languages to 
capture salient properties of the system to be constructed. These models are then used 
both in analysis of the design and in synthesis of the final application. The key 
concept here is that the models of the system are explicit (i.e. a designer effectively 
creates them), and they are also an abstraction of the system.  

In component-based design the system is constructed from components that have 
a well-defined behavior and interfaces through which they interact with each other. 
This applies to component-based embedded systems as well. Components interact 
with each other through precisely defined interaction patterns, called the model of 
computation. In single-threaded software designs the main (sometimes the only) 
method of component interaction is the procedure call, with the usual call-return 
semantics. In embedded system designs, where concurrency is prevalent, more 
complex interactions patterns are needed. The hardware typically gives direct support 
for the call-return interactions via the subroutine call/return instructions, but very 
rarely gives direct support for more complex concurrency patterns. These concurrency 
patterns are implemented using some underlying computational framework or 
infrastructure that we will call the platform.  

The platform provides an abstraction layer above the raw hardware (which may 
include multiple processors with communication services, etc.), and defines the 
interaction patterns among components. We make the assumption here that all 
component interactions happen via the platform, and no other component interactions 
are allowed. Thus, component based systems are constructed as shown in Figure 1. In 
the figure, broad arrows indicate the physical interactions (between the component 
and the platform), while thin dashed arrows indicate the logical interactions (between 
components). Obviously, the latter are implemented by the former. Note that this 
platform-oriented view is compliance with the principles of platform-based design 
[Sangiovanni-Vincentelli, 01].  
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Figure 1: Component-based system 

 
In the embedded design process we often need to perform an analysis on the 

design. This analysis can be used to answer important questions about the system: Is it 
schedulable? Does it meet all the required deadlines? Will it deadlock? Is there a 
danger for priority inversion? What are the maximum usable data rates for the 
system? What is the maximum data latency between signal flow endpoints of the 
design? What is the maximum latency between the arrival of an asynchronous event 
and generating a response to that?  

Obviously, the precise (and ultimately satisfying) answers to these questions 
could be given only after analyzing the code of the entire system, but this is often not 
feasible. The next best thing one can do is to analyze the model of the system and 
draw conclusions about the final system based on the models. This approach assumes 
that models are valid abstractions, and recognizes that a proof obtained is valid only if 
the models are valid.  

Note that there are (at least) two kinds of models needed: models for the 
components and a model for the platform. Note that the component models are not 
necessarily the same as the designer has created: the designer can work on a higher 
level of abstraction, while lower-level models could be necessary for analysis. In 
terms of the language of the Model-driven Architecture [MDA], while the designer 
could work with Platform-Independent Models (PIM), for analysis one needs 
Platform-Specific Models (PSM) for the components.  

For the platform, one needs a model that unambiguously captures the platform’s 
behavior and describes how the components interact with each other via the platform. 

Note that the overall system is a composition: PCCC n ||||...|||| 21 (i.e. the 

components are composed with the platform). The objective of the analysis is to 
compute and verify the properties of the composed system consisting of the 
components and the platform (models).  
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Note that the platform model is abstract (in the general sense), but it must be 
made concrete for the configuration of specific applications. The abstract platform 
model captures how components interact in general, without fixing any specific 
component configuration. However, we are always interested in concrete, specific 
systems, where components are “wired” in a specific way. Therefore the platform 
model must always be concretized for the application one wants to analyze.  

To summarize, the analysis of component-based embedded system designs 
necessitates that platforms are modeled, in addition to components. Platforms define 
the rules how the components interact with each other. For the analysis of specific 
designs one needs to have the concrete model of the platform, which includes the 
models for specific component interactions.  

The requirement for concretizing the platform models led us to solve the problem 
using a transformational approach. In the subsequent sections, we describe our 
approach in general, and show some concrete examples how it works on a simple 
platform.  

3 SMOLES: A Simple Modeling Language for Embedded 
Systems 

In the remaining part of the paper we are going to use a simple modeling language 
that was used to model component-based embedded system designs. We introduce the 
language here informally.  

SMOLES was designed as a simple modeling language that allows constructing 
small, embedded systems from components. The components are assumed to be 
concurrently executing objects that communicate and synchronize with each other. 
Furthermore, objects can perform I/O operations in which they wait for the result, 
while other objects can execute. Communication between components means passing 
data from a source component to a destination component, which is then enabled to 
run, in order to process the data. In addition to data triggering, periodic timers can 
also trigger the components. 

SMOLES follows an event-triggered execution model: computations are activated 
when token(s) arrive at components. Tokens carry data that the component can 
retrieve.  

SMOLES is a modeling language that focuses on component composition and 
coordination. As such, it has to work together with an underlying procedural 
language, which is used to implement specific details of algorithms, data structures, 
etc, used in the final application.  

