
Int Eng--Sztipanovits page 1 10/12/98

� � � � � � � � � � � � � 	 � � � � 	 � �

 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ! �
 "
 # $ %
 � & ' (� � � �) * + , $ - . / � 0 � (� � ! � � � � � ! � � � ' . ! � � 1 ! � / ! � ! 2 ' 3 ! � �4 � � � � 5 � � � & � (6 � � � � 7 � " � � � � � 8 1 8 9 : + ; $ $ % % � # : : % & � (6 � � � � 7 � < � � � 8 � � � � ! = � � � � � 8 9 + + > - * . � ? ' 3 ! � 0 6 (� 6 � � � � 5 � � � � (� 3 �

@BA C D E F
G H I D JLK M I D C
N A OQP R I S H J

T U V W X Y Z [\] U V W ^ \ [X U V _ ` U a W b c U b X U \ d e U V _ f b a \ g [h V \ ^ f b X \ [i
Computers now control many critical systems in our lives, from the brakes on
our cars to the avionics control systems on planes. Such computers wed
physical systems to software, tightly integrating the two and generating
complex component interactions unknown in earlier systems. Thus, it is
imperative that we construct software and its associated physical system so they
can evolve together.

One approach that accomplishes this, j k l m n o p q r m s t u r m l v k j w x r p q s , works by
extending the scope and use of models so that they form the backbone of system
development. In this approach, integrated, multiple-view models capture
information relevant to the system under design. Instead of developing a
specialized application or system, we want to provide solutions for an entire
class of problems. Models can explicitly represent the designer’s understanding
of an entire computer-based system, including the information-processing
architecture, physical architecture, and operating environment. Integrated
modeling explicitly represents dependencies and constraints among various
modeling views.

In model-integratedcomputing, tool-specific model interpreters translate
model information into languages used by the tools . These tools analyze the
system’s interdependent characteristics (such as performance, safety, and
reliability). Other interpreters translate models into executable specifications
used to automatically synthesize software.

Model-integrated computing is similar to the domain-specific software
architecture approach, yet its models capture not only the software’s
architecture, but also the environment’s. And it uses models in a more general
sense than model-based software engineering: Models capture the information
that defines the application’s changing part, information that is frequently more
comprehensive than models of the software itself.

The framework for model-integrated computing developed at the
Measurement and Computing Systems Laboratory is the Multigraph
Architecture. Major MGA applications include

• Boeing’s modeling and analysis environment for fault detection, isolation,
and recovery (used on the International Space Station program),

• DuPont’s online problem-solving environment for chemical manufacturing

Int Eng--Sztipanovits page 2 10/12/98

• Saturn Corporation’s model-integrated manufacturing-execution system,
and

• high-performance, real-time instrumentation systems installed at the Air
Force Arnold Engineering Center and NASA.

Detailed information about these projects can be found on our WWW site:
http://mcsl.vuse.vanderbilt.eduy z { | } ~ � � � � � � � � } | � � | z � �

Using model-integrated methods poses several challenges. First, it’s difficult
to define models of inherently heterogeneous systems when their development
cuts through several disciplines that neither share terminology nor even think
about problems in the same way. Thus, modeling tools must support domain-
specific modeling paradigms. Analysis methods and tools frequently preserve
their l p � v p w n p q m o � w m v p � p v modeling perspectives and techniques. This creates the
need for a translation mechanism to bridge domain-specific models and the
formalisms required by analysis tools. So the primary challenge in building a
tool infrastructure is to find an architecture that

• separates generic and domain-specific components and
• facilitates the economical use of model-integrated engineering in widely

varying domains.

MGA evolved during the last decade into a system-modeling framework, tool
integration architecture, and infrastructure for model-integrated engineering.
(For more information, see “ ” Model-Integrated Program Synthesis
Environment � � � t k v � � q s p q m m t p q s k � � k j w x r m t o � u � m l � � � r m j � � � j w k � p x j � � � � � �)

As Figure 1 shows, MGA employs a two-level development process.
Software or system engineers follow a meta-level process to specify and
configure domain-specific environments. Domain engineers then use the
environment to build and analyze domain models and generate applications. An
expandable toolset supports both processes.� � � � � � � � � � � � � � � ¡ � ¢ £ ¤ � � ¥ � � � � ¥ � � ¦ � § � ¢ � � � � ¨ ¤ ¦ ¨ � © ¦ � � � © � � � � �ª « ¬ ® ¯ « ° « ¯ ± ² ³ ´ « µ µ

The meta-level is a domain-independent abstraction layer in which domain-
specific environments are formally specified, validated, and synthesized.
Metamodels are abstract specifications that provide formal semantics for
domain-specific modeling languages. They define the properties of domain
models in terms of concepts, relations, model-composition principles, and
integrity constraints. Model interpreters (program generators) capture the
mapping between domain models and applications, determining the operational
semantics. In this context, applications are executable instances of domain
models and domain models are instances of metamodels.

