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Abstract— The complexity of software in systems like
aerospace vehicles has reached the point where new techniques
are needed to ensure system dependability. Such techniques
include a novel direction called ‘Software Health Management’
(SHM) that extends classic software fault tolerance with tech-
niques borrowed from System Health Management. In this
paper the initial steps towards building a SHM approach are
described that combine component-based software construction
with hard real-time operating system platforms. Specifically,
the paper discusses how the CORBA Component Model could
be combined with the ARINC-653 platform services and the
lessons learned from this experiment. The results point towards
both extending the CCM as well as revising the ARINC-653.

I. INTRODUCTION

Software today often acts as the ultimate tool to imple-
ment functionality in cyber-physical systems and to integrate
functions across various subsystems. Consequently, size and
complexity of software is growing, often exponentially, and
our technologies to ensure that systems are dependable must
keep up with this growth. The primary industry practice
today is to focus on (1) the extensive testing of systems and
subsystems, and (2) carefully managing and documenting the
development processes, typically according to some standard
like DO-178B [1]. The research practice is focusing on the
use of formal (mathematical and algorithmic) techniques, like
model checking, static analysis, and abstract interpretation
to verify the software. Unfortunately, experience shows that
neither approach is perfect and deployed software can still
fail, especially under unexpected circumstances. Often such
failures arise because of simultaneous hardware failures and
latent design (or implementation) errors in the software.

Classic fault-tolerant computing, including software fault-
tolerance (SFT) methods [2] do not adequately address
these problems. SFT is primarily reactive: when unexpected
situations are detected (often in some low-level code) an
exception is thrown to an error handler on a higher level,
where the fault effect is mitigated (if at all), sometimes
without considering system-level effects. Often software
fault-management entails rebooting the system (or at least
the partition), and fine-grain mitigation is rarely performed.
Faults that propagate across the hardware/software interface
are poorly understood and managed, leading to problems like
the infamous Ariane 5 mishap where a clear discrepancy
between the hardware’s capabilities and the assumptions
made by the software designers led to major loss of prop-
erty [3]. In the past 10+ years, the new field of System
Health Management has been developed [4], especially in the

aerospace industry, that deals with detecting anomalies, di-
agnosing failure sources, and prognosticating future failures
in complex systems, like aerospace vehicles. While System
Health Management has been developed for physical (hard-
ware) systems, it provides interesting systems engineering
techniques for other fields like embedded software systems.

The use of System Health Management techniques for
embedded software systems points beyond the capabilities
provided by the SFT techniques and can potentially in-
crease a system’s dependability. This new direction is called
Software Health Management (SHM) [4]. SHM is not a
replacement for conventional software- and hardware-fault
tolerance, and it is not a replacement for solid engineering
analysis, design, implementation, and testing. It is rather an
additional capability that applies the concepts and techniques
developed for System Health Management for software-
intensive systems, at run-time. The main goal of SHM is
to prevent a (software) fault from becoming a (system)
failure - as in the case of SFT. But, in addition SHM must
sense, analyze, and act upon ‘software health indicators’
that are observable on the running software itself. It also
has to provide pertinent information for the operator, to the
maintainer, and to the designer of the system.

In this paper, we describe the early results of our project
that aims at developing technology for software health
management in safety-critical systems. The second section
describes a high-level design for software component-level
health management; the third section provides background
for the real-time component framework we are constructing,
while the subsequent sections detail our approach towards
combining CORBA Component Model with the hard real-
time ARINC-653 platform services and present our results.
The paper concludes with a comparison with related work
and a summary.

II. HIGH-LEVEL DESIGN FOR COMPONENT LEVEL
HEALTH MANAGEMENT

System-level Health Management is an evolving field,
but one core engineering assumption is clear for all sys-
tems involved: systems are built from components, often
called ‘Line Replaceable Units’ (LRU). In our project,
we make a similar assumption: the software itself is built
from well-defined, independently developed, verified, and
tested components. Components encapsulate (and generalize)
objects that provide functionality. They also encapsulate
physical device interfaces. Furthermore, all communication



and synchronization among components is facilitated by a
component framework that provides services for all com-
ponent interactions. This component framework acts as a
middleware, provides composition services, and facilitates
all messaging and synchronization among components.

In physical systems, health management can be facilitated
on the level of individual components, on the level of
subsystems, on the level of system areas, as well as on
the global, system level. On the level of components (LRU-
s), anomaly detection, fault diagnosis, and prognostics are
the typical activities. For example, circuit boards may have
built-in fault detection logic, or built-in tests that report to a
higher-level health management system. In our project, we
first focus on providing software health management on the
level of individual software components.

Following the principles of System Health Management,
we expect that component-level health management (CLHM)
for software components will detect anomalies, will identify
and isolate the fault causes of those anomalies (if feasible),
will prognosticate future faults, and will mitigate effects of
faults. We envision CLHM implemented as a ‘side-by-side’
object that is attached to a specific component and acts
as its health manager. It provides a localized and limited
functionality for managing the health of one component, but
it also reports to higher-level health manager(s).

The functionality of the CLHM includes various mon-
itoring functions that observe what is happening on the
component’s interfaces, including monitoring for deadline
violations, generate diagnosis and, if possible, prognosis for
the health of the component, and take mitigating actions. We
believe such functions can be implemented by code that is
generated automatically from some higher-level model of the
CLHM, and this modeling and generator tool is subject of
ongoing research. In this paper, we focus on the following
problem only: How can we construct a software component
framework that can serve as a foundation for SHM in real-
time systems and as a ‘platform’ for the CLHM? The design
of the component framework is heavily influenced by the
SHM requirements: the need for monitoring components,
diagnosis, prognostics, and mitigation; all in a systematic
framework. In the next sections, we first introduce the con-
cepts of our (abstract) component model, and then describe
how we implemented a simulated prototype for such a
component framework.