Specifically, the language consists of Components and Assemblies. Components 
are the elementary building blocks, and contain: 

• Input and output ports, which are used to receive/send data tokens 
from/to other components 

• Attributes, which are data members of the component objects 
• Methods, which are operations that the component implements, written 

in an underlying procedural language 
• Triggers, which specify how the arrival of data on input port(s) will 

trigger the invocation of methods or behaviors. 
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The components work as follows. Input ports feed into triggers that activate a 
single method. The triggers specify whether all or at least one (any) input port(s) must 
have a data token in order to fire: If multiple ports are fed into a single trigger, then 
all of the ports have to have data available to activate the trigger. If multiple triggers 
are connected to a method, then the method executes if any of these triggers becomes 
active. 

When the condition is satisfied, the activated method executes. Methods can also 
be connected to output ports, on which they can send data tokens to downstream 
components. The number of tokens produced by a single method execution could be 
specified as a range of integers. One of the methods can be marked as initial, which 
will be executed when the component is instantiated for the first time. Methods can 
access the attributes as instance variables of their owner the component object, while 
the input and output ports are accessed via API calls.  

Assemblies contain components, and describe how they are interconnected. Like 
components, assemblies can have their own input and output ports, and assemblies 
can contain other assemblies. The wiring of ports of assemblies and components 
shows the data flows among components in the system. A port can be connected to 
precisely one other port. If data produced by one port should be sent to multiple other 
ports, or if multiple data streams should be merged into a single port a Queue has to 
be inserted. A queue is a multi-writer, multi-reader queue data structure that non-
deterministically merges input data streams into a single one, which then can be read 
by multiple readers. An item is removed from a queue if all the readers have received 
it. Component input ports in an assembly can also be connected to Timers. Timers 
produce data tokens with a fixed period and trigger downstream components. 
Assemblies can be organized into a containment hierarchy, and the various 
components and assemblies in the hierarchy communicate with each other through the 
data flows via ports. If there is a need for accessing a non-local data flows in a 
specific assembly, one can place a queue reference object into the assembly that acts 
as a pointer to the remotely declared queue object.  

4 Formal Definition of the SMOLES Modeling Language 

Following the informal introduction to the language, its formal definition follows 
below. In the following definitions, we assume all sets to be finite, and N is the set of 
non-negative integers. 

4.1 Syntactical definitions 

A SMOLES model consists of the following elements: 
 
1) A set of Component definitions:  
A Component C=(I, O, Tr, M, InTr, TriM, MOut, m0) is a tuple: 

I is a set of input ports, which are data token entry points. 
O is a set of output ports, which are data token exit points. 
Tr is a set of triggers. 
M is a set of method instances Mi. A method instance is Mi =(mi,bceti,wceti) 
where mi is the executable code of the method, and bceti, wceti ∈ N correspond to 
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the best- and worst-case execution times, respectively. Note that bceti≤wceti and 
bceti>0 
InTr ⊆ (I× Tr) is a set of Input→Trigger connections 
TriM ⊆ (Tr× M) is a set of Trigger→Method connections 
MOut is a set of annotated Method→Output connections: 
MOut=(m,o,MinT,MaxT),  where m∈M, o∈ O, and MinT, MaxT ∈ N. Integers 
MinT,MaxT correspond to the minimum and maximum number of tokens emitted 
on o during execution of M. Note that MinT≤MaxT. 
m0: a trigger-less initial method. m0∈M and ¬∃ t ∈Tr | (t,m0)∈TriM. 
 

For Components we also use the following definitions: Inputs(C):=I, Outputs(C):=O, 
Ports(C):=I ∪ O. 

 
2) A set of Assembly definitions 
An Assembly A = (I, O, As, Co, Cl, Q, Df, Tt) is a tuple: 

I is a set of input ports, which are data token entry points. 
O is a set of output ports, which are data token exit points. 
As is a set of Assemblies contained in A. 
Co is a set of Components contained in A. 
Cl is a set of Cli instances, where Cli = (timeri,pi) , where timeri is a timer type, 
and pi∈ N, pi>0 is its period. 
Q is a set of Queues 

Df ⊆  ((I ∪ Q ∪ U
ni ..1=

Outputs(Asi) ∪ U
mj ..1=

Outputs(Coj)) ×  

(O ∪ Q ∪ U
ni ..1=

Inputs(Asi) ∪ U
mj ..1=

Inputs(Coj)) (with m=|Co|,n=|As|) 

 is a set of Dataflow connections within the Assembly between ports and Queues.  
∀ (o,i)∈Df : o∉Q⇒ ( ¬∃ j : (o,j)∈Df ∧  i≠j). That is, a port can be connected 
to precisely one port and only Queues can be connected to multiple destinations. 

Tt ⊆ ((Cl× (O ∪ Q ∪ U
ni ..1=

Inputs(Asi) ∪ U
mj ..1=

Inputs(Coj)), (with m=|Co|, 

n=|As|) is a set of TimeTrigger connections connecting Timers to Ports and 
Queues. 
∀ (t,i)∈Tt: ¬∃ j: (t,j)∈Tt ∧ i≠j: a Timer can be connected to precisely one 
destination. 
 

For Assemblies, we also define (n=|Co|, m=|As|):  

Inputs(A):=I ∪ U
ni ..1=

Inputs(Asi) ∪ U
mj ..1=

Inputs(Coj) 

Outputs(A):=I ∪ U
ni ..1=

Outputs(Asi) ∪ U
mj ..1=

Outputs(Coj) 

Ports(A):= Inputs(A) ∪ Outputs(A) 
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Functions Assemblies(A), Components(A), Queues(A), Dataflows(A) and 
TimeTriggers(A) are defined in an analogous, recursive manner. 

4.2 Semantics 

Below, we define the execution semantics of the SMOLES language on a non-
preemptively scheduled, uniprocessor platform.  Data tokens are (for the scope of this 
discussion) atomic units of data used in component interactions in SMOLES. The set 
of all possible data tokens is denoted as Dt. On this platform, time is measured in 
integer units. 
First we define the state of some objects:  
 
State of a port (Input or Output) is an ordered set: St ⊆ (N ×Dt) where Dt is the set 
of Datatokens and the integer is a consecutive sequence number: n=|St| , i∈  N  such 
as: 

if (n=0) ⇒  St = Ø, 
else if (n=1) ⇒  St = {(1,d)}, d∈Dt 

else ∀  (i,e),(j,f)∈St ⇒ 1≤i,j≤n, i≠j, e,f∈Dt 
The state of an actual port p is denoted as St(p). 

 
State of a Component is the collection of the states of its ports, such that there is one 
state associated with each port: 
St(C) ⊆ (Ports(C)×St) such as: r∈Ports(C) ⇔ (r,St(r))∈St(C)  

 
State of a Timer instance is its value: St(Cli)∈N 

 
State of an Assembly is defined similarly to a component’s state, extended with the 
state of  the timers:  
St(A) ⊆ ((Ports(A) ∪ Timers(A))× (St ∪ N) such that 
r∈(Ports(A) ∪ Timers(A)) ⇔ (r,St(r))∈St(A)  
 
The firing of a Component is one execution of precisely one of the methods of the 
component, which has its trigger condition satisfied. During execution, the first data 
token is removed from all input ports connected to the activating trigger, and to each 
output port a non-deterministic k number of tokens is sent, where MinT ≤ k ≤ MaxT.  
As a side-effect the execution takes bcet≤c≤wcet time units, as specified by the 
method instance. 
For an assembly A = (IA, OA, As, Co, Cl, Q, Df, Tt) and component  
Cf=(I, O, Tr, M, InTr, TriM, MOout, m0), where Cf∈Components(A), and 
Mi=(mi,bceti,wceti) ∈M is a method instance, the behavior is as follows. 

A firing cycle is an action St(A) ⎯→⎯ fire St(A)’ that executes as follows. 
1. If there is a trigger connected to Method Mi is with data tokens available on 

all its input ports: 
∃ t, s.t. (t,Mi)∈TriM and ∀ pn where (pn,t)∈InTr,  (1, dn)∈St(p), 
then 
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a) the data token is removed from the connected ports: 
    (pn is the same as above: for ∀ pn where (pn,t)∈InTr,  (1, dn)∈St(p)) 
    St(pn)’:= Ø ∪  (( ∀ j: 2≤j≤|St(pn)|,(j,dj) ∈St(pn)) ⇒ (j-1, dj)∈St(pn))’, 
                  |St(pn)’|=|St(pn)|-1), and 
b) the unconnected input ports don’t change: 
    (∀ pm where ¬∃ t |(pm,t)∈InTr):  St(pm)’:=St(pm). 

2. Next  
a) DataTokens are written to the connected output ports: 
    (∀ o∈O ,( Mi,o,MinT,MaxT)∈MOut and dk∈Dt): 

     St(o)’:= St(o) ∪ U
ki ..0=

{(n+k),dk), where n=|St(o)|, MinT ≤ k ≤ MaxT, and  

b) the unconnected ouput ports  remain unchanged: 
    (∀ o∈O ,( Mi,o,MinT,MaxT)∉  MOut): 
    St(o)’:=St(o) 

3. The updated Component state is the union of the updated Port states: 
St(Cf)’ ⊆ (Ports(Cf)×St) such as: r∈Ports(Cf) ⇔ (r,St(r)’)∈St(Cf)’ 

4. All timers of the system advanced: 
∀ (cl,u)∈Timers(A): St(cl)’:=St(cl) + c where c ⊆ N  and bcet≤c≤wcet 

5. Non-member Assembly ports remain unchanged: 
( ∀ p∈Ports(A) where p∉Cf): St(p)’:=St(p) 
 
As the Components fire, they read tokens from their input ports and produce 

tokens on their output ports. For the next firing round, these data tokens need to 
be delivered to their destinations (which are input ports of components). Thus, in 
order to define the state update for Assemblies, we need to introduce the notion 
of connected output ports: the set of output ports (or timers) which feed forward 
into a given input port through a direct data path. A direct data path is a 
contiguous sequence of dataflow connections (with the exception that the first 
segment can be a TimeTrigger connection if the source is a timer), connecting 
port and Queue objects, as the data path is routed through the component-
assembly hierarchy.  
 
For component input port i within Assembly A: o∈Connected(i) iff  

1) i is a component input: ∃ Cx
∈Components(A) such that  i∈Inputs(Cx), 

2) o is a component output port or a Timer: ∃ Cy
∈Components(A) such 

that  o∈Outputs(Cy) or o∈Timers(A), and 
3)   there exists a direct data path: ∃ P=<(p1,q1),(p2,q2)…(pn,qn)> such that:  

a) P originates in o and ends in i:  
(p1=o, qn=i), 

b) the first element is either a Dataflow or a TimeTrigger, and the 
rest are  Dataflows:  
      (p1,q1)∈(Dataflows(A) ∪ TimeTriggers(A)) and  
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     ∀ j: 2≤j≤n (pj,qj) ∈Dataflows(A), and 
 c) the path is connected: 
      pj+1=qj 
 

The kernel step of an Assembly consists of two phases 
1. Delay until there are data tokens to be propagated between ports (can be 

zero) 
2. The actual data token propagation, when data tokens from component output 

ports are propagated to the connected component input ports, and data tokens 
are generated for expired Timers. 

 
For an Assembly A = (I, O, As, Co, Cl, Q, Df, Tt): 
A Kernel step is an action St(A)→ St(A)’ consisting of: 

1) Delay phase: 
a) if there are data tokens to be propagated between output and input ports, 
or there is an expired timer: 
if  ∃ (i,o) where i∈Inputs(A), o∈  Connected(i) and  

St(o) ≠Ø or ∃ (c,p)∈Timers(A) where St(c)>p:  
d:=0 (no delay) 

else 
delay 1 unit after the first timer c to expire: 
(c,p)∈Timers(A) and ∀ (t,r)∈Timers(A): (t-St(t)) ≥ p-St(c) 
d:=p-St(c)+1  

endif 
b) expired timers are reset: 
    (∀ (u,q)∈Timers(A) where St(u)+ d > q):  St(u)’:= 0 
c) all other timers advance by d 
   (∀ (u,q)∈Timers(A) where St(u) + d ≤ q):  St(u)’:= St(u) + d 
 

2) Propagation phase: 
a) data tokens from connected output ports are propagated to input ports: 

( ∀ (i,o) where i∈Inputs(A) and o∈Connected(i), o∈Outputs(A) and 
St(o) ≠Ø): 

 St(i)’:=St(i) ∪  U
kj ..1=

{(n+j),dj)}, where n=|St(i)|, dj∈Dt, 

k=|St(o)|,     (j,dj)∈St(o) 
b) empty and unconnected output ports do not propagate: 

( ∀ i∈Inputs(A) where ¬∃o such that o∈Connected(i), o∈Outputs(A), 
St(o) ≠Ø):   

 St(i)’:= St(i) 
c) expired timers (that are already reset) insert a data token into the 
connected input ports: 

( ∀ i∈Inputs(A) where ∃ (c,p)∈Timers(A) such that (c,p)∈Connected(i) 
and    St(c)’=0): 

St(i)’:=St(i) ∪ {(n+1,d)} where d∈Dt and n=|St(i)| 
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d) all output tokens were propagated, so all output ports are empty 
    ( ∀ o∈Outputs(A): St(o)’:= Ø) 
 

If data tokens are propagated between input and output ports, the action takes no time. 
 

Execution for an Assembly: an execution is a finite or infinite sequence of 
alternating Kernel and Firing steps: 
 

<St(A)→St(A)’|St(A)’ ⎯→⎯ fire St(A)’’|St(A)’’→St(A)’’’|St(A)’’’ ⎯→⎯ fire St(A)’’’’|..> 
 

where the initial conditions are: 
( ∀ p∈Ports(A): St(p)= Ø), ( ∀ (c,r)∈Timers(A): St(c)= 0) 
 
The sequence is initiated with a Kernel action that waits for the first timer to 

expire. If there are multiple components available for firing, one of them is selected 
non-deterministically. 

The sequence ends if there is no such Kernel action that can enable a Component 
to run, i.e. when the expiration of any of the Timers (and the corresponding 
generation of data tokens) is insufficient to enable a component to fire. In most 
practical systems the firing sequence repeats infinitely. 

To reduce complexity, three important, simplifying assumptions were made in the 
above definitions: 

1) The token holding capacity of input/output ports is unbounded. This 
assumption can be eliminated by modifying the definition of 
firing/kernel steps to generate/propagate a limited number of data 
tokens. This extension is fairly straightforward and fits well into the 
above definition scheme. 

2) The token propagation takes zero time. This assumption can be 
eliminated by trivially modifying the “Delay” part of Kernel step. For 
faithful modeling, the delay introduced should be a function of (A,St(A)), 
as it depends on both the state and configuration. 

3) The semantic definition of queues is implicit through the Connected() 
function: the result also contains the ports connected through queues, 
and the necessary propagations are performed. To define different queue 
semantics, the function and the Kernel action needs to be modified. 

5 Transforming component models into TA 

In order to perform automated model verification, we need to transform the design 
models into a format accepted by verification tools, such as timed automata 
(TA)[Alur, 94]. The TA model is another abstraction of the system, where the 
assumed (real-time) properties of the components and the desired (real-time) 
properties of the system are captured. Note that we assume that the timing properties 
of components are known (and captured in the models), the system composition is 
known, and the analysis will be used to determine if the desired properties hold for 
the system. Other system properties (such as the execution of a component method) 
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are abstracted into attributes like best- and worst-case execution times on the given 
platform. The most significant abstractions were as follows: 
 

• The data content of data-flow tokens was not considered, and only the 
number of tokens was represented. Therefore, e.g. data-dependent 
execution times were not considered.  

• Each processing step (method invocation) was represented with its worst 
and best case execution time (bcet, wcet), and a generalized data token 
production/consumption scheme was used: methods consume data 
tokens when they are started, and produce data tokens when they finish.  

 
The transformation applied to the model of the application results in a network of 

concurrent, strictly synchronized timed automata. There is one automaton for each 
component, and one automaton for the platform model that coordinates component 
interactions (referred to as the ‘Kernel’). The component TA models are reusable (on 
the same platform), and the Kernel is unique for each system as it contains direct 
references to the components of the actual system. The actual runtime semantics 
including the behaviors for process scheduling, resource handling, concurrency and 
communication etc. are encoded in the Kernel TA. The Kernel TA model is 
constructed similarly to the component models: the same quantities (e.g. time) are 
considered, and expressed in a similar manner. Modeling certain properties (delays, 
the runtime system’s own resource requirements) becomes straightforward, since we 
use the same apparatus to express those as we used in the component modeling. This 
way, the Kernel becomes a “super-component”, lending itself to the same verification 
techniques as those applied to the component model. 

The details of platform semantics are encoded in the translation algorithm, i.e. 
they are implicit. For each platform to be modeled, a different translation algorithm 
has to be devised. In general, the translation algorithm starts from a TA “skeleton” 
containing default states (e.g. Start, Idle, etc). Then component and platform-specific 
states are added to the skeleton, for example, to represent each method invocation. 
Finally, state transitions are generated, implementing the fine details of the platform: 
the formulation of transition guards, synchronizers and reset functions takes care of 
establishing the platform-specific behavior for the resulting network of timed 
automata. 

5.1 Timed Automata in the UPPAAL verification tool 

In our examples, the TA are generated for the popular UPPAAL model-verification 
tool. The concepts mentioned earlier are mapped onto UPPAAL [Larsen, 97] 
automata structures as follows. For each component and the Kernel a TA template is 
created. The Kernel controls execution through synchronization channels, and global 
integer variables represent the number of tokens on each buffer. Clock variables are 
used to represent time, and transition guards using clock values implement delays like 
data transmission and method execution delay. 
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5.2 Implementation of the translation 

As mentioned earlier, the platform semantics are encoded into the transformation 
rules, as each platform requires a different set of rules. We were looking for a 
language to express these rules of transformation from the system’s design language 
to timed automata. 

Both the source and destination domains of the translation use annotated graphs 
to describe and visualize the models and the automata. Therefore, using a graph 
transformation (GT) language [Rozenberg, 97] seemed to be a natural choice. Pattern-
matching GT languages are formal, high level languages, and they are a good fit for 
formal model verification: the algorithms described in them lend themselves to formal 
verification. 

In the examples we have worked on, we used the Graph Rewriting and 
Transformations (GreAT) graph transformation framework [Karsai, 03b][Karsai, 
03c], which is a part of the GME modeling toolset [Ledeczi, 01]. It offers a visual 
language integrated with GME’s modeling facilities, and allows the description of 
graph-rewriting rule-sets based on graph pattern matching. 

Using GME, one can build a domain-specific modeling environment by providing 
a UML meta-model describing the modeling language. GReAT provides a set of tools 
for graphically defining transformation programs that operate on models (that follow 
the composition constraints specified by their meta-models). The GReAT interpreter 
is used to apply graph-rewriting rules (constituting a model transformation program) 
on the GME models. The result is a newly created model graph that can be converted 
(trivially) into an XML file, or any other data file. The output model graph must also 
have a UML meta-model that describes its composition.  

6 Verifications performed via TA model checker 

Having the system model converted into a TA network enables using a model checker 
to verify timing and other properties of the system. Note that the specific verification 
queries one can pose depend on both the platform’s model of computation as well as 
the model checker’s capabilities. This means that queries have to be formulated by 
taking these into consideration.  