In a project, supported by the Evolutionary Design of Complex Software
program of DARPA, we implement the meta-level as a metaprogramming
interface to the tools. In addition to supporting formal specification, it

• generates configuration files for tools,
• generates model interpreters, and
• validates the specification of modeling paradigms and model interpreters.

The meta-level process is evolutionary: Domain modeling typically results in
a better understanding of the problem, which in turn leads to upgrading of the
modeling paradigm and resynthesis of the environment using meta-level tools.

Int Eng--Sztipanovits page 3 10/12/98

¶ · µ ¬ « ¸ ¹ « ° « ¯ ³ ± ¸ « º ¬ ± ² ³ ´ « µ µ
A typical environment used for model-integrated systems development has

four components. A s t u w » p v u n j k l m n ¼ x p n l m t constructs domain models, providing a
customizable, graphical, model-building environment. The interface between
this level and the meta-level enforces domain-specific constraints during model
building. By explicitly representing constraints among modeling views, models
can be tested using systemwide consistency and completeness criteria (see “ A
Visual Programming Environment for Domain Specific Model-Based
Programming,” � k j w x r m t , Mar. 1995).

A j k l m n l u r u ¼ u � m stores the complex, multiple-view domain models. The latest
MGA implementations include object-oriented databases.½ k l m n p q r m t w t m r m t � synthesize executable programs from domain models and
generate data structures for tools. Since model interpreters capture the
relationship between the problem and solution, they are specific to the domain
modeling paradigm and to the application type.

Typically, we specify executable programs in terms of the Multigraph
computational model. A macrodataflow model, it represents the synthesized
programs as an attributed, directed, bipartite graph that uses buffers or
computational nodes. Elementary computations, which the Multigraph kernel
schedules, are carefully defined reusable code components in application-
specific runtime libraries. We implemented the Multigraph kernel as an overlay
above the operating and communication systems. The kernel also support
dynamic reconfiguration of the executing system, a unique capability (see
“ Model-Based Software Synthesis,” ¾ � � � � k � r ¿ u t m � May 1993).

Using these components, domain engineers build and analyze domain models
and synthesize executable applications. As requirements enforced by the
external environment change, domain engineers can modify models and
resynthesize the software. This capability is extremely important in applications
in which the physical environment changes continuously.

A characteristic that distinguishes model-integratedcomputing is that that we
match modeling paradigms to the needs of the domain engineers rather than that
of the software architects (except when the end users are software architects).
This approach takes us closer to the technology of end-user programmable
complex applications. Our approach also differs from object-oriented analysis
and design: Models may have multiple (even changing) execution semantics as
defined by the model interpreters.

Our current research focuses on the introduction of formal techniques to the
architecture’s meta-level components. Another ongoing research project
conducted in cooperation with Sandia National Laboratories examines model-
integrated engineering of high-consequence systems
(http://mcsl.vuse.vanderbilt.edu).❖

Janos Sztipanovits is u w t k � m � � k t k � m n m v r t p v u n u q l v k j w x r m t m q s p q m m t p q s u r À u q l m t ¼ p n rÁ q p Â m t � p r � u q l r » m � k x q l m t u q l l p t m v r k t k � p r � ½ m u � x t m j m q r u q l � k j w x r p q s � � � r m j �Ã u ¼ k t u r k t � � � k q r u v r » p j u r � Ä r p w u Å Æ Â x � m � Â u q l m t ¼ p n r � m l x �
Gabor Karsai p � u q u � � p � r u q r w t k � m � � k t k � m n m v r t p v u n u q l v k j w x r m t m q s p q m m t p q s u rÀ u q l m t ¼ p n r u q l u � � k v p u r m l p t m v r k t k � ½ � � Ã � � k q r u v r » p j u r s u ¼ k t Æ Â x � m �Â u q l m t ¼ p n r � m l x �

