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Abstract

Designing cyber-physical systems (CPS) is challenging due to the tight in-
teractions between software, network/platform, and physical components. A
co-simulation method is valuable to enable early system evaluation. Auto-
motive control system is a typical CPS example and often designed by using
time-triggered paradigm. In this paper, a co-simulation framework that con-
siders interacting CPS components for assisting time-triggered automotive
CPS design is proposed. Virtual prototyping of automotive vehicle is the core
of this framework, which uses SystemC to model the cyber side of the system
and integrates CarSim to model the physical side. A network/platform model
in SystemC forms the backbone of the virtual prototyping, which bridges au-
tomotive control software and physical environment. The network/platform
model consists of processing elements abstracted by real-time operating sys-
tems, communication systems, sensors, and actuators. The framework is also
integrated with a model-based design tool to enable rapid prototyping. The
framework is validated by comparing simulation results with the results from
a hardware-in-the-loop automotive simulator. According to different design
options, design space exploration (DSE) is also demonstrated.

Keywords: Co-Simulation, Virtual prototyping, Model-Based Design, CPS,
Automotive Control System, SystemC
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1. Introduction

Cyber-physical systems (CPS) are complex systems that are character-
ized by the tight interactions between the physical dynamics, computational
platforms, communication networks, and control software. When designing
CPS, a practical approach is to consider three design layers, which include
the physical layer, the network/platform layer, and the software layer, as
shown in Fig. 1 [26]. The physical layer represents physical components and
their interactions, whose behavior is governed by physical laws and is typi-
cally described in continuous time using ordinary differential equations. The
network/platform layer represents the hardware side of CPS and includes
the network architecture and computation platform that interact with the
physical components through sensors and actuators.
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Figure 1: A Simplified View of Designing CPS: Three CPS Design Layers [26]

As a classical CPS domain, automotive systems have been gaining a lot
of attention. As automotive system functionalities are increasingly imple-
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mented by electronic instead of hydraulic and mechanical systems, up to 70
electronic control units (ECUs) exchanging more than 2500 signals over up to
5 different communication systems can be found in a modern vehicle [9]. The
complex cyber-physical interactions make the composability and predictabil-
ity of these typical safety-critical systems very challenging. Furthermore, the
economy factors, such as persistent effort for low production costs and tight
time-to-market, further complicate the design of such systems.

Time-triggered architecture (TTA) has been proposed and widely used to
address the complexity and composability difficulties posed by automotive
control systems by precisely defining the interfaces between components both
in the time and value domain in order to provide predictability [12]. In
addition, there have been on-going efforts towards the standardization of in-
vehicle communication systems based on time-triggered (TT) paradigm (e.g.
FlexRay and TTEthernet) with the overall goal of ensuring highly reliable,
deterministic, and fault-tolerant system performance [20] [17].

The three-layer CPS design approach can be easily applied to TT auto-
motive CPS design. We often start designing the automotive control system
using a high level modeling language such as MATLAB/Simulink. The model
serves as an executable specification and the equivalent source code, usually
in C, can be generated automatically from the model. At later design stages,
the generated source code is deployed on a designed automotive vehicle plat-
form to perform the required functionality. It may not be possible to achieve
the required control performance if elements from the three CPS design layers
are designed separately and integrated in the end. Interactions between the
layers are very tight, so late integration is very likely to result in large design
gaps that will be costly to resolve. Moreover, different design options (e.g.
processors, communication systems, and software deployments) may need to
be explored in order to find trade-offs between performance and economy
factors. In order to reduce the efforts and costs and shorten time-to-market,
it is important to enable design space exploration (DSE) and get realistic
control performance feedback at early design stages. However, the vehicle
platform prototype is usually not available at early design stages and even if
it is available, testing at the very beginning presents safety and economical
challenges.

A cross-layer co-simulation framework that takes into account physical
dynamics, control software, computational platforms, and communication
networks becomes crucial in the design of automotive CPS. The require-
ments for such a framework include: (1) it should contain models from three
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CPS design layers that can be integrated together; (2) the models should
be at appropriate levels of abstraction, so that the simulation is efficient but
accurate enough; (3) the scalability of the framework should allow simulation
of large distributed automotive CPS; (4) it should allow model-based rapid
prototyping to improve the usability.

Co-simulation can be achieved by virtual prototyping. Virtual prototyp-
ing can take advantage of different modeling languages/tools and integrate
them together to evaluate the whole CPS. Modeling cyber components in
SystemC has begun to be dominant in the Electronic System-Level (ESL)
design field. SystemC has become a de facto system-level design language
for hardware/software (HW/SW) co-design and an IEEE standard [10]. Sys-
temC allows modeling at different levels of abstraction. By adding appropri-
ate timing annotations, a SystemC model can reveal timing behavior of the
corresponding HW/SW. SystemC also has a standardized library for realiza-
tion of transaction level modeling (TLM) concepts. TLM focuses on what
data is being transferred rather than how it is being transmitted, so a TLM
model abstracts away certain communication details to speed up simulation
while keeping sufficient accuracy.

The main contributions of the paper include: (1) A co-simulation frame-
work for design of time-triggered automotive CPS that centers on a de-
tailed network/platform layer model in SystemC is proposed. The net-
work/platform layer model, including processing elements (PEs) which are
abstracted by real-time operating system (RTOS) models, TTEthernet com-
munication systems, sensors, and actuators, enables TT computation and
communication; (2) Rapid prototyping is realized by model transformations
from a designed MATLAB/Simulink model to a front-end design environ-
ment model to the final virtual prototype. It enables fast generation of exe-
cutable simulation models with different configurations, including hardware
platform, deployment, and timing configurations, so that it makes design
space exploration easier; (3) TT communication in terms of its end-to-end
latency and jitter is validated against a real implementation of TTEthernet
and a TTEthernet model in OMNeT++ INET framework, and the frame-
work is evaluated by using two automotive control system case studies (one is
adaptive cruise controller (ACC) and the other one is lane keeping controller
with ACC (LKC + ACC), which demonstrates the efficiency and accuracy of
the approach. (4) Design space exploration is carried out in terms of using
different sampling periods, introducing different additional network traffic,
and using different clock synchronization strategies.
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In [31], we have introduced a co-simulation framework that is used to
facilitate TT CPS design. This paper mainly focuses on TT automotive CPS,
which has more detailed virtual prototyping and validation and evaluation
results of the TTEthernet model. Moreover, a new automotive case study is
also used to show the framework has a good ability to deal with incremental
design.

The rest of paper is organized as follows: Section 2 describes the related
work; Section 3 introduces the core of the framework, which is the virtual
prototyping of TT automotive CPS; Section 4 describes how to achieve rapid
prototyping via a model-based design environment; Section 5 uses two auto-
motive control case studies to validate and evaluate the framework; Section
6 illustrates design space exploration; Section 7 concludes this work.

2. Related Work

Co-simulation of CPS requires integrating different models of computa-
tion (MoCs). In [7], an operational behavioral semantics integrating discrete
event MoC and continuous time MoC is proposed and illustrated by combin-
ing SystemC and MATLAB/Simulink. In [28], a similar behavioral semantics
is proposed and demonstrated by integrating VDM++ and 20-sim. These
papers present formal co-simulation frameworks, but they are not directly
applicable to TT CPS design.

In [16], a methodology of virtual prototyping of CPS is proposed which
combines SystemC, QEMU, and Open Dynamics Engine to achieve a holistic
design view. In [11], a co-simulation environment based on a SH-2A CPU
model is demonstrated by combining different design tools including CoMET,
Saber, and MATLAB/Simulink. In [19], a co-simulation tool based on Sys-
temC/SCNSL and MATLAB/Simulink is illustrated to facilitate the design
of networked control systems. Again, these methods cannot be used for TT
CPS design directly, and the approach in [11] does not support simulation of
distributed CPS.

The TrueTime toolbox has been proposed and used in MATLAB/Simulink
environment to enable CPS simulation [4]. The toolbox considers timing as-
pects introduced by computation and communication. However, it is difficult
to integrate hardware models and support different abstraction levels. Fur-
ther, preemption can only happen at points between segments which causes
timing inaccuracy (e.g. interrupt handling), and the clock synchronization
between computation and communication on a node is also implicit.
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Utilizing SystemC to help automotive control system design has been
investigated in some work. In [13], using SystemC to help simulate and
refine automotive software specified by AUTOSAR is presented to deal with
the problem which is timing simulation is not supported by AUTOSAR.
Other work that introduces virtual prototyping in SystemC to co-simulate
the automotive control systems is presented in [25] [30]. However, these
approaches only consider the cyber part of the system and do not include a
physical dynamics model.

Co-simulation of holistic automotive control systems can date back to
late 90’s. In [15], a C-VHDL-MATLAB co-simulation approach for automo-
tive control systems is proposed to deal with the joint design of software in
C, hardware in VHDL, and mechanical components in MATLAB. However,
the framework does not support simulation of distributed automotive CPS,
and the timed simulation efficiency is not acceptable. Hardware-in-the-loop
(HIL) automotive simulators are also found in [5] and [6]. Compared to
software-based simulation frameworks, they are more expensive and usually
not available at early design stages. Besides, their network/platform layers
are often fixed which limit the initial development. Recently, a co-simulation
framework based on a commercial tool called SyAD is mentioned in [1] with
the same aim of our work. Their framework uses FlexRay as its communi-
cation system, in contrast to which, we use TTEthernet. More importantly,
due to using the commercial tool the internal relationship between different
components is not described and the technical details have not been un-
veiled. Our work focuses on TT automotive CPS, and further we integrate
the co-simulation framework with a model-based design tool for improving
usability.

3. Virtual Prototyping of Automotive CPS

The core of the co-simulation framework is the virtual prototyping of au-
tomotive CPS, which is achieved by modeling each CPS design layer and
exposing interfaces for integration. A commercial tool called CarSim is used
for modeling the physical layer, and SystemC/TLM is applied for model-
ing the cyber parts including the software layer and the network/platform
layer, since it is capable of modeling the cyber system at different abstraction
levels and at the same time achieving flexibility. Fig. 2 shows the virtual
prototyping architecture of the automotive CPS and the interactions between
three design layers. In Fig. 2, there are two nodes (ECUs) connected by a
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Figure 2: Virtual Prototyping of Automotive Control System by Three CPS Design Layers

TTEthernet switch forming the network/platform layer. In each node, the
processing element (PE), TTEthernet controller, sensors, and actuators are
connected through a bus.

3.1. Network/Platform Layer

As the backbone of the virtual prototyping of the automotive CPS, the
network/platform layer bridges the software layer and the physical layer.
The network/platform layer includes the network architecture and hardware
platforms that interact with the physical components through sensors and
actuators. While executing the software components on processors and trans-
ferring data on communication links, their abstract behavior is “translated”
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into physical behavior.
The behavior of this layer is captured by several models in SystemC: (1)

a PE model for TT computation, (2) a clock model for driving TT opera-
tions, (3) a network model compliant with the TTEthernet protocol for TT
communication between different nodes, and (4) sensor and actuator models
for interaction with the CarSim model. There are various network communi-
cation systems that can be used in the TT automotive CPS design, such as
TTCAN, FlexRay, and TTEthernet. In this paper, we choose TTEthernet to
illustrate the framework, since it has been deployed in many CPS domains,
such as automotive, aerospace, and industrial process control.

3.1.1. Processing Element Modeling

Although an instruction set simulator can accurately mimic the behavior
of a program running on a specific processor so as to give cycle accurate
execution results, many drawbacks impede its use during early CPS design
stages, including its low simulation speed for multi-processor simulation and
the need to have the final target binary available. In order to accelerate the
simulation while preserving accuracy, modeling the PE at higher abstractions
levels is needed. An abstract RTOS model with accurate interrupt handling
can serve as an efficient and effective model of the PE [29].

The abstract RTOS model in SystemC provides basic services to the soft-
ware layer, which include task management, scheduling, interrupt handling,
and inter-node communication, etc. It also exposes a set of primitive APIs
to the software layer to facilitate the use of the model.

TT computation: In this framework, we interpret TT computation as
follows: TT tasks are activated by the TT activator of the RTOS at the
predefined times and put into the ready queue for scheduling. A TT task
can be preempted and put back to the ready queue again, but it should
not be blocked on any events (Fig. 3 shows the TT task state transitions).
This mechanism can allow a more urgent system service program, such as an
interrupt service routine (ISR), to preempt the execution of a TT task, and
also allow the design of mixed time-/event-triggered systems. The TT static
schedule is computed off-line which also considers the worst case preemption
time.