In general, the following topics are subject of further research: how to express the 
desired properties and requirements in the high-level modeling apparatus, and how to 
propagate these expressions through the different abstractions of the system. One 
practical difficulty is that model checkers typically verify logical expressions, while 
the designer often wants to deduce quantitative properties (e.g. fastest data rate, 
smallest memory heap etc). Below, we highlight some typical properties the designer 
might be interested in and illustrate the way we expressed them in our experiments. 

 
Checking for latency. A typical verification question is as follows: “Is the delay 

between invocations of a certain method larger than n time units?” To answer this 
question, we have to extend the generated TA by adding a dedicated clock variable 
and reset it at each invocation. Then, a model checker query can be formulated such 
as (in CTL [Clarke, 01]) “E◊ (myClock > 5)� meaning “can the clock value ever 
exceed 5?”  
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Checking for resource usage and conflicts. In our examples, we annotated each 
system activity (method) with its wcet and bcet. In addition to CPU time usage, one 
can annotate them with other resource requirements, and the Kernel can implement 
the accounting for that resource. Dynamic memory allocation is a good example: each 
component TA increments/decrements the size of the dynamic memory pool upon 
entering/leaving states corresponding to method invocations. Using a model checker, 
the designer can verify the system’s memory requirements. 

 
Bounding the number of tokens on dataflow links. In our examples we use a 

dataflow oriented runtime platform. Many system properties (such as deadlock) can 
be verified by formulating queries on the number of “tokens” on the dataflow links 
(or queues). If the number of tokens grows without bounds (e.g. it exceeds a large 
enough constant), the system produces more tokens than it consumes. Another 
example might be as follows: if the number of tokens on a link driven by a periodic 
timer ever exceeds one, then the destination component is not able to process the 
timer token on time and the system could have missed a timer tick. 

 
Checking schedulability. Although the definition of schedulability is general, 

non-schedulability can manifest itself on different platforms and systems in different 
ways. Fortunately, the question can usually be formulated within the model checker 
as a straightforward Boolean condition that verifies that all tasks meet their deadlines.  

7 Transforming component models into TA: Illustrative 
examples 

We illustrate the discussed method on two simple models: both models are created in 
the SMOLES (Simple Modeling Language for Embedded Systems) language 
environment, and translated into UPPAAL timed automata. The runtime platform 
modeled by the transformation is a non-preemptive token-passing dataflow-oriented 
execution environment, referred to as DFK (DataFlow Kernel) in the following 
discussion. The first, very simple system will help understand the key ideas behind 
the transformation, and the second one demonstrates a simple real-life system 
implemented and built using the SMOLES and DFK framework. 

7.1 Implementation of SMOLES: Modeling, generators, and execution 
platform 

SMOLES was implemented in the GME modeling environment.  It is based on token-
passing dataflow semantics, and multiple generators were developed to generate code 
implementing SMOLES models for various platforms (C++ and Java-based DFK). 
The generated code provides the data (and control) flow mechanisms and structures, 
and implements the components specified in the SMOLES model. The examples 
provided here were synthesized for the DFK platform, which is implemented in C++, 
using OO concepts. 

C++ code generation from SMOLES models is done by deriving the component 
(actor) objects from the predefined DFK abstract objects; then extending them with 
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the user-specified code for the methods in the model, and generating the list of 
required dataflow connection objects. 

On the visual SMOLES models input ports are on the left, output ports are on the 
right, oversized arrows represent triggers and notebook icons stand for user-supplied 
methods that execute procedural code. User functions without connections are 
initializers (run on the first execution only). Simple lines with arrows represent 
dataflow links. 

On UPPAAL timed automata diagram, circles represent states (locations), 
possibly annotated by their time invariant condition. Arrows stand for transitions, 
with the guard statements written above the arrows and the assignment/update 
statements below the arrows. In expressions ? and ! stand for the synchronization 
channel operations in the usual CSP manner: read and write, respectively. 

7.2 Example 1: A simple SMOLES system 

 

Figure 2: A simple SMOLES system in GME 

 
This is one of the simplest working systems: it consists of a periodic Timer and a 

Component containing a single method Display. The Clock generates data tokens 
periodically and those are delivered to the Component’s Input port. This triggers the 
execution of the Display method (with user-specified code). The figure shows the 
component interaction diagram (Clock, and Processing components) and the internals 
of the Processing component. Here, the Display method is connected to the Input port 
through the NewData trigger. 

For this model, the resulting UPPAAL automata are simple enough to present 
them in detail. The global variable declarations are shown below.  
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The number of processes is one, because in this environment the Clock is not a 
separate entity: it is implemented internally in the Kernel. The following figure shows 
the generated TA for the Processing component: 
 

 

Figure 3: Generated UPPAAL TA for the 'Processing' component 

 
The lifecycle of the component is as follows: It stays in state Start for at least 

InitBCET a most InitWCET time, then, it proceeds to Idle, synchronized with the 
Kernel’s scheduler. In Idle, it waits until there’s data on port Input (Input > 0), and 
the scheduler has released the component (run!). Then, it executes Display method, 
reading a data token from the input port (Input--). The parameter variable Input is a 
reference to the global ClockOut_processingInput integer, representing the number of 
data tokens on the inter-component dataflow links. 

The next figure shows the TA generated for the Kernel: 

const nProcs 1; // number of processes in the system 
const IdleTick 10; // Kernel idle sleep duration 
const DefaultChanSize 3; // dataflow buffer size 
 
const ClockPeriod 10; // Clock period 
const processingPID 0; // PID ‘processing’ process 
 
// no. of tokens on the inter-component dataflow link 
int[0, DefaultChanSize] ClockOut_processingInput:=0; 
 
int[-1, nProcs-1] running:=-1; // active process 
int[0,nProcs] nInitializedProcs:=0; //  
 
clock WallClock;  // global time 
clock ClockClk;  // timer clock period 
chan processingRun; // sync for context switch 
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Figure 4: Generated UPPAAL TA for the 'Simplest' kernel 

 
To understand the automaton, we have to recall that ClockOut_processingInput is 

the same as Input in the previous component, and processingRun is the same as run 
for the component.  

After finishing initialization, the Kernel TA proceeds to state schedule, where it 
chooses from three possible transitions: 

• If there is data on the dataflow link (ClockOut_processingInput > 0), then it 
will schedule the component to run 

• If the clock’s period has expired, and there’s available buffer capacity for the 
token (ClockClk >= ClockPeriod and ClockOut_processingInput < 
DefChanSize), then one token will be placed on the buffer, and the ClockClk 
reset 

• Otherwise it goes to idle where it spends exactly IdleTick amount of time 
 
If the conditions for both of the first two choices are satisfied, then the scheduler 

chooses one non-deterministically. This is a crucial point for the accuracy of the 
platform model, as it faithfully models an important property of the actual runtime 
system. The designer (driven by a false intuition) might assume that the Clock has 
higher priority (since it is internal to the Kernel) than the Component. On this actual 
platform this is not true, and using verification technique such errors could be 
identified. 
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7.3 Example 2: Visual feedback camera positioning system 

Our next example is a simple 3-component system: a pan and tilt capable camera 
tracks a moving object.  

 

Figure 5: Components of the camera positioning system 

 
The Camera component is a wrapper for the camera API: it is capable of moving 

the camera head (Positioning), and signal the completion of the positioning 
(FinishedPos). It can also take SnapShots, even while Positioning is in progress. The 
Controller inputs a picture, and outputs positioning data (coordinates). The Camera 
translates the coordinates into step commands (for the pan and tilt step motors), 
whose timing is important and driven by the periodic PosClock. 

 
 

 

 

Figure 6: Component models of the camera positioning system 

 
The following figures show the generated UPPAAL TA for the components. 
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Figure 8: Generated UPPAAL TA for the Camera component 

 
On the Camera TA it’s worth observing how the two alternative triggers for 

Positioning method are translated into two alternative translations from Idle to 
Positioning: the guard is formulated using the respective port name and the input 
token is read from there. 

 

 

Figure 9: Generated UPPAAL TA for the Controller component 

 
The relation of his TA to the corresponding component above is straightforward.  

The figure below shows why it is important to perform the translation by computer 
even for such small and simple systems: 
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Figure 10: Generated TA for the Kernel in the camera positioning system 

 
The Kernel’s automaton is quite complex, especially the transition guard 

conditions for the scheduler. One observation: the Kernel makes scheduling decisions 
on the component level: it will schedule a component to run in any “input available, 
output possible” situation, regardless of the components’ internal trigger 
configuration (i.e. even if none of the methods inside could run). This is in 
compliance with the dataflow platform implementation being modeled. The runtime 
environment cannot see inside the components, and allows very simple component 
trigger conditions that are faithfully modeled in the above TA. 

8 Performing the transformation from SMOLES to UPPAAL 
using GReAT 

As mentioned earlier, we perform the transition using a visual graph transformation 
(GT) language: GReAT. It is integrated with the GME toolset, and allows creation of 
sequenced translation rules that operate based on pattern matching. The GT rules are 
expressed using elements of the two meta-models: the meta-model of SMOLES, and a 
TA meta-model corresponding to the abstract syntax of the UPPAAL language. An 
auxiliary tool was developed to convert the resulting models (in UPPAAL meta-
model format) into UPPAAL’s native XML format. This tool also generates an 
appealing visual layout for the resulting UPPAAL models. 
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Below, we give a short overview of the translation algorithm, and explain a few 
selected rule-blocks in detail. The translation rule-set consists of the following steps: 
1) Start with locating the top-level Assembly and create the corresponding NTA 
2) Handle Templates: Match all the Components within the Assembly, and create 