III. BACKGROUND

The two main technologies that we used in this work
are the CORBA Component Model and the ARINC-653
platform services. During the course of our research, we
had to extend the CORBA Component Model (CCM) to
enable SHM. The next two subsections provide the necessary
background about the extended component model and the
ARINC-653 services.

A. Component Model

Our component model shown in Figure 1 is an extension of
the standard CORBA Component Model (CCM). A compo-

Fig. 1. Component Model

nent is a unit, potentially containing many objects. The com-
ponent is parameterized, has an externally observable state,
it consumes resources, publishes and subscribes to (asyn-
chronous) events, provides interfaces for and requires inter-
faces from other components that require synchronous in-
teractions. Components can interact via asynchronous/event-
triggered and synchronous/call-driven connections. The dif-
ference between this model and the standard CCM is the
state monitoring and resource interfaces, and the periodic or
aperiodic triggering. The health manager can monitor incom-
ing and outgoing calls as well as published and consumed
events for anomalies. The state interface allows read-only
access to the state of the component, the resource interface
allows monitoring the resource usage of the component, and
the trigger interface allows monitoring the temporal behavior
of the component’s methods. We envision that using the
resource interface the health manager can detect anomalous
resource usage patterns, while on the triggering interface it
can detect deadline violations.

Figure 2 describes an example system built from com-
ponents. The sampler component is triggered periodically
to publish an object containing relevant data. The GPS
component is connected to the sampler i.e., it is triggered
sporadically to obtain the sampled data. When finished
processing, it ends with publishing its own output event. The
display component is triggered sporadically to process the
GPS event. Upon activation, the display component uses an
interface provided by the GPS to retrieve the position data
via a synchronous call into the GPS component. Table I gives
example periodicity and worst case execution time (WCET)
values associated with these tasks.

B. ARINC-653/APEX partitioning kernel

The ARINC-653 software specification describes the stan-
dard Application Executive (APEX) kernel and associated
services that should be supported by safety-critical real-time
operating system (RTOS) used in avionics. It has also been
proposed as the standard operating system interface on space
missions [5]. The APEX kernel in such systems is required to
provide robust spatial and temporal partitioning. The purpose
of such partitioning is to provide functional separation be-
tween applications for fault-containment. A partition in this
environment is similar to an application process in regular



Fig. 2. Example: Component Interactions

TABLE I
GPS EXAMPLE.

Period(secs) Component Interface WCET(secs)
4 Sampler PushDataOut 4
4 GPS ReceiveData after processing sends an event to Display 4

Sporadic Display ReceiveData after processing calls GetGPSData 4
Sporadic GPS GetGPSData 4

operating systems, however, it is completely isolated, both
spatially and temporally, from other partitions in the system
and it also acts as a fault-containment unit. It also provides
a reactive health monitoring service that supports recovery
actions by using call-back functions, which are mapped
to specific error conditions in configuration tables at the
partition/module/system level.

Spatial partitioning [6] ensures exclusive use of a memory
region for a partition by an ARINC process (unless otherwise
mentioned, a ‘process’ is meant to be understood as an
‘ARINC Process’ in the rest of this paper). It is similar
to a thread in regular operating systems. Each partition has
predetermined areas of allocated memory and its processes
are prohibited from accessing memory outside of the parti-
tion’s defined memory area. The protection for memory is
enforced by the use of memory management hardware. This
guarantees that a faulty process in a partition cannot ruin
the data structures of other processes in different partitions.
For instance, space partitioning can be used to separate
the low-criticality vehicle management components from
safety-critical flight control components. Faults in the vehicle
management components must not destroy or interfere with
the flight control components, and this property could be
ensured via the partitioning mechanism.

Temporal partitioning [6] refers to the strict time-slicing
of partitions, guaranteeing access for the partitions to the
processing resource(s) according to a fixed, periodic sched-
ule. The operating system core (supported by hardware
timer devices) is responsible for enforcing the partitioning
and managing the individual partitions. The partitions are
scheduled on a fixed-time basis, and the order and timing
of partitions are defined at configuration time. This provides
deterministic scheduling whereby the partitions are allowed
to access the processor or other hardware resources for only

a predetermined period of time. Temporal partitioning guar-
antees that a partition has exclusive access to the resources
during its assigned time period. It also guarantees that when
the predetermined period of execution time of a partition is
over, the execution of the partition will be interrupted and
the partition itself will be put into a dormant state. Then, the
next partition in the schedule order will be granted the right
to execution. Note that all shared hardware resources must
be managed by the partitioning operating system in order to
ensure that control of the resource is relinquished when the
time slice for the corresponding partition expires.

IV. IMPLEMENTATION

In this section we describe our implementation of a soft-
ware component framework that can serve as a foundation
for SHM and as a ‘platform’ for the Component Level Health
Management (CLHM). Our implementation combines CCM
and ARINC-653 as CCM is a suitable starting point for
CLHM and ARINC-653 is fit for a software fault-protection
system to be used in safety-critical real-time systems.

Figure 3 describes the various layers of our framework
called APEXCCM. The main purpose of this framework is
to provide support for developing and experimenting with
component-based systems using ARINC-653 specifications
on top of a Linux operating system. The secondary goal is
to be able to design the top layers (component and processes)
such that they can be easily rebuilt over standard ARINC-653
compliant operating system.

Hardware Layer: A physical communication network
and the physical computing platform form the first two
layers.

Operating System: We have selected Linux as the oper-
ating system because it is widely available, and it supports
a real-time scheduling policy (SCHED FIFO). Moreover, it



Fig. 3. Layers of the implemented real-time component framework
(APEXCCM).

provides an implementation of the POSIX thread library.
In the future, we will explore building our services over
the seL4 micro kernel, which has been formally verified
with respect to its high-level abstract kernel specification
[7]. We rely on the memory partitioning between Linux
processes provided by the Linux Kernel to implement the
spatial partitioning between ARINC-653 partitions in our
framework.

APEX Emulation Layer: The next layer consists of
our APEX services emulation library. This library provides
implementation of ARINC-653 interface specifications for
intra-partition process communication that includes Black-
boards and Buffers. Buffers provide a queue for passing data
messages and Blackboards enable processes to read, write
and clear single data message. Intra-partition process syn-
chronization is supported through Semaphores and Events.
We have also implemented process and time management
services as described in the ARINC-653 specification. Inter-
partition communication is provided by sampling ports and
queuing ports. We can also provide inter-partition commu-
nication using the event channels and remote procedure
calls supported by our ORB layer, which will be described
later in this section. Overall, this layer was implemented in
approximately 15,000 lines of C++ code.

We implement ARINC-653 processes as POSIX threads.
ARINC-653 processes, just like POSIX threads share the ad-
dress space. It should be noted that processes, both periodic
and aperiodic, can only be created at initialization, following
the ARINC-653 specification. Specified process properties
include the expected worst case execution time, which cannot
be changed at run-time.

APEX Module Manager: The APEX Module manager
forms the next layer in our framework. It is responsible for
providing temporal partitioning among partitions (i.e., Linux
processes). Each partition inside a module is configured with
an associated period that identifies the rate of execution. The
partition properties also include duration that specifies the
time of execution.

Audsley in [8] and Easwaran in [9] have shown that the
periods associated with all partitions in a module should
be harmonic i.e., between any given pair of partitions, the

period of the first is an integer multiple of the second or vice
versa. Moreover, to prevent partition jitter, which may occur
if a process wishes to be released when its partition is not
executing, the period of the processes inside a partition must
be a multiple of the period of the partition.

The module manager is configured with a fixed cyclic
schedule that is repeated with a fixed hyperperiod. This
schedule is computed from the specified partition periods
and durations. The module configuration file also specifies
the hyperperiod value, which is the least common multiple
of all partition periods, the partition names, the partition
executables, and their scheduling windows. Note that the
module manager allows execution of one and only one
partition inside a specified scheduling window, which is
specified with the offset from start of hyperperiod and
duration of activity. The module manager is responsible
for checking that the schedule is correct before the system
can be initialized i.e., given a size ‘n’ partition sched-
ule tuple (S1, S2, · · · , Si, · · · , Sn) sorted in the ascend-
ing order of offsets and a hyperperiod value, (schedule
instance, Si = (PartitionName,Offseti, Durationi))
(∀i < n)(Offseti + Durationi ≤ Offseti+1) and
Offsetn + Durationn ≤ Hyperperiod. Figure 4 shows
the example execution of a module with two partitions. The
hyperperiod is set to 4 seconds in this example.

APEX Partition Scheduler: The next layer is the partition
level scheduler. This scheduler is provided by the APEX
services emulation library for each partition. It implements a
priority-based preemptive scheduling algorithm. This sched-
uler initializes and schedules the (ARINC-653) processes
inside the partition based on their periodicity and priority.
It ensures that all processes finish their execution within
the specified deadline. Otherwise, a deadline violation is
triggered and the process is prevented from further execution,
which is the specified default action. It is possible to change
this action to allow the restart of processes upon deadline
violation.

Object Request Broker (ORB): The next layer is the
Object Request Broker (ORB). This framework uses an open
source CCM implementation, called MICO [10]. By default,
the framework executes the main thread of ORB as an
aperiodic ARINC-653 process within the respective partition.

Layers defined by the software developer: The next two
layers are provided by the software developer. They include
the component definitions and the associated interfaces pro-
vided in an IDL file. The software developer is required to
supply the interface implementation code, and provide the
necessary properties such as periodicity, priority, stack size
and deadline. The framework provides the glue code that
maps each component interface method to an ARINC-653
process. Due to this mapping, we have to ensure that one
and only one instance of a component exists and that the
instance is created when the partition is initialized. Also,
multiple processes belonging to the same component are
automatically configured with a read/write lock depending
on whether they have been specified as read-only or not. We
will give an example of this mapping and the framework



Fig. 4. An example timeline of events as they occur in a module.

provided code in the next section.

V. COMBINING ARINC-653 AND CCM

Fig. 5. Typical layers in a CCM implementation

This section highlights some of the key differences in the
systems that are ARINC-653 compliant and those that use
the CORBA Component Model. Also, we discuss how we
combined the two. The section ends with our observations on
the restrictions and enhancements that are required in both
CCM and ARINC-653 to build a framework that integrates
components with a hard-real time platform.

ARINC-653 systems group computational blocks (pro-
cesses) into Partitions, with one or more Partitions assigned
to each Module, and one or more Modules forming a system.
The operating system supports both spatial and temporal
partitioning. The Partitions and their underlying Processes
are created during system initialization. Dynamic creation of
Partitions and Processes is not supported. The user configures
the Partitions and their underlying Processes with their real-
time properties (Priority, Periodicity, Duration, Worst Case
Execution Time, Soft/Hard deadline etc.) The Processes
are scheduled in real-time and are monitored to check
for violations of any real-time constraints. Most often, the
Processes are independent of one another and do not share
data (except as noted below) and are responsible for their
individual state. Intra-partition communication is provided
using Buffers that provide a queue for passing data messages
and Blackboards that allow processes to read, write and
clear single data message. Inter-partition communication is
asynchronous and is provided using ports and channels that
can be used for sampling and queuing of messages. Inter-
process synchronization is supported through Semaphores
and Events. ARINC-653 supports a health monitoring service
at each layer (Partition/Module/System) which is configured

by the user with the appropriate response (functions) for each
of the possible faults.

In systems that use the CORBA Component Model
(CCM), the computational objects reside inside components
that serve as run-time containers and act as a layer be-
tween the computational objects and the underlying ORB.
Each operating system (OS) process contains an instance
of the ORB that hosts the Components as shown in Figure
5. Dynamic memory and dynamic resource allocation are
permitted in a typical CCM system. If Components are
configured as session-oriented, an instance of the Component
is created dynamically for each session request. The methods
implemented inside a Component share and contribute to the
update of the attributes and the state of the Component. All
interactions between Components happen through ports that
are used to publish events and to receive subscribed events,
or ports that provide or use interface(s). The communication
between the objects is achieved through the services provided
by the Component layer and the underlying ORB. Additional
synchronization support from the ORB service libraries and
the underlying OS is also available.

Combining the two: In order to build a Component layer
within the ARINC-653 partitions, a mapping needs to be es-
tablished between the ARINC-653 APEX layer and the CCM
layer. The first mapping is done at the physical processor
layer. A single physical processor (node) can host multiple
partitions in the ARINC-653 domain. In the CCM domain,
the same processor can host multiple system/application
processes. So at the base level, each ARINC-653 partition
is mapped on to a separate application (Linux) process
that contains one ORB instance. The ARINC-653 processes
within the Partition are mapped to specific threads inside
the application (Linux) process. We map each component
interface method to a separate ARINC-653 process. This is
necessary because the WCET of a process is fixed in the
ARINC-653 environment, so one process cannot be used to
run interface methods with different WCET-s. Therefore, we
had to engineer each interface method to run as a separate
ARINC-653 process (implemented as Linux Thread) with
the help of some framework-provided code.

Figure 6 shows a portion of the IDL that describes the
component example discussed in Section III-A. The bottom
left hand side of the figure shows the code written by the
user to implement the getGPSData interface for the GPS
component described in Figure 2, when written for MICO



Fig. 6. Equivalent implementation of a CORBA CCM interface in our framework.

CCM implementation. The right hand side of the figure
shows the equivalent code when written in the APEXCCM
framework. Notice that the user provided code is the same
except that the user is not required to explicitly provide
synchronization using locks. The top right corner shows the
framework provided code that is used to translate any ORB
initiated call to getGPSData interface on the GPS component
into a start call for the corresponding ARINC-653 process.
The generated code also blocks the ORB thread that invoked
the CCM method till the corresponding aperiodic process
finishes by using the wait call on an APEX event used for
notification purposes. We create one notification event per
aperiodic process. The framework has to provide component-
wide read/write locks to secure the shared access to the
component’s states among the component interfaces (which
are the new ARINC-653 processes).

The main ORB thread in the CCM stack is implemented
as an aperiodic ARINC-653 process with an infinite time
deadline. Other processes are able to get the processor when
the ORB process yields. We restrict the user code from
directly launching or creating new threads. This is because
a Process in the ARINC-653 environment is not allowed to
launch new Processes. Due to the same reason, we had to
also configure the ORB to use a predefined number of worker
threads (i.e., ARINC-653 Processes) that are created during
initialization.

A. Component Level Health Managers
The Component Level Health Manager reacts to detected

events and takes mitigation actions. It can also report events
to higher-level manager (defined at the partition level or the
module manager level). In this architecture, the component
level health manager is defined as an interface that must be
supported by all components, and implemented as a process
attached to the component. The framework provides the
glue code to create these health-manager processes for the
components. They are instantiated as aperiodic processes that
run at the highest priority in the partition. The framework

Fig. 7. A component level health manager. The state machine inside health
manager is application specific and is provided by the developer.

also provides the glue code for all processes belonging to
a component to register with the respective health manager.
Upon detection of an error, a component method (process)
can use an API to inform the respective health manager
that can then take the necessary mitigation section. We will
describe the use of health managers using a case study later
in this paper.

Figure 7 describes a component level health manager. The
process associated with the health manager is sporadically
triggered by incoming events that can be generated by either
the partition scheduler or other processes registered with
the manager. The CLHM’s internal state machine tracks the
component’s state and issues mitigation actions. Processes
that that triggered a health management action can block
using a blackboard; they are finally released when the health
manager publishes a response on their respective blackboard.

In the next sub-sections, we identify some restrictions that
had to be enforced (or will be enforced in the future) on the
CCM implementation in order for us to be able to combine
it with APEX. We also discuss some proposed extensions to



CCM and the lessons that we learned during this process.

B. Restrictions enforced on the CCM implementation
CCM implementations such as MICO are designed for

general purpose use. Hence, they allow two kinds of com-
ponent life-cycles; service and session. While a service
component is a singleton, a session component is instantiated
for each client request. In an ARINC-653 system, processes
cannot be created at run-time. Therefore, we allow only ser-
vice components i.e., session components are not supported.
Moreover, initialization code is provided by the framework
to ensure that the component instance is created at the start
of a partition.

A related problem is the use of dynamic memory alloca-
tion. The ARINC-653 specification requires that all run-time
memory allocation should be made on the stack, and not on
the heap. Furthermore, in ARINC-653 each process has a
specified stack size limit that cannot be violated. To enforce
these, the use of memory management hardware is needed.

Recall that we protect the shared access to a Component’s
state variables through its interface methods implemented
as ARINC-653 processes by using a read/write lock. Mixing
remote procedure calls provided by the CCM implementation
in an ARINC-653 environment can lead to a situation where
two or more different processes attempt to acquire the write
lock of the same component. This can potentially lead to a
deadlock, which will eventually be detected as a deadline
violation. To prevent such deadlocks, we require that the
call graph of all remote procedure calls be a directed acyclic
graph with respect to write lock of all components.

C. Extending CCM
Our component model presented in Section III-A is an

extension of the standard CORBA Component Model. We
believe that a component level health management system
will require interfaces for monitoring resource usage moni-
toring and deadline violations. Moreover, we propose that the
CCM be extended with one health manager per component;
a possible improvement over ARINC-653’s concept of one
health monitor per partition.

The CORBA interceptors could be used to service the
health monitors. However, typical CORBA / CCM imple-
mentations, including MICO, do not allow the use of request
and response interceptors on the client and the server side
that are attached to specific Components. However these
frameworks allow generic interceptors that are all called
for all incoming method calls. An alternative would be to
intercept interface specific requests and execute them in the
respective component’s health manager.

The exception-handling mechanism of the CCM imple-
mentation needs to be extended to support resource moni-
toring and recovery. For example, upon deadline violation,
the active Process (thread) must be terminated. However, all
locks and resources used by that Process must be released
and all other Processes blocked by these locks and resources
should be notified. All memory resources should be freed.
This service should be made part of the extended CCM
specification.

Finally, we also require extensions to the IDL grammar.
Currently, this grammar does not support the specification
of process attributes such as deadline and periodicity. The
extended grammar should allow specification of all ARINC-
653 process properties in the IDL. Moreover, we need the
ability to define whether or not an interface provided by a
component is read-only.

D. Lessons learned

During our experiments as described in the evaluation sec-
tion, we discovered that in typical CCM implementations like
MICO [10] and CIAO [11], the publish-consume connections
are implemented as two-way blocking calls and are not really
asynchronous. In other words, the publisher’s thread will
invoke the subscriber’s consume methods in the same thread.
We are working on implementing an intra-partition event-
based communication mechanism for CORBA Components
through Blackboards and Buffers provided by our APEX
library, where the publisher and the subscriber use separate
threads. Also, inter-partition CCM event-based communica-
tion will be mapped to sampling and queuing ports.

The ARINC-653 specification stipulates that aperiodic
processes are allowed to set or extend their own deadline
by using the replenish() call, which sets the current deadline
to current time + replenish time request. Potentially,
this can lead to a situation where the current deadline is
set to an absolute time, which is earlier than the previous
absolute deadline time. This is a potential ambiguity in the
specification and should be clarified.

VI. RESULTS

A. Evaluation

We now compare the effort required to develop the GPS
example presented in Figure 2 and Table I by using (a) only
the APEX services emulation library, and (b) the real-time
component framework presented in this paper that provides
both ARINC-653 and CCM layers. We did not evaluate the
example using only a ‘pure’ CCM implementation as it does
not allow expressing the process periodicity and worst case
execution time. In both cases, all services were implemented
inside a single ARINC-653 partition.

Using APEX layer: Table I shows the four ARINC-653
processes required to build this example. We implemented
the functionality of these processes using the APEX services
emulation library that we have built. In order to use the
asynchronous event communication, we created two APEX
blackboards that were used to store the events commu-
nicated between sampler/gps and gps/display respectively.
Because of the absence of a component framework, we
had to use global variables to store local component state.
Consequently, we required three semaphores to protect those
variables against race conditions. This example required us,
the developers, to write 212 lines of code. Overall, we
used APEX API’s provided by our library 30 times. Out of
those 30 calls, 8 calls were used for Semaphore operations
and 6 calls were used for Blackboard operations. There
was no framework provided glue code. Since APEX API’s



Fig. 8. This is the configuration file used by the Module manager for this
experiment.

are specified in the standard and are same for all other
implementations, this example can be ported to any other
ARINC-653 compliant kernel in 212 lines of code.

Using APEXCCM framework: Using the full frame-
work, we were able to take advantage of framework provided
code and component abstractions for the same example.
Overall, the net APEX API usage was 31 as compared to
30 in the previous case. However, all these invocations were
present in the framework provided code, i.e., the software
developers were not required to directly invoke any APEX
calls. Due to the use of class definitions and declarations,
the net lines of code went up to 443. However, only 106
lines of code were provided by the software developer.
The rest of the code (337 lines of code) was provided
by our framework, which also included the 3 APEX event
related calls and 8 component level synchronization calls
(we described in earlier sections that we need to protect the
common state variables in components using a read/write
lock). We did not use Blackboard in this example. Instead, we
relied on CCM’s publisher/subscriber abstractions. However,
as previously mentioned in section V-D we discovered that
publish-consume connections are implemented as two-way
blocking calls in CCM implementation such as MICO [10]
and CIAO [11].

We measured the average jitter of our system to be less
than 100 µseconds for this experiment, using a vanilla Linux
platform running on a dual-core CPU. Most of this jitter
can be attributed to the implementation of POSIX condition
variables that we use in our library.

B. Component-level software health management demon-
stration

We deployed the GPS CCM example described earlier
in Figure 2 on two ARINC partitions as shown in Figure

Fig. 9. Interface definition used for the GPS example



TABLE II
ARINC PROCESSES CREATED BY THE FRAMEWORK FOR THE GPS EXAMPLE.

Partition Process Name Parent Component Period (seconds) Time Capacity (seconds) Deadline Type
Partition 1 Part1 ORB Process N/A Aperiodic Infinite SOFT
Partition 1 Sensor Process Data Out Sensor 4 4 HARD
Partition 1 Sensor Health Manager Sensor Aperiodic Infinite SOFT
Partition 2 Part2 ORB Process N/A Aperiodic Infinite SOFT
Partition 2 GPS Process Data In GPS 4 4 HARD
Partition 2 Navigation Process Data In Navigation Display Aperiodic 4 HARD
Partition 2 GPS Process Get Data GPS Aperiodic 4 HARD
Partition 2 GPS Health Manager GPS Aperiodic Infinite SOFT
Partition 2 Navigation Health Manager Navigation Display Aperiodic Infinite SOFT

Fig. 10. APEX assembly: We deployed the GPS Example described earlier in Figure 2 on two ARINC partitions. SP is an abbreviation for Sampling
Port.

TABLE III
FAULT SCENARIOS.

Fault Detected at Fault source Mitigation
Hard deadline violation GPS Trigger interface GPS Component Stop and restart

Stale data (missing update) NAVDisplay Subscribe port GPS Component Use previous value
Missing sensor event GPS Subscribe port Sensor Component Use previous value

Rate of change is too high NAVDisplay required interface GPS Component Use previous value

10. Partition 1 contains the Sensor Component. The sensor
component publishes an event every 4 seconds. Partition 2
contains the GPS and Navigation Display component. The
GPS component consumes the event published by sensor
at a periodic rate of 4 seconds. Afterwards it publishes an
event, which is sporadically consumed by the Navigation
Display (abbreviated as display). Thereafter, the display com-
ponent updated its location by using getGPSData interface
provided by the GPS Component. Table II specifies all
ARINC processes that were created by the framework for this
experiment. Note that the software developer only interacts
with the interface methods. All ARINC processes are created
and started using the framework generated glue code. Figure
9 shows the corresponding generated IDL file.

Figure 8 describes the experiment configuration parame-
ters. The frame size was set to 2 seconds. Partition 1’s phase
was 0 seconds, while its duration was 1 second. Partition 2’s
phase was set to 1 second. Its duration was also 1 second.
This ensured that both partition got 1 second of execution
time every 2 seconds. Please refer to the description of

Module Manager in section IV for an explanation on partition
temporal separation. The memory separation is guaranteed
by the Linux kernel. Each partition has a sampling port. The
Channel connects the source sampling port from partition 1
to destination sampling port in partition 2. The framework
is responsible for transferring the messages across a channel
from a source port to a destination port (a channel can also
link 1 source and multiple destinations together).

We did five experiments with the setup defined in the
previous paragraph. The first experiment was designed to
measure the baseline performance. It was a no-fault scenario.
We then ran four fault scenarios specified in Table III. We
describe the results of these experiments in the following sub
sections.

Baseline: No Fault Figure 15 shows the timed sequence
of events as they happen during the first frame of operation.
These sequence charts were plotted using the plotter package
from OMNeT++1. 0th event marks the start of the module

1http://www.omnetpp.org/



Fig. 11. Absolute jitter (µsec) in execution of Partition 1

Fig. 12. Absolute jitter (µsec) in execution of Sensor producer process
(Sensor Process Data Out)

manager, which then creates the Linux processes for the two
partitions. Each partition then creates its respective (APEX)
processes and signals the module manager. This all happens
before the frames are scheduled. Approximately, 1 seconds
after the occurrence of 0th event, module manager signals
partition 1 to start. Upon start, partition 1 starts the ORB
process that handles all CORBA-related functions. It then
starts the sensor health manager. Note that all processes
are started in an order based on priority. Finally, it starts
the periodic sensor process at event number 9. The sensor
process publishes an event at event number 10 and finishes
its execution at event number 11. After 1 second since its
start, partition 1 is stopped by the module manager at event
number 13. Immediately afterwards, partition 2 is started.
Partition 2 starts all its ORB process and health managers
at the beginning of its period. At event 23, partition 2 starts
the periodic GPS process. It consumes the sensor event at
event 24. Notice the cause and effect relationship shown by
the arrow. At event 25 GPS process produces an event and
finishes its execution cycle. The production of GPS event

Fig. 13. Absolute jitter (µsec) in execution of Partition 2

Fig. 14. Absolute jitter (µsec) in execution of GPS consumer process
(GPS Process Data In)

causes the sporadic release of aperiodic navigation process
at event 27. The navigation process uses remote procedure
call to invoke the GPS get data ARINC process. The GPS
data value is returned to navigation process at event 32. It
finishes the execution at event 33. Partition 2 is stopped after
1 second from its start at event 35. This marks the end of
one frame. There is no sensor and GPS activity in an even
frame since the Sensor and GPS periods are 4 seconds and
partition periods are 2 seconds.

Figures 11-14 shows the absolute jitter as measured from
the start of the experiment. Absolute jitter is defined as the
difference between expected release time and actual release
of a periodic process.

Fault Scenario: Missing Sensor Event Sensor publishes
an event every 4 seconds in the nominal condition. In
this experiment, we injected a fault in the code such the
sensor misses all event publications between 10 seconds and
20 seconds after its first execution. Figure 18 shows the
experiment events that elapsed between 17 seconds and 20
seconds since the start. As can be seen in the figure, the
fault is injected in the sensor process at event 144. The GPS



process is started by partition 2 at event 152. At this time,
the precondition specified in the method that handles the
incoming event fails. This precondition checks the Boolean
value of a validity flag that is set by the framework every time
the sampling port is read. This validity flag is set to false if
the age of the event stored in the sampling port is older than
the refresh period specified for the sampling port (4 seconds
in this case). Upon detection, the GPS process raises an error,
which causes the release of GPS health manager. In this case,
the GPS health manager publishes a CONTINUE response
back. The CONTINUE response means that the process that
detected the fault can continue and use the previously stored
data value.