Scheduling: The scheduler is the heart of the abstract RTOS model,
whose behavior depends on a specific scheduling algorithm. The scheduling
algorithm of the RTOS can use rate monotonic, earliest deadline first, or other
real-time scheduling algorithms to schedule the ready queue of the RTOS
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model. The ready queue consists of TT tasks and ISRs. As stated in the
previous paragraph, there is a TT activator that statically activates the tasks
according to an a priori schedule table generated by an off-line scheduling
tool. The timing properties of the scheduler have two parameters which are
scheduling overhead and context switching overhead. These timing properties
are RTOS- and hardware platform-specific. Since it is not the focus of this
paper, we assume the parameters are already available beforehand.

Figure 3: TT Task State Transitions

Interrupt handling: SystemC has some challenges for RTOS modeling,
which can be summarized as non-interruptible wait-for-delay time advance
and non-preemptive simulation processes. When an interrupt happens, it
requires the real-time system to react and handle it in a timely manner.
Modeling an accurate preemption mechanism plays an important role in ac-
curate PE modeling. There are several ways to solve this problem: prediction
and stepwise method [8]; result oriented modeling method [22]; and wait-for-
event method [29]. We adopt the method from [29] which makes task use
wait-for-event other than wait-for-delay to advance its execution time (as
shown in Fig. 4). A system call of the RTOS model taking execution time as
its argument makes the task wait on a sc event object which will be notified
after the given execution time elapses if no preemption happens. When an
interrupt happens and its corresponding ISR preempts the execution of the
task, the notification of the sc event object will be canceled and a new noti-
fication time will be calculated according to how much time the preemption
took and how much execution time already passed.

Inter-task communication: Within a PE, the communication between
TT tasks is through shared memory, since it can be accessed without race-
condition. The communication between tasks running on different PEs is
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Figure 4: Advancing Execution Time by Using wait-for-event

achieved by invoking send/receive APIs of the underlying abstract RTOS
model. The corresponding messages are delivered by the underlying TT
communication system. State messages are used to prevent the TT tasks
from blocking on reading.

PE Integration: In order to integrate the abstract RTOS model as a PE
with other models on the network/platform layer through a bus, an additional
Hardware Abstraction Layer (HAL) model is added to wrap the abstract
RTOS model (as shown in Fig. 5). The HAL model has a multi-port sc port
object to collect all the interrupt requests (IRQs) from peripherals in the
node, and it is also a hierarchical SystemC channel which implements the
pure virtual functions of a HAL interface class. The abstract RTOS model
is connected to the HAL model through a sc port object parameterized with
the HAL interface class. When the abstract RTOS model communicates
with other models, it will send/receive the data via the port by invoking the
functions implemented by the HAL model, and the HAL model will initiate
a bus transaction.

Clock synchronization: The clock of a PE can be synchronized with the
communication controller or be independent according to the configuration.
As discussed in [14], if the clock is synchronized with the TTEthernet con-
troller, all the operations are based on a global time base, and the control
delay, δ, only depends on the offset and execution time of the actuation in
a control period without variation. If the PE model and the network model
do not share a global time base, the control delay will have a large variation
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Figure 5: Hardware Abstraction Layer for PE Integration

which will be the sum of the periods of the computation and communication.

3.1.2. Clock Modeling

In TTA, time is the driving force for all TT operations. A TT com-
munication system has its own synchronized global time base for correct
operation. Computation can be synchronized with the communication or it
can be driven by its own independent clock. Since time is the most impor-
tant notion in TTA, modeling the independent clock and its synchronization
service in SystemC becomes necessary. A simple clock can be modeled by
using two parameters: a frequency and a drift. However, SystemC uses a
discrete event simulation kernel which maintains global simulation time. If
we simulate every tick of a clock with a drift, the simulation overhead will be
too large, which can seriously slow down the simulation. Instead, we model
the clock as follows: A random ppm value is assign to each clock in the inter-
val [-MAX PPM, -MIN PPM] ∪ [MIN PPM, MAX PPM] (MAX PPM and
MIN PPM are set by the user). According to the time-triggered schedule,
the duration in clock ticks from the current time to the time when the next
time-triggered action needs to take place is calculated. After that, we can
get the duration in simulation time by taking into account its clock drift:
duration in simulation time = duration in clock ticks× (tick time+ drift),
and then we can arrange a clock event with this amount of time by using the
notification mechanism of sc event in SystemC.

Because the clock will be adjusted periodically by the synchronization
service, the arranged clock event will be affected (its occurrence in simula-
tion time becomes sooner or later). In order to simulate this properly, the
arranged clock event and its occurring time in clock ticks is stored in a linked
list in order of occurrence. When a clock event occurs or its time has passed
due to clock adjustment, it will be deleted from the linked list and processes

11



pending on it will be resumed. When the clock is corrected, notifications
of the arranged clock events are canceled and new simulation times for the
notifications of the events are recalculated based on the corrected clock.

A timer model is also built on the clock model, which uses the drift of
the clock model to calculate the duration in simulation time and is used for
timeout events. In contrast to clock events, timeout events are not affected
by clock synchronization and only depend on how many ticks should pass
before they occur.

3.1.3. TTEthernet Modeling

Figure 6: TTEthernet Device Main Structure

We model a concrete network protocol, TTEthernet [21], for inter-node
communication. Three traffic classes, which are time-triggered (TT), rate-
constrained (RC), and best-effort (BE), are supported in this protocol as
well as a transparent traffic called protocol control frame (PCF) that is used
for its synchronization service. There are two TTEthernet device types: the
TTEthernet controller and the TTEthernet switch. Each node has at least
one TTEthernet controller that can be connected by intermediate TTEth-
ernet switch(es). The network topology is star or cascaded star so that the
collision domain is segmented and only two TTEthernet devices which are
directly connected may contend for the use of the medium.
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The model is compliant with the TTEthernet standard [21]. Since the
TTEthernet controller and switch have several common functions/services,
we extract all the common functions and implement them in a class derived
from the sc module class. This class serves as the abstract base class of the
TTEthernet controller and switch. The main components of this abstract
base class is shown in Fig. 6. It has pure virtual functions that need to
be implemented by the controller or switch to define different behaviors of
these two different devices. We use SC THREAD processes to model the TT
communication behavior and protocol state machines (PSMs) of TTEther-
net, and also model its two-step synchronization mechanism that is used to
establish the synchronized time base.