UPPAAL templates 
a) Create the Template skeleton with the default states (Start, Idle) 
b) Add Method states, triggers and output transitions based on the component 

3) Handle Processes: Enumerate al SMOLES components and create UPPAAL 
global declarations: PIDs, Timer clocks, synchronization channels 

4) Handle Channels: Find all timer-triggering and dataflow connections, create 
UPPAAL counterparts 

5) Handle Kernel: create and populate the kernel TA 
a) Create skeleton (start, schedule, idle), compile parameter list 
b) Create and connect states corresponding to Timers 
c) Create component invocation states and transition, generate scheduling 

guards 
6) Finalize: generate process instantiation code for the components and Kernel 

 
For an illustrative example of a translation rule, let us consider the formulation of 

guard conditions in TA templates according to trigger conditions as shown on Figure 
11. This is called enumTriggers, and it is part of the Handle Templates step from the 
algorithm above.  

 

Figure 11: GReAT rule block: enumTriggers 

 
The rule block gets a SMOLES Method and two TA locations as input (shown on 

the left): the location corresponding to the method’s invocation and the default idle 
location. The TA and the locations were created by the preceding rules. 
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Figure 12: GReAT rule 'triggeredBy' 

 
The first rule of the chain matches the method, and finds a matching 

Trigger→Method connection within the component (at the top of Figure 12). The two 
Locations are also matched, and a new Transition (i2m) is created within the TA 
template. The newly created object is indicated with a small “tick” mark in the lower 
right corner of the icon. After the rule has successfully matched and the target objects 
have been created, procedural attribute mapping code is executed that can modify the 
created objects. Here, the attributes of the newly created Transition are set by the code 
captured in the “attribute mapping” box (i2m, with code shown in the exploded view) 
that initializes the “guard” attribute to true. This rule will match on each 
Trigger→Method condition (where the method is given) and will create a transition 
for each. The rule propagates all matching Trigger and corresponding i2m transitions 
connections to the following rule(s). 
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Figure 13: GReAT rule 'collectInputs' 

 
Figure 13 will match the Method (Activity), the Trigger matched by the previous 

rule, and the i2m connection just created, and it will find all Input ports in the 
SMOLES component, which are connected to the Trigger. The guard and update 
statements of the transition are updated: a condition is added to the guard specifying 
that more than zero tokens have to be available on the port matched by Input, and the 
update will express the consumption of a token. This rule propagates the Method and 
the connection. 
 

 

Figure 14: GReAT rule 'delEmptyTransitions' 

 
The following, terminal rule (Figure 14) features a GreAT guard code block: this 

rule is executed only if the graph elements match and the guard condition evaluates 
true.  Note that this “guard” is evaluated when the transformation is executed and it is 
coincidental that the transformed models also have a concept called “guard”. In this 
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case, the GreAT guard condition looks at the value of the “guard” attribute of the i2m 
object (which is the transition’s UPPAAL guard). If that value is true, then the 
collectInputs rule failed to match any Input ports to the trigger (so the transition’s 
guard remained unchanged from rule triggeredBy) therefore this transition doesn’t 
represent a valid method invocation. In this case it is deleted from the target graph. 
The delete operation is indicated by the small “x” in the icon’s lower left corner. 

Figure 15 shows how rule triggeredBy is applied when the Camera component is 
being translated: 
 

 

 

Figure 15: GReAT rule application example 

 
At top left the SMOLES component can be seen. Below is the corresponding 

UPPAAL TA being built: the previous rules created the states and other elements, but 
not all the transitions are specified. The arrows show one possible match and indicate 
the transition generated. In this case there are 3 possible matches since method 
Positioning has two triggers connected. As the resulting (RHS) graph shows, this rule 
generates three new transitions. At this point they all have the same attribute set 
(shown bottom left). The next rule (collectInputs) will customize them according to 
the input ports connected. 
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9 Results and Conclusions 

In this paper we argued for the modeling of the execution platform of embedded 
systems, showed how (the knowledge of) platform models could be used to transform 
embedded system application models into models that could be subjected to formal 
verification through model checking, and provided details about implementing the 
translation algorithm itself. We have used the approach to verify some properties of 
small systems, but we believe further testing and work is necessary.  

There are at least two important research directions we need to consider in the 
future. One is about making the platform models explicit. In the current system 
platform models are implicit in the translation algorithm, and for every new platform 
(semantics) a new algorithm has to be developed. Obviously there is a need for 
making the platform models explicit such that the translation could be retargeted to 
different platforms easily.  
The other research direction of interest relates to scaling. Even simple problems 
produced sizeable TA-s, which indicates that the straightforward translation might not 
be the best approach for systems with hundreds or thousands of components. We 
believe this problem should be attacked from two sides: (1) by building more 
scaleable verification tools, and (2) by using clever techniques in the translation 
process to reduce the complexity of the resulting models. However, both of these 
directions necessitate further research.   
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