Fault Scenario: Bad GPS Data In this scenario, we inject
a fault in the code such that between 10 to 20 seconds
since its first launch, the GPS get data process sends out
bad data when queried by the navigation display. The bad
data is defined by the value of rate of change of GPS
data being greater than a threshold. This fault simulates an
error in the filtering algorithm in the GPS such that it loses
track of the actual position. Figure 17 shows a snapshot
of experiment from 18 seconds to 19 seconds. The fault is
injected at event 167, approximately 18 seconds after the start
of experiment. The navigation display component retrieves
the current GPS data at event 176 using the remote procedure
call. At event 177, the post condition check of the remote
procedure call is violated. This violation is defined by a
threshold on the delta change of current GPS data compared
to past data (last sample). The navigation display component
raises an error at event 179. At event 181 it receives a
BREAK response from the health manager. Notice that the
execution of navigation display process is preempted till it
receives a response from the health manager. The BREAK
response means that the process that detected the fault should
immediately end processing and return cleanly. The effect of
this action is that the navigation’s GPS coordinates are not
updated as the remote procedure call did not finish without
error.

Fault Scenario: Missing GPS Event In this scenario, the
GPS fails to update the time stamp in its event properly.
This scenario is a combination of two previously described
scenarios. It is similar to the missing sensor event as the
receiving process (in this case it is the navigation component)
does not receive an update. It is similar to the Bad GPS
data scenario because the wrong time stamp is a bad piece
of data. This fault simulates a case where the GPS clock
and the Navigation clock drifts away. Figure 19 describes
the sequence of events in this scenario. The fault is injected
at event 123. The fault is detected when the precondition
associated with the navigation component fails at event
129. This failure is detected by the increased drift or gap
between the current time stamp as reported by the navigation
component and the time stamp stored in the event. The
health manager is informed at event 131. The response given
by health manager is BREAK, which causes the navigation
process to immediately return. Notice that the navigation
process did not issue the remote procedure call to the GPS

because its health manager decided that the GPS is faulty.
Fault Scenario: Hard Deadline Violation by GPS Pro-

cess Data In The final fault scenario illustrates the chain
of events that commences when a process misses its hard
deadline. In this case, we inject a fault after 10 seconds of
the start of the experiment that changes the execution time
of GPS component periodic consumer process. The specified
deadline time for this process as specified in Table II was
4 seconds. This fault is meant to simulate a situation where
an internal equation solver fails to converge to a solution.
Figure 16 shows the corresponding sequence of events. The
fault is detected at event 110 by the partition 2 scheduler,
exactly 4 seconds after the last start of the GPS process.
Since the deadline is hard, the partition 2 manager stops the
GPS process at event 112 and raises a deadline violation
error for that process. This error event is received by the
GPS health manager at event 113. In this example, the health
manager decides to restart the faulty process. The process
restarts at event 115, consumes sensor event at 116, publishes
its output and finishes the execution cycle at event 118. The
health manager can choose not to restart the faulty process
or even reset the component state upon deadline violation.
But such mitigation state machines will have to be provided
by the software developer.

In this case study, we evaluated the effort required to
develop component assemblies in APEXCCM framework.
We also described five execution scenarios, one baseline
and four fault scenarios. All fault scenarios exhibited basic
component-level fault detection and mitigation capability.

VII. RELATED WORK

Schedulability analysis for ARINC-653 systems: Auds-
ley et al. presented a discussion on the ARINC-653 standard
in [8]. In the same paper, they also presented their work on
schedulability analysis of APEX partitions and processes.
They showed that partitions can be analyzed in isolation by
aggregating the timing requirements of all other partitions
together. Work on a similar problem was recently reported
by Easwaran et al. [9]. Their work focused on using com-
positional analysis techniques and took into account the pro-
cess communication, jitter and preemption overheads. They
assumed that all partition periods are harmonic. However,
they ignored aperiodic processes. Their techniques can be
used to verify the schedule of an ARINC-653 system before
deployment.

Lipari and Bini have shown how to compose hierarchical
scheduling systems which have a global-level scheduler and
a per-application local scheduler [12]. However, they restrict
their approach to using a fixed-priority local scheduler. This
structure is similar to the one found in an ARINC-653
system. However, in an ARINC-653 system processes are
allowed to alter the priority of other processes in the same
partition.

Bate and Burns proposed transitioning to a fixed-priority
scheduling model from a static priority scheduling model
as typically used in the integrated modular avionics systems
in [13]. In a priority driven scheduling policy, the priority



of the released task decides the execution order, while in
the statically set schedule such as that used in scheduling
ARINC-653 partition and inter-partition communication, the
current time governs the task dispatching order. The problem
in time-driven scheduling becomes apparent when one has
a distributed system with dependencies across modules and
there is drift between corresponding local clocks.

Burns and Lin [14] describe a way to model-check the
properties of a single processor real-time system modeled
using a constrained form of timed automata. However, their
model is restricted due to the semantics of timed automata
which does not allow the clock to behave like a stopwatch
[15]. Consequently, they can only validate scheduling in
systems where each invocation of the task requires some
specified computation time and once invoked the task cannot
be suspended. This model fits well for schedulability analysis
of partitions in ARINC-653 systems which are statically
scheduled. However, it cannot be used for analyzing ARINC-
653 processes which can be suspended during execution by
other processes.

These analysis algorithms require the knowledge of the
worst case execution time associated with each task. How-
ever, estimating worst case execution times is difficult and
as a consequence it is possible that deadlines are violated
during run-time. Therefore, the run-time deadline violation
monitoring provided by frameworks such as ours ensures that
the assumptions made about schedules at design time remain
valid even if one or more process in a partition are faulty.

Related frameworks: An approach to objects based
on time-triggered (periodic) and event-triggered (sporadic)
methods has been presented in [16]. The approach described
is implemented in the form of object structures, and many
concepts are similar to our approach. However, there are two
differences: we rely on an industry standard (ARINC-653) as
the underlying platform, and we build a framework on top of
that to provide specific services for component interactions
and scheduling (for SHM).

Kuz et al. presented a component model called CAmkES
in [17]. They built their system above the L4 micro kernel.
CAmkES does not provide temporal partitioning. Instead, it
is designed to be a low-overhead system that can run on
small computing nodes by enforcing static components (i.e.,
a singleton and not a session-based component) and static
bindings. We had to also enforce similar restrictions in our
framework to keep the component interactions simple and
predictable. While this framework has been built and tested
on ARM processors, our prototype ARINC-653 and CCM
framework has been developed for the x86 architecture as
it gives us more flexibility in experimenting with the SHM
technology.

Delange et al. recently published their work on POK
(PolyORB Kernel) [18]. It uses AADL specifications to au-
tomatically configure and deploy processes and partitions to
a QEMU based emulated computing node. We are currently
working on obtaining details about this project. DIANA [19]
is a new project for implementing an avionics platform called
Architecture for Independent Distributed Avionics (AIDA)

using Java as the core technology. One of the challenges
in using Java is the threading model, which requires their
Java virtual machine called PERC Pico to handle the thread
scheduling itself instead of the operating system. This adds
another layer of scheduling above the operating system.
Hence, they do not provide a one-to-one mapping between a
Java thread and an APEX process. Another issue with using
Java mentioned in their paper is the complexity in estimating
and bounding memory usage per thread, which is a critical
requirement in the ARINC-653 standard. Finally, they also
mention that the errors signaled by PERC Pico are hard to
diagnose and correct [19]. This is partially due to the extra
layer imposed by the Java virtual machine.

Lakshmanan and Rajkumar presented a distributed re-
source kernel framework used to deploy real-time applica-
tions with timing deadlines and resource isolation in [20].
Their system consists of a ‘partitioned’ virtual container
built over their Linux/RK platform. They have reported that
their framework provides temporal resource isolation in that
they ensure that the timing guarantees provided to each
independent application do hold irrespective of the behavior
of other applications by using CPU as a reserved resource.
However, to the best of our knowledge they do not support
process and partition management services as specified in
ARINC-653. Moreover, their framework does not support a
component model.

Fault detection and health management: Conmy et al.
presented a framework for certifying Integrated Modular
Avionics applications build on ARINC-653 platforms in
[21]. Their main approach was the use of ‘safety contracts’
to validate the system at design time. They defined the
relationship between two or more components within a
safety critical system. However, they did not present any
details on the nature of these contracts and how they can be
specified. We believe that a similar approach can be taken
to formulate acceptance criteria, in terms of “correct” value-
domain and temporal-domain properties that will let us detect
any deviation in a component’s behavior.

Mark Nicholson presented the concept of reconfiguration
in integrated modular systems running on operating systems
that provide robust spatial and temporal partitioning in [22].
He identified that health monitoring is critical for a safety-
critical software system and that in the future it will be nec-
essary to trade-off redundancy based fault tolerance for the
ability of “reconfiguration on failure” while still operational.
He described that a possibility for achieving this goal is to
use a set-of look up tables, similar to the health monitoring
tables used in ARINC-653 system specification, that maps
trigger event to a set of system blue-prints providing the
mapping functions. Furthermore, he identified that this kind
of reconfiguration is more amenable to failures that hap-
pen gradually, indicated by parameter deviations. Finally,
he identified the challenge of validating systems that can
reconfigure at run-time.

Goldberg and Horvath have discussed discrepancy mon-
itoring in the context of ARINC-653 health-management
architecture in [6]. They describe extensions to the appli-



cation executive component, software instrumentation and a
temporal logic run-time framework. Their method primarily
depends on modeling the expected timed behavior of a
process, a partition, or a core module - the different levels of
fault-protection layers. All behavior models contain “faulty
states” which represent the violation of an expected property.
They associate mitigation functions using callbacks with
each fault.

Sammapun et al. describe a run-time verification approach
for properties written in a timed variant of LTL called MEDL
in [23]. They described an architecture called RT-MaC for
checking the properties of a target program during run-
time. All properties are evaluated based on a sequence of
observations made on a “target program”. To make these
observations all target programs are modified to include a
“filter” that generates the interesting event and reports values
to the event recognizer. The event recognizer is a module that
forwards the events to a checker that can check the property.
Timing properties are checked by using watchdog timers
on the machines executing the target program. The main
difference in this approach and the approach of Goldberg
and Horvath outlined in previous paragraph is that RT-MaC
supports an “until” operator that allows specification of a
time bound where a given property must hold. Both of these
efforts provided valuable input to our design of run-time
component level health management.

VIII. CONCLUSIONS

This paper presented our first steps towards building
a Software Health Management technology that extends
beyond classic software fault tolerance techniques. In the
approach, we focused on building a framework first that
combines component-oriented software construction (CCM)
with a real-time operating system with partitioning capability
(ARINC-653). We created a prototype using Linux processes
and POSIX threads for purely experimental purposes. How-
ever, the principles and techniques developed are portable to
’real’ ARINC-653 implementations. During this effort, we
have recognized several discrepancies between CCM and
ARINC-653, and these differences lead us to believe that
further developments are needed that integrate components
with a hard real-time platform.
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Fig. 15. Sequence of Events for a no-fault case



Fig. 16. Sequence of Events for a GPSDeadline case



Fig. 17. Sequence of Events for a BadGPSData case



Fig. 18. Sequence of Events for a MissingSensorEvent case



Fig. 19. Sequence of Events for a MissingGPSEvent case
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