The main processes and their functions are listed in Tab. 1. The TT
communication is realized by a scheduler process (execSched()) which is re-
sponsible for signaling the send process (send()) to start a TT frame trans-
mission according to a static schedule that relies on synchronized global
time. The static schedule guarantees two TT frames never contend for
transmission and is used by the TTEthernet device through a configura-
tion file. Each TTEthernet device executes exactly one of the PSMs to
maintain its role for synchronization, which are formulated in [21]. All
TTEthernet devices can be classified into three different roles: synchroniza-
tion masters (SMs), compression masters (CMs), and synchronization clients
(SCs). Startup service of the PSMs tries to establish an initial synchro-
nized global time to make devices operate in synchronized mode. When a
device detects there is a synchronous/asynchronous clique scenario (detect-
CliqueSync()/detectCliqueAsync()), the restart service of PSMs will try to
resynchronize itself. When operating in synchronized mode, TTEthernet
uses a two-step synchronization mechanism: SMs dispatch PCFs to CMs,
and CMs calculate the global time from the PCFs (i.e. “compress”) and
dispatch “compressed” PCFs to SMs and SCs. SMs and SCs receive “com-
pressed” PCFs and adjust their clocks to integrate into the synchronized time
base. When a PCF arrives, a dynamic PCF handler process (processPCF())
will be spawned to cope with this PCF. If the TTEthernet device is a CM, a
dynamic compression process (compression()) will be spawned if there is no
process handling corresponding integration cycle of the PCF. After receiv-
ing scheduled PCFs, the synchronization process (sync()) will be resumed to
calculate the clock correction from the PCFs that are in-schedule, and after
a fixed delay the clock will be adjusted by the calculated correction value.

The TTEthernet controller model acts as a TLM-2.0 target which re-
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Table 1: Processes in TTEthernet Model
Name Main Function

send() & recv() send/receive Ethernet frames
execSched() signal TT frame transmission
releaseET() arrange ET frame transmission

sync() calculate clk. correction & adjust clk.
processPCF() execute permanence function
compression() compress PCFs

detectCliqueSync() detect synchronous cliques
detectCliqueAsync() detect asynchronous cliques

psmSM() execute sync master PSM
psmCM() execute compression master PSM
psmSC() execute sync client PSM

ceives transactions containing Ethernet frames from the PE model via a
target socket. Generic payload extensions are added to show which traffic
class the Ethernet frame belongs to. The TTEthernet switch model stores
and forwards different traffic class frames using different mechanisms. Since
TLM-2.0 of SystemC is mainly for modeling memory-mapped buses, model-
ing TTEthernet requires some extensions: An Ethernet socket is introduced
by deriving from both tagged initiator and target sockets of TLM-2.0 in
order to simulate the bidirectional communication link between two ports
of TTEthernet devices. Binding and accessing methods of the socket are
implemented and new payload type for Ethernet is also added.

3.1.4. Sensor and Actuator Modeling

The cyber components interact with the physical system through sen-
sors and actuators. In our model each sensor/actuator has a SC THREAD
process that is responsible for updating the sensing/actuation values. The
sensors are modeled as active devices, and the actuators are modeled as pas-
sive devices.

Fig. 7 shows the operations of sensors and actuators. As an active device,
a sensor will periodically use an IRQ line to inform the PE model to fetch
the values through a bus transaction. According to the configuration, the
active sensors can use their independent clocks or they can be synchronized
with the PE model. On the contrary, the values used by an actuator are fed
by the PE model periodically or sporadically.

The interactions between the sensors/actuators and the CarSim model are
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simply through shared variables. The pointers to these shared variables are
used by the sensors and actuators. When there is an update, the value will be
read/written from/to the physical model by dereferencing the corresponding
pointer.

Figure 7: Active Sensor and Passive Actuator

3.2. Software Layer

The software layer comprises the software components with behavior ex-
pressed in logical time. Each software component takes the corresponding
generated C code from MATLAB/Simulink model to realize its functionality.

All the software components belonging to the same PE are grouped into
one task set class which is derived from sc module class. When integrating
all the models, the task set will be instantiated and registered to the RTOS
model of the corresponding PE, and an off-line defined schedule table for TT
activations is also registered to the RTOS model. Each software component

15



Figure 8: A Software Component

is wrapped into a SC THREAD SystemC process as a task which will be
scheduled by the RTOS model. Each task has an sc event object. The
execution of a task is pending on its own sc event object which will be notified
by the scheduler when the task is scheduled to run. The worst case execution
time (WCET) of a software component is needed for the off-line TT paradigm
scheduling tool and is annotated to the task. Although the execution of a
piece of C code will take zero logical execution time, the task will invoke an
RTOS API to delay itself for at least the WCET to generate the outputs.
This process is shown in Fig. 8.

As shown in Fig. 2, all the control software tasks constitute the software
layer and are distributed over two ECUs. The interactions between the soft-
ware and network/platform layers are: the scheduler of the RTOS schedules
the tasks and informs a task to run by using sc event notification; the tasks
acquire RTOS services, such as inter-node communication, via system calls.
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3.3. Physical Layer

In order to integrate the physical layer model of an automotive vehicle
with the network/platform layer model in SystemC, two requirements for
the physical model are: (1) the physical model has to provide input/output
interfaces through which we can access the variables representing its dynam-
ics. (2) the physical model also should have an interface for simulation time
synchronization. A wrapper module can take advantage of these interfaces
and integrate them with the network/platform layer (via sensors and actua-
tors). CarSim is a commercial parameter-based vehicle dynamics modeling
software which meets these two requirements [3].

CarSim has a program called VehicleSim (VS) solver used to read and
write files, calculate dynamics, and communicate with other software. It has
an internal mathematical model that predicts the behavior of vehicles in re-
sponse to control signals. The solver is in the form of a dynamically linked
library (DLL) file with a set of API functions. Integrating CarSim into the
co-simulation framework is achieved by a wrapper module that takes charge
of synchronization between the SystemC simulation kernel and CarSim VS
solver. The solver DLL has a set of time-stepping API functions, and the time
of the physical model will be increased with the configured time step by each
time-stepping API function call from the wrapper module. The VS solver
solves the differential equations according to the current time and update the
internal mathematical model. Different dynamics variables reference to the
variables in the internal mathematical model through VS APIs. These dy-
namics variables are revealed by the wrapper module to the sensors/actuators
of the network/platform layer through shared variables.

Figure 9: SystemC-CarSim Integration in Time Domain

Due to using the fixed-step solver in CarSim, the interval I between two
successive mathematical model updates is fixed. The wrapper module has to
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call the CarSim time-stepping function every fixed-step. SystemC uses a dis-
crete event simulator which can process sensing and actuation events of the
network/platform layer within an interval. In order to ensure the accuracy
of the simulation, we have two restrictions for the SystemC CarSim integra-
tion in the time domain: The first one is the sensing period TS should be
greater than the simulation fixed-step, i.e. TS > I; otherwise two successive
sensing events within a step will acquire the same dynamics variable evalua-
tions. Similarly for the actuation, whose timing depends on the upper layer
computation whose execution time is the control delay δ, the control delay
should also be greater than the fixed-step, i.e. δ > I. Since the fixed-step is
very small (1 ms in our example), this is not a strong restriction. The second
one is after an actuation, next sensing should be at least be separated by
an interval boundary. Since we use TTA, every action point in time can be
specified at design time; thus, this is not a strong restriction as well.

Fig. 9 shows how the cyber part modeled in SystemC is integrated with
the physical layer modeled by CarSim in the time domain (the dashed lines
represent the data flow). In this example, the control sampling period is
5ms. S1 acquires the dynamics variable values updated by TS1, and the
computation and communication (C1 and N1) take some time before the
actuation variables are changed by A1. The changed actuation variables
affect dynamics variables updating TS6 and TS7, and then another control
period begins.

4. Rapid Prototyping Design Flow

The virtual prototype of a TT automotive CPS can be generated au-
tomatically by using the Embedded Systems Modeling Language (ESMoL)
environment. ESMoL is a suite of domain-specific modeling languages, pro-
viding a single multi-aspect design environment and a set of tools to facilitate
the design of embedded real-time control systems [18]. The rapid prototyping
design flow is shown in Fig. 10.

The first four steps belong to using ESMoL to facilitate high-confidence
control software design. Step 1 specifies the control functionality in the MAT-
LAB/Simulink environment and configure/establish the physical dynamics
model. The Simulink model will be imported into the ESMoL automatically
to become the functional specification for instances of software components.

Step 2 specifies the non-functional parts of the system in ESMoL which
includes: (1) the logical software architecture which captures data depen-
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Figure 10: Rapid Prototyping Design Flow Supported by the ESMoL Language and Vir-
tual Prototype
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dencies between software component instances independent of their distribu-
tion over different nodes; (2) the hardware platforms defined hierarchically
as nodes with communication ports interconnected by I/O blocks and net-
works: Model attributes for a node mainly capture timing resolution, its
RTOS scheduling policy, and overhead parameters for data transfers, ISR,
and task context switching. The processor speed is indirectly embodied by
the WCET of the tasks specified in the timing model. The parameters for
an I/O block include its type (input/sensing or output/actuation) and trans-
action data size. The parameters for a network include its bandwidth and
its TDMA slot size. The topology of the network can be obtained from
these interconnections; (3) a deployment model set up by mapping software
components to nodes, and data messages to communication ports: The de-
ployment model captures the assignment of component instances as periodic
tasks running on a particular node. Message ports on component instances
are assigned to hardware interface ports in the model to indicate the me-
dia through which message are transferred; (4) a timing model established
by attaching timing parameter blocks to components and messages: For the
time-triggered automotive control software the configuration parameters of
the timing model include execution period, desired offset, relative deadline
and WCET.

Step 3 translates the ESMoL model into the simpler ESMoL Abstract
model using the Stage1 interpreter of ESMoL. The model in this intermedi-
ate language is flattened and the relationships implied by structures in ES-
MoL are represented by explicit relation objects in ESMoL Abstract. Step 4
generates the scheduling problem specification from ESMoL Abstract model
and uses a tool of ESMoL called SchedTool to solve the scheduling prob-
lem. The results are imported back into ESMoL model and written to the
appropriate objects. More details of these four steps can be found in [18].

In order to integrate the co-simulation framework with ESMoL, we extend
the ESMoL design flow. Step 5 generates C code from MATLAB/Simulink
model using a code generator (e.g. Real Time Workshop (RTW) toolbox).
Step 6 uses Stage2 interpreter of ESMoL to generate the virtual prototype.
For each model of the cyber part, there is a corresponding configuration tem-
plate which can be parameterized by utilizing a template engine (e.g. Google
Ctemplate). The interpreter uses the UDM model navigation APIs to tra-
verse the ESMoL Abstract model to assemble the C code generated by RTW
into tasks and parameterize the configuration templates. The template for
a task is organized as follows: in an infinite loop it first waits on its own
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sc event object; if the task is a receiver of a remote message, it invokes the
read message API with corresponding arguments; then it invokes its gener-
ated C function to compute in zero logic execution time; its execution time
is enforced by calling the timing annotation API to pass its WCET to the
RTOS it belongs to; at last if the task sends a message to the network, it calls
the write message API with corresponding arguments; otherwise, it updates
the shared memory. All the tasks running on the same node are grouped
into one task set class which is derived from sc module class. For each node,
the PE, bus, TTEthernet controller, sensors, and actuators are instantiated,
connected, and configured in the sc main() function which is the top level of
a SystemC program. The configuration files for the model instances are gen-
erated according to the specified attributes in the ESMoL model, such as the
schedule tables for the RTOSes. The task set class of the node is also instan-
tiated and registered to the RTOS of the PE model. TTEthernet switches are
also instantiated and configured. According to the topology defined in the
hardware model of ESMoL, all the nodes are connected. The physical model
is instantiated and configured. All the pointers to the shared variables of the
physical model are passed to the corresponding sensors/actuators. Finally,
the co-simulation results of the holistic system provide performance feedback
for engineers to revise their designs, which is the step 7.

5. Validation and Evaluation

In this section, we first validate the TTEthernet model by comparing TT
traffic delays obtained from our model, a TTEthernet model in OMNeT++
INET framework [24], and a real TTEthernet implementation [27], and also
evaluate its scalability and simulation efficiency. Then, we use an adaptive
cruise controller (ACC) case study to validate the co-simulation framework
by comparing with the results obtained from a hardware-in-the-loop (HIL)
automotive simulator. Based on the ACC controller, we incrementally add
another automotive system controller which takes charge of lane keeping, and
compare the results of the integrated controller under different simulation
environments (MATLAB/Simulink, HIL, and co-simulation framework). In
terms of measuring control performance, we use the tracking ability of the
controller as the performance metric.
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Figure 11: Validation of TT Communication in TTEthernet Model Setup

5.1. TTEthernet Model Validation and Evaluation

We validate the TTEthernet model by comparing the average end-to-end
transmission delay and jitter of the TT traffic of different TTEthernet mod-
els (including our model in SystemC/TLM, a model in OMNeT++ INET
framework [24], and a software-based implementation) under the same exper-
imental scenario. We set up a star topology which has four nodes connected
to a central TTEthernet switch with 100Mbit/s links as shown in Fig. 11.
Node 1 sends both TT traffic and BE traffic to Node 2, and both Node 3 as
well as Node 4 send only BE traffic to Node 2. All the traffic goes through
a TTEthernet switch. The communication period is 10ms, and the time slot
is 200µs. The maximum clock drift is set as 200ppm for the models. Node
1 sends a TT frame at 1ms offset of each period. The configuration files
including their corresponding XML files for the nodes and switch are gener-
ated by the TTTech toolchain [27]. From the generated XML files, we extract
parameters such as critical traffic table and schedule table to configure our
model and the model in OMNeT++. In this setup, the switch dispatches
the TT frame sent by Node 1 at 1.4ms offset of each period. We measure
the average end-to-end latency and jitter for different TT frame sizes under
full link utilization of BE traffic. Fig. 12 shows the results of our model in
SystemC/TLM, the model in OMNeT++ INET framework, and the software
stack implementation in Linux from TTTech [27].

From the figure we can see the model in SystemC/TLM and the model
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Figure 12: Average End-to-End Transmission Delay and Jitter of Different Frame Sizes

in OMNeT++ INET framework give very similar results. The method of
measuring end-to-end transmission delay of software-based TTEthernet im-
plementation is presented in [2], which utilizes two ports on a single box.
From the results we can observe there is a latency gap (90µs) between frame
size of 123 and 124 bytes which is actually caused by the BE-device driver
configuration according to [2]. This gap is due to measurement approach
limits and will not appear when using the TT communication. The mea-
sured jitter of the software-based implementation is bounded by 30µs. The
hardware-based implementations will bound the jitter more tightly [27].

We also evaluate the scalability and simulation efficiency of the TTEther-
net model. We set up the evaluation using a central switch, and all the nodes
are connected to the switch. The simulation time is 1000s, and increasingly
add a pair of nodes into the network. Each pair of the nodes, such as Node
1 and Node 2, communicates with each other using TT, RC, and BE traffic.
Each node sends out a TT frame, a RC frame, and a BE frame every 10ms.
Thus, there are 300, 000 × number of nodes frames totally. The result is
shown in Fig 13.

From the results we can see the model in SystemC/TLM has good simula-
tion efficiency when the number of nodes increases. The simulation speed of
the model in OMNeT++ INET framework is also evaluated under the same
computation environment. We simulate the same topology and traffic by
using the fastest mode in OMNeT++ to get rid of the influence of animation
and text outputs.
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Figure 13: TTEthernet Simulation Efficiency Evaluation: Used CPU Time of Different
Number of Nodes.

5.2. Case Studies

We use two automotive case studies to show the co-simulation frame-
work can facilitate the design of automotive CPS efficiently providing more
realistic results than MATLAB/Simulink. First, we introduce our hardware-
in-the-loop simulator which serves as the basis of the comparisons. Then, we
carry out a single adaptive cruise controller (ACC) case study to show the
validity and efficiency of the framework. Finally, based on the ACC, we add
another automotive controller, lane keeping controller (LKC), to show the
co-simulation framework has a good ability to deal with incremental design.

5.2.1. Hardware-in-the-Loop Simulator

In order to test the automotive control system in a more realistic way, we
use a HIL automotive simulator. The architecture of the HIL simulator is
shown in Fig. 14. The physical dynamics modeled in CarSim is deployed on
an RT-Target in a sense that it acts as the real automotive vehicle. The RT-
target is also integrated with a TTTech PCIe-XMC card which enables the
seamless integration and communication with ECUs on the time-triggered
network. The network/platform layer of the HIL simulator is composed of
three ECUs which are connected to an 8-port 100Mbps TTEthernet devel-
opment switch from TTTech. Each ECU is an IBX-530W box with an Intel
Atom processor running a RT-Linux operating system. Each ECU is inte-
grated with a TTEthernet Linux driver which is a software-based implemen-
tation of TTEthernet protocol to enable communication with other end sys-
tems in a TTEthernet network. Automotive control software is distributed
over the ECUs and the tasks execute in the kernel space of RT-Linux which
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Figure 14: System Architecture of HIL Automotive Simulator

can utilize the synchronized time base of the TTEthernet communication.

5.2.2. ACC Case Study

Figure 15: Adaptive Cruise Control System [6]

The control algorithm of ACC is designed in MATLAB/Simulink. Fig.
15 shows a block diagram of the ACC system. The ACC is hierarchically
divided into two levels of control: the upper level controller and the low
level controller. The main functionality of the upper level controller is to
compute the desired acceleration for the ACC-equipped vehicle that achieves
the desired spacing or velocity. The main objective of the low controller is
two-fold: first, using the desired acceleration command from the upper level
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controller, the lower level controller determines whether to apply braking
control or throttle control; second, the required control command is applied
to the vehicle in order to achieve the desired acceleration. Details about the
ACC can be found in [6].

Figure 16: ESMoL Design Models of ACC

The model is imported into ESMoL environment. The four different as-
pects of the design in ESMoL are shown in Fig. 16. The topology of the
network/platform layer is based on the HIL simulator which is shown in
Fig. 16 (a). Fig. 16 (b) shows the software logical architecture that depicts
the logical interconnections of four ACC tasks, which are InstrClstrSens,
UpperLevelController, LowLevelController, and InstrClstrAct, and two sens-
ing/actuation tasks, which are InputHandler and OutputHandler. The de-
ployment of the ACC control software is shown in 16 (c) in which the dashed
arrows represent assignment of tasks to their respective ECUs and solid lines
represent assignment of message instances to communication channels on the
ECU. Finally, the timing and execution model for tasks and message transfers
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of the ACC control system are shown in 16 (d).

Figure 17: Velocities and Gap Distance from HIL Simulator and Co-Simulation Framework

The sampling period on the HIL simulator is 10ms which is limited by the
software-based TTEthernet implementation. In this case study, the velocity
of the leading vehicle starts at an initial value of 60km/h. The host vehicle
radar range is 100m. The initial global longitudinal positions of the leading
vehicle and the host vehicle are 130m and 0m respectively, which means the
host vehicle radar is initially out of range. The host vehicle starts at an initial
velocity of 65km/h with a driver set target velocity of 80km/h. The expected
driving behavior of the host vehicle should be: (1) before the host vehicle
detects the leading one, it will speed up to and maintain at most at 80km/h;
(2) when the radar detects a slower leading vehicle, the ACC will control the
distance between the two vehicles to a driver set time gap, and the desired
gap distance is attained when two vehicles travel at the same velocity; (3)
when the leading vehicle begins to speed up, the velocity of the host vehicle
will also increase in order to achieve a desired velocity (the host maintains at
most at 80km/h, even when the leading vehicle exceeds this speed); (4) when
the leading vehicle slows down, the host also starts to decrease its velocity
in order to maintain the desired space between the vehicles.

The results of the designed ACC running on the HIL simulator and the
proposed framework are given in Fig. 17 (since the results are very similar,
most of the curves are overlapped). We zoom in on the velocity plots between

27



Figure 18: Comparison of Results from MATLAB/Simulink, HIL Simulator, and Co-
Simulation Framework

25s and 45s, and also use the result from MATLAB/Simulink as a reference
which is shown in Fig. 18 (a). From Fig. 18 (b), we can observe the velocity
of the HIL simulator suffers from some oscillations which have a highest value
about 0.7km/h ≈ 0.2m/s. The co-simulation results also shows these oscil-
lations as shown in Fig. 18 (c) and (d). Due to different randomly assigned
clock drifts, the results cannot be exactly the same; yet, the figures show very
similar results, especially compared to the result from MATLAB/Simulink.
For example, similar but not identical results are given in Fig. 18 (c) and
(d) (e.g. the peak of the oscillations is shifted more towards 30s in (d)).

5.2.3. LKC + ACC Case Study

In addition to the ACC case study, we also integrate it with a LKC
to carry out an integrated controller case study. Fig. 19 shows the block
diagram of the nested PID LKC. The nested PID LKC is composed of two
controllers. The outer loop controller, which is the Controller-1, is a PID
controller with an additive integral action on the lateral offset to reject the
disturbances on the curvature which increase linearly with respect to time.
Controller-1 computes a desired reference yaw rate based on the vehicle’s
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Figure 19: Lane Keeping Control System [23]

lateral displacement. The inner loop controller, which is the Controller-2, is
a PI controller and computes the desired steering angle required for achieving
zero lateral distance at the look-ahead distance.

Figure 20: Integrated Control System (LKC + ACC) [23]

The integrated controller’s block diagram is shown in Fig. 20. Although
the two controllers affect the behavior of two seemingly different dynamics
of the vehicle (the ACC controls the longitudinal dynamics while the LKC
controls the lateral dynamics), there exists physical interactions in the both
the lateral and longitudinal dynamics of the vehicle. Moreover, changes in
the physical environment such as geometry of vehicle path or road curvature
highlights certain conflicts in the operation of these two controllers. Thus, we
add a supervisory controller whose main objective is to restrict the regions of
operations of the integrated system in a safe desirable manner. More details
about the LKC and the supervisory controller can be found in [23].

Again, the integrated controller in MATLAB/Simulink is imported into
ESMoL environment. The four different aspects of the design in ESMoL are
shown in Fig. 21. The topology of the network/platform layer is still the
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Figure 21: ESMoL Design Models of LKC + ACC

same as the HIL simulator which is shown in Fig. 21 (a). Previously in the
ACC case study, we divided the ACC into four tasks and distributed them
onto different ECUs. However, in this case study, we keep ACC and LKC as
a whole, and distribute ACC and LKC on two different ECUs, which can be
seen in Fig. 21 (c). The software logical architecture depicts the logical inter-
connections six tasks, which are Supervisor, ACC, LKC, and Collection and
two sensing/actuation tasks, which are InputHandler and OutputHandler.
Finally, the timing and execution model for tasks and message transfers are
shown in 21 (d).

In this case study, we establish a test track which has a combination of
straight paths and three curved roads with radii of 160m, 200m, and 160m
respectively (as shown in Fig. 22). The look-ahead distance of the LKC
controller is 5m. The desired time gap of the ACC is set to 1.5s. The leading
vehicle starts at an initial position of (0, 0) with an initial speed of 30km/h
while the host vehicle, equipped with the integrated control system, starts
at an initial position of (−800, 0) with an initial speed of 80km/h.
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Figure 22: Test Track with Three Curves

Table 2: Used CPU Time of Different Designs of Automotive Controllers

Name Sampling Period Simulation Time Used CPU Time

ACC 10ms 100s 102s
LKC + ACC 10ms 300s 373s

The mainly concerned results of the integrated controller running on the
MATLAB/Simulink, the HIL simulator and the proposed framework are
given in Fig. 23 for lateral acceleration and in Fig. 24 for lateral displace-
ment. From the results, we can observe the co-simulation of the controller
reveals similar behavior to the controller running on the HIL simulator. Es-
pecially in Fig. 24, we can see the trajectories of the co-simulation and HIL
simulator have a lot of overlap, whereas the trajectory of MATLAB/Simulink
has observable differences from the other trajectories.

5.2.4. Simulation Efficiency

In order to illustrate the simulation efficiency of the whole framework,
we provide the CPU time for 100s simulation time of the ACC and 300s
simulation time of the integrated controller under a machine with dual cores
of 3.40GHz and 8GB memory. The results are shown in Tab. 2.

6. Design Space Exploration

In this section, we explore different design options which include (1) re-
ducing the sampling period to observe its affection on the ACC longitudi-
nal velocity, and (2) introducing additional background network traffic to
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Figure 23: Lateral Acceleration

evaluate its influence on the LKC lateral displacement. In addition, since
our HIL simulator has an implementation limitation that does not allow
the computation on the RT-Target to be synchronized with the TTEthernet
communication, we can use the co-simulation framework to eliminate this im-
plementation limitation to evaluate its impact on the control performance.

6.1. Reducing Sampling Period

In the ACC case study, the ACC software execution on the HIL simulator
is not computationally intense. The timing diagram generated by the co-
simulation framework (Fig. 25) shows that every task meets its deadline
which is represented by the dotted line (due to implementation limitations,
on RT-Target the computation is not synchronized with the communication).
If the physical layer is not included, like the tools introduced in [25] and [30],
the system is perfectly designed. However, when the car dynamics model
begins to execute in this simulation, the oscillations of the vehicle velocity can
be observed. In order to improve performance, we can increase the sampling
rate. The computation of the system is negligible, but the communication
system that uses the software-based implementation of TTEthernet becomes
an obstacle which limits the fastest reasonable sampling period to 10ms.
In order to reduce the sampling period, we need to consider other design
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Figure 24: Lateral Displacement

Figure 25: Timing Diagram of ACC Tasks

alternatives in the design space.
By employing the hardware-based implementation of TTEthernet which

has a 1Gbits/s bandwidth and more precise clock synchronization, we can
achieve the sampling period reduction. A 5ms sampling period is used in
the new design and gains in the ACC controller are tuned. The zoomed-in
velocity result of the co-simulation is given in Fig. 26, from which we can
see the performance of the ACC is much better than the previous one: the
oscillations have a highest amplitude about 0.05km/h ≈ 0.015m/s.

In this case, the 5ms sampling period causes more computation and com-
munication than in the case of 10ms sampling period, so the used CPU time
for 100s simulation time also increases to 194s.
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Figure 26: Co-Simulation Velocity Plot of 5ms Sampling Period

Table 3: LKC Control Performance Under Different Network Traffic Scenarios
Scenario Max. Abs. Err.(m) Avg. Err.(m) Max. Osc. Amp.(m)

1 0.3448 0.0267 0.001
2 0.3448 0.0267 0.001
3 0.3768 0.0291 0.012

6.2. Introducing Additional Network Traffic

One advantage of the TTEthernet is that it integrates mixed-criticality
traffic classes together which is also supported in our framework. For the
LKC + ACC automotive controller, we introduce some background addi-
tional traffic to evaluate its influence on the control performance. In this
evaluation, instead of using randomly assigned clock drifts, we fix the rela-
tive clock drift (50ppm) between the RT-Target computation and the global
time base provided by TTEthernet in order to get rid of other affections
other than additional network traffic. Since zero lateral displacement is an
ideal performance, we use the maximum lateral displacement error, the av-
erage error and the maximum oscillation amplitude for 300s running on the
three curves test track to compare the control performance. The results are
shown in Tab. 3. The first scenario serves as the baseline in which there is
no additional traffic but for the network traffic needed for the automotive
controller. In the second scenario, we introduce additional BE traffic on the
TTEthernet: in each control period, RT-Target sends a BE frame to ECU1,
ECU1 sends the frame to ECU2, ECU2 sends the frame to ECU3, and ECU3
sends the frame back to RT-Target. From the result, we can observe that
since the automotive controller uses the TT traffic, additional BE traffic does
not affect the control performance at all. In the third scenario, we introduce
more TT frames so that this can result in generating a new TT schedule
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with 15ms sampling period (we assume sampling period should be 5ms’s
multiple). Since the sampling period is increased, the control performance
should be decreased, which can be observed from the increased maximum
and average errors and the maximum oscillation amplitude.

In this case, the 15ms sampling period causes less computation and com-
munication than in the case of 10ms sampling period, so the used CPU time
for 300s simulation time also decreases to 242s.

6.3. Clock Synchronization Strategies

Our HIL simulator has an implementation limitation that does not allow
the computation on the RT-Target to be synchronized with the TTEthernet
communication. We can conjecture that the oscillations are mainly due to
the delays caused by the non-synchronized computation with the TT com-
munication on the RT-Target. This conjecture can be proved by comparing
the co-simulation result of the synchronized setting with the one of the non-
synchronized setting of the RT-Target. Fig. 27 shows the co-simulation result
of the synchronized setting of the RT-Target, from which we can observe the
oscillations are apparently reduced (the highest amplitude is about 0.09km/h
≈ 0.025m/s).

Figure 27: Co-Simulation Velocity Plot by Using Synchronized Setting of RT-Target

7. Conclusion

In this paper, we propose a co-simulation framework that can facilitate
TT automotive CPS design. A simplified view of designing CPS is to consider
three design layers, which include the physical layer, the network/platform
layer, and the software layer. The proposed framework contains models from
each of the three CPS design layers. SystemC is used to model the cyber
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part and CarSim, a commercial automotive simulator, is used to model the
physical part of an automotive CPS. Since the network/platform layer is the
intermediate layer between the other two layers, it plays an important role in
CPS integration and becomes the backbone of the framework models. The
models can be configured and integrated to become a virtual prototype of a
TT automotive CPS to provide realistic feedback at early design stages. The
framework is also integrated with a model-based design tool called ESMoL to
enable rapid prototyping. The TTEthernet model of our network/platform
model is validated against a real implementation and a TTEthernet model
in OMNeT++ INET in term of its end-to-end transmission delay and jitter.
Two automotive case studies (ACC and LKC+ACC) are provided to illus-
trate the framework. The case studies shows that the co-simulation frame-
work provides similar results to a HIL simulator with good efficiency. DSE is
also demonstrated taking into account different design options and concerns.
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